Skip to main content

Abstract

Being relatively simple compounds, 2,5-dioxopiperazines are amongst the most ubiquitous peptide derivatives found in nature. Hydrolysates of proteins and polypeptides often contain these anhydro-dimers of amino-acids and they are commonly isolated from cultures of yeast, lichens and fungi. Their existence as a special group of compounds was first recognized around 1900 (1). The great Emil Fischer managed to synthesize many of the simpler members of this family in the early 1900’s (2). The parent compound, 2,5-dioxopiperazine, often referred to as cyclo-gly-gly*, was made in 1888 (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischer, E., and K. Raske: Beitrag zur Stereochemie der 2,5-Diketopiperazine. Ber. 39, 3981 (1906).

    Google Scholar 

  2. Fischer, E.: Untersuchungen über Aminosäuren, Polypeptide und Proteine. Ber. 39, 530 (1906).

    Google Scholar 

  3. Curttus, T., and Goebel: J. prakt. Chem. 37, 173 (1888).

    Google Scholar 

  4. Abderhalden, E., and E. Komm: The Formation of Diketopiperazines from Polypeptides Under Various Conditions. Z. physiol. Chem. 139, 147 (1924).

    Article  CAS  Google Scholar 

  5. Abderhalden, E., and R. Haas: Further Studies on the Structure of Proteins: Studies on the Physical and Chemical Properties of 2,5-Diketopiperazines. Z. physiol. Chem. 151, 114 (1926).

    Article  CAS  Google Scholar 

  6. Katchalski, E., I. Grossfield, and F. M. Frankel: Synthesis of Lysine Anhydride. J. Am. Chem. Soc. 68, 879 (1946).

    Article  CAS  Google Scholar 

  7. Kopple, K. D., and D. H. Marr: Conformations of Cyclic Dipeptides: The Folding of Cyclic Dipeptides containing an Aromatic Side Chain. J. Am. Chem. Soc. 89, 6193 (1967).

    Article  CAS  Google Scholar 

  8. Greenfield, N. J., and G. D. Fasman: Optical Activity of Simple Cyclic Amides in Solution. Biopolymers 7, 595 (1969).

    Article  CAS  Google Scholar 

  9. Balasubramanian, D., and D. B. Wetlaufer: Optical Rotatory Properties of Diketopiperazines. J. Am. Chem. Soc. 88, 3449 (1966).

    Article  CAS  Google Scholar 

  10. Schellman, J. A., and B. E. Nielson: In “Conformations of Biopolymers”, ed. G. N. Ramachandran, vol. 1, p. 109. New York: Academic Press. 1967.

    Google Scholar 

  11. Edelhoch, H., R. E. Lippoldt, and M. Wilcheck: The Circular Dichroism of Tyrosyl and Tryptophanyl Diketopiperazines. J. Biol. Chem. 243, 4799 (1968).

    CAS  Google Scholar 

  12. Bellamy, L. J.: The Infrared Spectra of Complex Molecules. Chapter 12. London: Methuen and Co. Ltd. 1957.

    Google Scholar 

  13. Blaha, K., J. Smolfxova, and A. Vitek: Aminoacids and Peptides, LXIV. Infrared Spectra of Substituted 2,5-Piperazinediones and the Detection of cis-Peptide Bonds in Diastereoisomeric Cyclohexapeptides. Coll. Czech. Chem. Commun. 31, 4296 (1966).

    Article  CAS  Google Scholar 

  14. Jankowsky, K., and L. Varfalvy: Mass Spectroscopy of 2,5-Dioxopiperazines. II. A Study of cyclo-Ala-ala. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 20, 493 (1966).

    Google Scholar 

  15. Svec, H. J., and G. A. June: The Mass Spectra of Dipeptides. J. Am. Chem. Soc. 86, 2278 (1964).

    Article  CAS  Google Scholar 

  16. Nagarajan, R., J. L. Occolowitz, N. Neuss, and S. M. Nash: Mass Spectra of Diketopiperazines from Aranotin and Related Metabolites. Chem. Commun. 1969, 359.

    Google Scholar 

  17. Romanet, R., A. Chemizard, S. Duhoux, and S. David: Etudes par resonance magnetique nucleaire de l’echinuline, de certains derives et de modeles indoliques. Bull. soc. Chim. France 1048 (1963).

    Google Scholar 

  18. Chemizard, A., and S. David: Remarques sur les dioxo-2,5-piperazines. Bull. soc. Chim. France 1966, 184.

    Google Scholar 

  19. Kopple, K. D., and M. Ohnishi: Conformations of Cyclic Peptides II: Side-chain Conformation and Ring Shape in Cyclic Dipeptides. J. Am. Chem. Soc. 91, 962 (1969).

    Article  CAS  Google Scholar 

  20. Young, P. E., V. Madison, and E. R. Blout: Cyclic Peptides VI. Europium Assisted N. M. R. Study of the Solution Conformation of cyclo (L-pro-L-pro) and cyclo (L-proD-pro). J. Am. Chem. Soc. 95, 6142 (1973).

    Article  CAS  Google Scholar 

  21. Krezcarek, G. E., B. W. Dominy, and R. G. Lawton: The Interaction of Reactive Functional Groups along Peptide Chains: A Model for Alkaloid Biosynthesis. Chem. Commun. 1968, 1450.

    Google Scholar 

  22. Fischer, E.: Syntheses von Polypeptiden, XV. Ber. 39, 2893 (1906).

    CAS  Google Scholar 

  23. Blaha, K.: Amino-acids and Peptides, XCV. Synthesis of Some Diastereoisomeric 2,5-Piperazine-diones. Coll. Czech. Chem. Commun. 34, 4000 (1969).

    Article  CAS  Google Scholar 

  24. Nitecki, D. E., B. Halpern, and J. W. Westley: A Simple Route to Sterically Pure Diketopiperazines. J. Org. Chem. 33, 864 (1968).

    Article  CAS  Google Scholar 

  25. Schott, H. F., J. B. Larkin, L. B. Rockland, and M. S. Dunn: The Synthesis of 1 (−) Leucylglycylglycine. J. Org. Chem. 12, 490 (1947).

    Article  CAS  Google Scholar 

  26. Rosenmund, P., and K. Kains: Diketopiperazines from Leuchs’ Anhydrides. Angew. Chem. Internat. Edn. 9, 162 (1970).

    Article  CAS  Google Scholar 

  27. Kopple, K. D., and H. G. Ghazarian: A Convenient Synthesis of 2,5-Dioxopiperazines. J. Org. Chem. 33, 862 (1968).

    Article  CAS  Google Scholar 

  28. Lichtenstein, N.: The Behaviour of Dipeptides when Heated in 13-Naphthol. J. Am. Chem. Soc. 60, 560 (1938).

    Article  CAS  Google Scholar 

  29. Zahn, H., and D. Brandenburg: Synthese einer geschützten Heptapeptidsequenz aus dem Tyrocidin B. Annalen 692, 220 (1966).

    CAS  Google Scholar 

  30. Grahl-Nielson, O.: Acid Hydrolysis of Diastereoisomeric Dioxopiperazines. Tetrahedron Letters 1969, 2827.

    Google Scholar 

  31. Slater, G. P.: Synthesis of Piperazine-2,5-diones. Chem. & Ind. (London) 1969, 1092.

    Google Scholar 

  32. Goodman, M., and K. C. Steuben: Peptide Synthesis via Aminoacid Esters, II. Some Abnormal Reactions during Peptide Synthesis. J. Am. Chem. Soc. 84, 1279 (1962).

    Article  CAS  Google Scholar 

  33. Westley, J. W., V. A. Close, D. E. Nitecki, and B. Halpern: Determination of Steric Purity and Configuration of Diketopiperazines by Gas-liquid Chromatography, Thin-layer chromatography and Nuclear Magnetic Resonance Spectrometry. Anal. Chem. 40, 1888 (1968).

    Article  CAS  Google Scholar 

  34. Tsusoi, M., T. Shimanouchi, and S. Miyushima: Near Infrared Spectra of Compounds with Two Peptide Bonds and the Configuration of a Polypeptide Chain, VII. On the Extended Form of Polypeptide Chains. J. Am. Chem. Soc. 81, 1406 (1959).

    Article  Google Scholar 

  35. Indelicato, T. M., T. T. Norvilas, and W. J. Wheeler: Intramolecular Nucleophilic Attack in 7 (α-Amino) phenylcephalosporanic Esters. J. C. S. Chem. Commun. 1972, 1162.

    Google Scholar 

  36. Roets, E. R., A. J. Vlietnieck, G. A. Janssen, and H. Vanderhaeghe: IntramolecUlar Nucleophilic Attack in 6-Epiampicillin. J. C. S. Chem. Commun. 484 (1973).

    Google Scholar 

  37. Titlestad, K.: Cleavage of Linear Tetrapeptides into Two Cyclic Dipeptides. Chem. Commun. 1971, 1527.

    Google Scholar 

  38. Lucente, G., and P. Frattesi: Cyclisation of Activated Tosyl-peptides. Tetrahedron Letters 1972, 4283.

    Google Scholar 

  39. Mauger, A. B.: Degradation of Peptides to Diketopiperazines: Applications of Pyrolysis-Gas Chromatography to Sequence Determination in Actinomycins. Chem. Commun. 1971, 39.

    Google Scholar 

  40. Poisel, H., and U. Schmidt: Asymmetrische Induktion bis Reaktionen von Aminosäuren und Peptiden, I. Asymmetrische Synthese Aromatische α-Aminosäuren und N-Methyl α-Aminosäuren. Synthese von L-DOPA. Über die Katalytische Hydrierung ungesättigter Cyclopeptide. Chem. Ber. 106, 3408 (1973).

    Article  CAS  Google Scholar 

  41. Degeilh, R., and R. E. Marsh: A Refinement of the Crystal Structure of Diketopiperazine (2,5-Piperazine-dione). Acta Crystallog. 12, 1007 (1959).

    Article  CAS  Google Scholar 

  42. Benedetti, E., P. Corradini, and C. Pedone: Crystal and Molecular Structure of L-cis-3,6-Dimethyl-2,5-piperazinedione (L-alanyl-L-alanine-2,5-diketopiperazine). Bio-polymers 7, 751 (1969).

    CAS  Google Scholar 

  43. Benedetti, E., P. Corradini, and C. Pedone: The Crystal and Molecular Structure of trans-3,6-Dimethyl-2,5-piperazinedione. J. Phys. Chem. 73, 2891 (1969).

    Article  CAS  Google Scholar 

  44. Sletten, E.: Conformation of Cyclic Dipeptides: The Crystal and Molecular Structures of Cyclo-D-alanyl-L-alanyl and cyclo-L-Alanyl-L-alanyl. J. Am. Chem. Soc. 92, 172 (1970).

    Article  CAS  Google Scholar 

  45. Benedetti, E., P. Corradini, M. Goodman, and C. Pedone: Flexibility of Supposed “Rigid” Molecules: Substituted 2,5-Piperazinediones (Diketopiperazines). Proc. Natn. Acad. Sci. USA, 62, 650 (1969).

    Article  CAS  Google Scholar 

  46. Groth, P.: Crystal Structure of N,N’-Dimethyldioxopiperazine. Acta Chem. Scand. 23, 3155 (1969).

    Article  CAS  Google Scholar 

  47. Karle, I. L.: Crystal Structure and Conformation of the Cyclic Dipeptide, cyclo-LProlyl-L-leucyl. J. Am. Chem. Soc. 94, 81 (1972).

    Article  CAS  Google Scholar 

  48. Siemion, I. Z.: Die Konformation des Prolin Ringes in Diketopiperazin Systemen. Annalen 748, 88 (1971).

    CAS  Google Scholar 

  49. Siemion, I. Z.: NMR Investigation of Proline Containing Dioxopiperazines. Org. Magn. Resonance 3, 545 (1971).

    CAS  Google Scholar 

  50. Blaha, K., M. Bodesinsky, I. Fric, J. Smoukona, and J. Vicar: Cyclodipeptides. Conformational Analysis and Spectroscopic Studies. Tetrahedron Letters 1972, 4437.

    Google Scholar 

  51. Gawne, G., G. W. Kenner, N. H. Rogers, R. C. Sheppard, and K. Titlestad: In “Peptides”, ed. E. Brlcas, p. 28. Amsterdam: North-Holland Publishing Co. 1968.

    Google Scholar 

  52. Ziauddin, K. D. Kopple, and C. A. Bush: Conformations of cyclo-L-His-L-Ser, cyclo-L-His-L-Asp, and cyclo-L-His-L-His. Tetrahedron Letters 1972, 483.

    Google Scholar 

  53. cf. Johnson, C. E., and F. A. Bovey: Calculation of Nuclear Magnetic Resonance Spectra of Aromatic Hydrocarbons. J. Chem. Phys. 29, 1012 (1958).

    Article  CAS  Google Scholar 

  54. Ziauddin, and K. D. Kopple: Conformations of Folded Peptides: Stabilities of Folded Conformations of para-substituted 3-Benzylpiperazine-2,5-diones. J. Org. Chem. 35, 253 (1970).

    Article  CAS  Google Scholar 

  55. Caillet, J., B. Pullmann, and B. Maigret: Molecular Orbital Calculations On the Folding of Cyclic Dipeptides with Aromatic and Aliphatic Side Chains. Biopolymers 10, 221 (1971).

    Article  CAS  Google Scholar 

  56. Kopple, K. D., R. R. Jarabak, and P. L. Muller: Reactivity of Cyclic Peptides. III. Reaction of Isomeric Histidine, Tyrosine Peptides with p-Nitrophenyl Acetate. Biochem. 2, 958 (1963).

    Article  CAS  Google Scholar 

  57. Zbiral, E., E. L. Menard, and J. M. Muller: über die Inhaltsstoffe von Zizyphus oenoplia Mill. II. Zur Konstitutionsmittlung des Zizyphins. Helv. Chim. Acta 48, 1608 (1965).

    Google Scholar 

  58. Pailer, M., E. Haslinger, and E. Zbiral: Zur Konstitution des Zizyphinins von Zizyphus oenoplia Mill. Monatsh. Chem. 100, 1608 (1968).

    Article  Google Scholar 

  59. Warnhoff, E. W.: Peptide Alakoids. Fortschr. Chem. Organ. Naturstoffe 28, 162 (1970).

    CAS  Google Scholar 

  60. Bodansky, M., G. F. Singler, and A. Bodansky: Structure of the Peptide Antibiotic Amphomycin. J. Am. Chem. Soc. 95, 2352 (1973).

    Article  Google Scholar 

  61. Arison, B. H., and J. L. Beck: The Structure of Compound 593 A, A New Anti-tumor Agent. Tetrahedron 29, 2743 (1973).

    Article  CAS  Google Scholar 

  62. Forster, M. O., and W. B. Saville: Isolation of Picroroccellin from Rocella fuciformis. J. Chem. Soc. 121, 816 (1922).

    Article  CAS  Google Scholar 

  63. Atkins, C. L., and J. B. Neilands: Rhodotorulic Acid. A Diketopiperazine Dihydroxamic Acid with Growth Regulatory Properties. I. Isolation and Characterization. Biochem. 7, 3734 (1968).

    Article  Google Scholar 

  64. Keller-Schierlein, W., V. Prelog, and H. Zahner: Siderochrome. Fortschr. Chem. Organ. Naturstoffe 22, 279 (1964).

    Article  CAS  Google Scholar 

  65. Akers, H. A., M. Llinas, and J. B. Neilands: Protonated Amino Acid Studies on Rhodotorulic Acid Biosynthesis in D2O Media. Biochem. 11, 2283 (1972).

    Article  CAS  Google Scholar 

  66. Isowa, Y. T., Takashima, M. Ohmori, H. Kurita, M. Sato and K. Mori, Synthesis of Rhodotorulic Acid. Bull Chem. Soc. Japan 45, 1467 (1972).

    Article  CAS  Google Scholar 

  67. Diekmann, H.: Metabolic Products of Microorganism. Part 81. Occurrence and Structure of Coprogen B and Dimerumic Acid. Arch. Mikrobiol. 73, 65 (1970).

    Article  CAS  Google Scholar 

  68. Keller-Schierlein, W., and H. Diekmann: Zur Konstitution des Coprogens. Helv. Chim. Acta 53, 2035 (1970).

    CAS  Google Scholar 

  69. Hedy, P. H., E. B. Hodge, V. V. Young, R. L. Harried, G. A. Brewer, W. F. Phillips, W. F. Runge, H. E. Stavely, A. Pohland, H. Boaz, and H. R. Sullivan: Structure and Reactions of Cycloserine. J. Am. Chem. Soc. 77, 2345 (1955).

    Article  Google Scholar 

  70. Karpeiskii, M. Yu., Yu. N. Breusov, R. M. Khomatov, E. S. Severin, and O. C. Polyanovskii: The Mechanism of Action of Cycloserine and Related Compounds with Aspartic-Glutamic Transaminase. Biokhimiya 28, 342 (1963). Chem. Abs. 59, 4219 f (1963).

    Google Scholar 

  71. Lassen, F. O., and C. H. Stammer: Cycloserine Dimer Hydrolysis and its Equilibration with Cycloserine. J. Org. Chem. 36, 2631 (1971).

    Article  CAS  Google Scholar 

  72. Miller, J. C., F. C. Neuhaus, F. O. Lassen, and C. H. Stammer: The Reactions of 3,6-Bis(aminoxymethyl)-2,5-piperazinedione with Acid and Alkali. A Kinetic Study. J. Org. Chem. 33, 3908 (1968).

    Article  CAS  Google Scholar 

  73. Poduska, K., G. S. Katrukha, A. B. Silaev, and J. Rudinger: Amino Acids and Peptides. LII. Intramolecular Aminolysis of Amide Bonds in Derivatives of αγ-Diaminobutyric Acid, αβ-Diaminopropionic Acid, and Ornithine. Coll. Czech. Chem. Commun. 30, 2410 (1965).

    CAS  Google Scholar 

  74. Mckinney, J. D., and C. H. Stammer: Role of Azomethines in the Dimerisation of Cycloserine by Aldehydes. Tetrahedron 25, 163 (1969).

    Article  CAS  Google Scholar 

  75. Wrinch, D.: The Cyclol Theory in the “Globular” proteins. Nature 139, 972 (1969).

    Article  Google Scholar 

  76. Wrinch, D.: Chemical Aspects of Polypeptide Chain Structures and the Cyclol Theory. Copenhagen: Munksgaard. 1956.

    Google Scholar 

  77. Shemyakin, M. M., V. K. Antonov, A. M. Shkrob, V. I. Shchelekov, and Z. E. Agadzhanyan: Activation of the Amide Group by Acylation. Tetrahedron 21, 3537 (1965).

    Article  CAS  Google Scholar 

  78. Shemyakin, M. M., Y. A. Ovchimichov, V. K. Antonov, A. A. Kiryashkin, V. I. Ivanov, V. I. Shchelekov, A. M. Shkrob: Total Synthesis of Serratamolide, I. Synthesis of O,O’-Diacetyl Serratamolide. Tetrahedron Letters 1964, 47.

    Google Scholar 

  79. Stoll, A.: Recent Investigations on Ergot Alkaloids. Fortschr. Chem. Organ. Naturstoffe 9, 114 (1952).

    CAS  Google Scholar 

  80. Hofmann, A., A. J. Frey, and H. Ott: Die Totalsynthese des Ergotamins. Experientia 17, 206 (1961).

    Article  CAS  Google Scholar 

  81. Rothe, M., and R. Steinberger: Thiocyclols and Cyclothio-depsipeptides. Angew. Chem., Internat. Edn. 7, 884 (1968).

    Article  CAS  Google Scholar 

  82. Rothe, M., T. Tothe, and D. Jacob: Synthesis of an Azacyclol. Angew. Chem., Internat. Edn., 10, 128 (1971).

    Article  CAS  Google Scholar 

  83. Stoll, A., and Hofmann: The Ergot Alkaloids in “The Alkaloids”, ed. R. F. Manske, Vol. 8, p. 725. New York: Academic Press. 1965.

    Google Scholar 

  84. Leonard, N. J.: Transannular Nitrogen-Carbonyl Interactions. Record Chem. Progress 17, 243 (1956).

    CAS  Google Scholar 

  85. Lucente, G., and A. Romeo: Synthesis of Cyclols from some small Peptides via Amide-Amide Reaction. Chem. Commun. 1971, 1605.

    Google Scholar 

  86. Cerrini, S., W. Fedeli, and F. Mazza: X-Ray Crystallographic Proof of a Cyclol Structure in a Tripeptide. Chem. Commun. 1971, 1607.

    Google Scholar 

  87. Machin, P. J., and P. G. Sammes: Unpublished work.

    Google Scholar 

  88. Simonson, L. A., and C. K. Mann: Anodically Induced 1,3-Cyclo addition of Acetonitrile to 3,6-Diisobutylpiperazine-2,5-dione. Tetrahedron Letters 1970, 3303.

    Google Scholar 

  89. Blake, K. W., and P. G. Sammes: Geometrical Isomerism and Tautomerism of 3-Arylidene-6-methylpiperazine-2,5-diones. J. Chem. Soc. (C) 1970 (980).

    Google Scholar 

  90. Machin, P. J., A. E. A. Porter, and P. G. Sammes: Pyrazine Chemistry. Part V. Diels-Alder Reactions of Some 2,5-Dihydroxypyrazines. J. C. S., Perkin I, 1973, 404.

    Google Scholar 

  91. Bergmann, M., and A. Miekeley: Neue Desmotrope Aminosäureanhydride von Piperazintypus. Zur Kenntnis des Abbau der Aminosäuren. Serine als Dehydrierungsmittel. Annalen 458, 40 (1927).

    CAS  Google Scholar 

  92. Chakrabartty, S. K., and R. Levine: Chemistry of Pyrazine and its Derivatives. XII. Reaction of Acetonylpyrazine with Phenyllithium in the Presence and Absence of Methyl Benzoate. J. Heterocyclic Chem. 4, 109 (1967).

    Article  CAS  Google Scholar 

  93. Khokrov, A. S., and G. B. Losxkin: The Structure of Albonoursin. Tetrahedron Letters 1963, 1881.

    Google Scholar 

  94. Shin, C., Y. Chigera, M. Masaki, and A. Ohta: Total Synthesis of Albonoursin. Tetrahedron Letters 1967, 4601.

    Google Scholar 

  95. Gallina, C., and A. Liberatori: A New Synthesis of 1-Acetyl-3-Arylidene (alkylidene)piperazine-2,5-diones. Tetrahedron Letters 1973, 1135.

    Google Scholar 

  96. Shin, C., Y. Chigera, M. Masaki, and A. Ohta: Synthesis of Albonoursin. Bull. Chem. Soc. Japan 42, 191 (1969).

    Article  CAS  Google Scholar 

  97. Porter, A. E. A., and P. G. Sammes: On the Synthesis of 3-Benzylidenepiperazine2,5-diones. J. Chem. Soc. C 1970, 2530.

    Google Scholar 

  98. Sheehan, J. C., D. Mania, S. Nakamura, J. A. Stock, and K. Maeda: The Structure of Telomycin. J. Am. Chem. Soc. 90, 462 (1968).

    Article  CAS  Google Scholar 

  99. Shin, C., M. Masaki, and A. Ohta: The Independent Isolation of a Primary Enamine and the Tautomeric Imine. Bull. Chem. Soc. Japan 44, 1657 (1971).

    Article  CAS  Google Scholar 

  100. Quilico, A., and L. Panizzi: Chemische Untersuchungen über Aspergillus echinulatus. I. Mitteilung. Ber. 76, 348 (1943).

    Google Scholar 

  101. Quiuco, A.: The Constitution of Echinulin. Res. Progr. org. biol. med. Chem. 1, 225 (1964).

    Google Scholar 

  102. Birch, A. J., G. E. Blance, S. David, and H. Smith: Studies in relation to Biosynthesis. Part XXIV. Some Remarks on the Structure of Echinulin. J. Chem. Soc. 1961, 3128.

    Google Scholar 

  103. Macdonald, J. C., and G. P. Slater: The Utilization of Tryptophan in the Biosynthesis of Echinulin. Canad. J. Microbiol.12, 455 (1966).

    CAS  Google Scholar 

  104. Slater, G. P., J. C. MacDonald, and R. Nakashima: Biosynthesis of Echinulin by Aspergillus amstelodami from Cyclo-L-alanyl-L-tryptophanyl-14C. Biochem. 9, 2886 (1970).

    Article  CAS  Google Scholar 

  105. Nakashima, R., and G. P. Slater: Configuration of Echinulin II. Optical Rotatory Dispersion of Echinulin, Hydroechinulin, and the Stereoisomeric 3-Methyl-6-(indolyl3-methyl)piperazine-2,5-diones. Canad. J. Chem. 47, 2069 (1969).

    Article  CAS  Google Scholar 

  106. Houghton, E., and J. E. Saxton: The Echinulins: Preliminary Synthetic Studies and the Absolute Configuration of Echinulin. Tetrahedron Letters 1968, 5475.

    Google Scholar 

  107. Birch, A. J., and K. R. Farrar: Studies in Relation to Biosynthesis. Part XXXIII. Incorporation of Tryptophan into Echinulin. J. Chem. Soc. 1963, 4277.

    Google Scholar 

  108. Jackson, A. H., and A. E. Smith: Electrophilic Substitution in Indoles I. Model Experiments Related to the Synthesis of Echinulin. Tetrahedron 21, 989 (1965).

    Article  CAS  Google Scholar 

  109. Casnati, G., M. Francioni, A. Guareschi, and A. Pochini: Insertion of Isoprene Units into Indole Systems. Tetrahedron Letters 1969, 2485.

    Google Scholar 

  110. Casnati, G., and A. Pochini: Rearrangement of 3-Alkyl-l-allylindoles; A Model Reaction for the Biogenesis of Echinulin-type Compounds. Chem. Commun. 1970, 1328.

    Google Scholar 

  111. Dix, D. T., J. Martin, and C. E. Moppett: Molecular Structure of the Metabolite Lanosulin. J. C. S. Chem. Commun. 1972, 1168.

    Google Scholar 

  112. Bycroft, B. W., and W. Landon: Thio-Claisen Rearrangements of Sulphonium Salts: Implications in Indole Alkaloid Biosynthesis. Chem. Commun. 1970, 967.

    Google Scholar 

  113. Plieninger, H., and H. Herzog: Synthesis of O- and C-Alkylated Indoxyl Derivatives. Preliminary work for the Synthesis of Echinulin. Monatsh. Chem. 98, 807 (1967).

    Article  CAS  Google Scholar 

  114. Houghton, E., and J. E. Saxton: Echinulin Series. Part II. Synthesis of ± Alanyltryptophan Anhydride and L-Alanyl-2-(1,1-dimethyl)allyltryptophan Anhydride. J. Chem. Soc. (C) 1969, 1003.

    Google Scholar 

  115. Takamatsu, N., S. Indue, and Y. Kishi: Synthetic Study on Echinulin and Related Compounds. Part II. A Stereoselective Total Synthesis of Optically Active Echinulin. Tetrahedron Letters 1971, 4665.

    Google Scholar 

  116. Takamatsu, N., S. Inoue, and Y. Kishi: Synthetic Study on Echinulin and Related Compounds. Part I. Acid-catalyzed Amino-Claisen Rearrangement of allyl-and 3,3-Dimethylallyl Aniline Derivatives. Tetrahedron Letters 1971, 4661.

    Google Scholar 

  117. Kishi, Y., S. Nakatsuku, T. Fukuyama, and T. Goto: A Stereoselective Decarboxylation of 1,6-Dimethyl-3(3’-indolyl)methyl-3-carboxy-2,5-piperazinedione. Tetrahedron Letters 1971, 4657.

    Google Scholar 

  118. Allen, C. M.: Biosynthesis of Echinulin. Isoprenylation of Cyclo-L-alanyl-Ltryptophanyl. Biochem. 11, 2154 (1972).

    Article  CAS  Google Scholar 

  119. Allen, C. M.: Monoisoprenylated Cyclo-L-ala-L-try as a Biosynthetic Precursor of Echinulin. J. Am. Chem. Soc. 95, 2386 (1973).

    Article  CAS  Google Scholar 

  120. Barbetta, M., G. Casnati, A. Pochini, and A. Silva: Neoechinulin — a New Indole Metabolite from Aspergillus echinulatus. Tetrahedron Letters 1967, 4457.

    Google Scholar 

  121. Casnati, G., A. Pochini, and R. Ungaro: Neoechinulin: A New Isoprenylindole Metabolite from Aspergillus amstelodami. Gazz. Chim. Ital., 103, 141 (1973).

    CAS  Google Scholar 

  122. Birch, A. J., and J. J. Wright: The Brevianamides: A New Class of Fungal Alkaloid. Chem. Commun. 1969, 644.

    Google Scholar 

  123. Birch, A. J., and J. J. Wright: Studies in Relation to Biosynthesis. Part XLII. The Structural Elucidation and some Aspects of the Biosynthesis of the Brevianamides A and E. Tetrahedron 26, 2329 (1970).

    Article  CAS  Google Scholar 

  124. Birch, A. J., and R. A. Russell: Studies in Relation to Biosynthesis. Part XLIV. Structural Elucidations of Brevianamides B, C, D, and F. Tetrahedron 28, 2999 (1972).

    Article  CAS  Google Scholar 

  125. Steyn, P. S.: Austamide: A New Toxic Metabolite from Aspergillus ustus. Tetrahedron Letters 1971, 3331.

    Google Scholar 

  126. Steyn, P. S.: The Structures of Five Diketopiperazines from Aspergillus ustus. Tetrahedron 29, 107 (1973).

    Article  CAS  Google Scholar 

  127. cf. Gilbert, B.: The Alkaloids of Aspidosperma and Related Genera, in “The Alkaloids”, ed. R. H. F. Manske, p. 335. New York: Academic Press. 1965.

    Google Scholar 

  128. Witkop, B., and J. B. Patrick: The Course and Kinetics of the Acid-Base Catalyzed Rearrangements of 11-Hydroxytetrahydrocarbazolenine. J. Am. Chem. Soc. 73, 2188 (1951).

    Article  CAS  Google Scholar 

  129. Neuss, N., R. Nagarajan, B. B. Molloy, and L. L. Huckstep: Aranotin and Related Metabolites II. Isolation, Characterization and Structure of Two New Metabolites. Tetrahedron Letters 1968, 4467.

    Google Scholar 

  130. Coetzer, J., and P. S. Steyn: The Crystal Structure of 5-Bromo-12S-tetrahydroaustamide. Acta Cryst. B29, 685 (1973).

    Google Scholar 

  131. Srinivasan, R.: Photochemistry of Cyclic Ketones. Adv. Photochem. 1, 83 (1963).

    Article  Google Scholar 

  132. Porter, A. E. A., and P. G. Sammes: A Diels-Alder Reaction of Possible Biosynthetic Importance. Chem. Commun. 1970, 1103.

    Google Scholar 

  133. Yamazaki, A. S. Suzuki, and K. Mizaki: Tremorgenic Toxins from Aspergillus fumigatus Fres. Chem. Pharm. Bull. (Japan) 19, 1739 (1971).

    Article  CAS  Google Scholar 

  134. The author thanks Professor A. Yamazaki, Institute of Food Microbiology, Chiba University, Japan, for this information. Details of the revised structure for lanosulin were revealed at the IUPAC Congress, Hamburg, September, 1973.

    Google Scholar 

  135. The Author is indebted to Professor J. Clardy, Ames Laboratory, Iowa State University, U.S.A., for the details of the X-ray analysis of verruculogen before its publication.

    Google Scholar 

  136. Clarke, H. J., J. R. Johnson, and R. Robinson: The Chemistry of Penicillin, Princeton University Press, 1949.

    Google Scholar 

  137. White, E. C.: Bactericidal Filtrates from a Mould Culture. Science 92, 127 (1940).

    Article  CAS  Google Scholar 

  138. White, E. C., and J. H. Hill: Studies on Antibacterial Products Formed from Moulds. I. Aspergillic Acid. A Product of a Strain of Aspergillus flavus. J. Bacteriol. 45, 433 (1943).

    CAS  Google Scholar 

  139. Newbold, G. T., W. Sharp, and F. S. Spring: Aspergillic Acid. Part III. The Synthesis of Racemic Deoxyaspergillic Acid. J. Chem. Soc. 1951, 2679.

    Google Scholar 

  140. Dunn, G., G. T. Newbold, and F. S. Spring: Synthesis of Flavacol, a Metabolic Product of Aspergillic flavus. J. Chem. Soc. 1949, 2586.

    Google Scholar 

  141. Nakamura, S.: Structure of Muta-aspergillic Acid. Agr. Biol. Chem. (Tokyo) 25, 74 (1961).

    CAS  Google Scholar 

  142. Masaki, M., Y. Chigura, and M. Ohta: Total Synthesis of Racemic Aspergillic Acid and Neoaspergillic Acid. J. Org. Chem. 31, 4143 (1966).

    Article  CAS  Google Scholar 

  143. Masaki, M., and M. Ohta: Synthesis of a Homologue of Aspergillic Acid. J. Org. Chem. 29, 3165 (1964).

    Article  CAS  Google Scholar 

  144. Sugiyama, M., Masaki, and M. Ohta: Synthesis of 1-Hydroxy-6-(1-hydroxy-lmethylethyl)-2-pyraxinone and the Structure of Muta-aspergillic Acid. Tetrahedron Letters 1967, 845.

    Google Scholar 

  145. Ohta, A., and S. Futii: Synthesis of DL-Aspergillic Acid and DL-Deoxyaspergillic Acid. Chem. Pharm. Bull. (Japan) 17, 851 (1969).

    CAS  Google Scholar 

  146. Ohta, A.: Synthesis of Neoaspergillic Acid. Chem. Pharm. Bull. (Japan) 16, 1160 (1968).

    Article  CAS  Google Scholar 

  147. Macdonald, J. C.: in: The Antibiotics, Vol. II. Biosynthesis, ed. D. Gottlieband P. D. Shaw, p. 43. New York: Springer. 1967.

    Google Scholar 

  148. Micetich, R. G., and J. C. Macdonald: Metabolities from Aspergillus sclerotiorum Huber. J. Chem. Soc. 1964, 1507.

    Google Scholar 

  149. Macdonald, J. C.: Biosynthesis of Aspergillic Acid. J. Biol. Chem. 236, 512 (1961).

    CAS  Google Scholar 

  150. Macdonald, J. C.: Biosynthesis of Hydroxyaspergillic Acid. J. Biol. Chem. 237, 1977 (1962).

    CAS  Google Scholar 

  151. Cook, A. H., and C. A. Slater: The Structure of Pulcherrimin. J. Chem. Soc. 1956, 4133.

    Google Scholar 

  152. Kluyver, A. J., J. P. Ven Der Walt, and A. J. Can Triet: Pulcherrimin, the Pìzment of Candida pulcherrimin. Proc. Natl. Acad. Sci. U.S. 39, 583 (1953).

    Article  CAS  Google Scholar 

  153. Macdonald, J. C.: The Biosynthesis of Pulcherriminic Acid. Biochem. J. 96, 533 (1965).

    CAS  Google Scholar 

  154. Macdonald, J. C.: The Structure of Pulcherriminic Acid. Canad. J. Chem. 41, 165 (1963).

    Article  CAS  Google Scholar 

  155. Dutcher, J. D.: Aspergillic Acid. An Antibiotic Substance from Aspergillus flavus. J. Biol. Chem. 171, 321 (1947).

    CAS  Google Scholar 

  156. Bates, R. B., J. H. Schauble, and M. Soucek: The C10H17 Side Chain in Mycelianamide. The Stereochemistry of Bergamottin and Umbelliprenin. Tetrahedron Letters 1963, 1683.

    Google Scholar 

  157. Ohta, A.: Synthesis of Pulcherrimin and Pulcherriminic Acid. Chem. Pharm. Bull. (Japan) 12, 125 (1964).

    Article  CAS  Google Scholar 

  158. Oxford, A. E., and H. Raistrick: Studies on the Biochemistry of Microorganisms. Part 76. Mycelianamide. Biochem. J. 43, 323 (1948).

    Google Scholar 

  159. Birch, A. J., L. A. Massey-Westropp, and R. W. Rickards: Studies Related to Biosynthesis. Part VIII. The Structure of Mycelianamide. J. Chem. Soc. 1956, 3717.

    Google Scholar 

  160. Gallina, C., A. Romeo, V. Tortorella, and G. D’Agnelo: Synthesis of Racemic Deoxymycelianamide. Chem. & Ind. (London) 1966, 1300.

    Google Scholar 

  161. Bapat, J. B., D. St. C. Black, and R. F. C. Brown: Cyclic Hydroxamic Acids. Adv. Heterocyclic Chem. 10, 199 (1969).

    CAS  Google Scholar 

  162. Brown, R. F. C., and G. C. Meehan: Synthetic Approaches to Mycelianamide. Austral. J. Chem. 21, 1581 (1968).

    CAS  Google Scholar 

  163. Teranishi, R.: Odor and Molecular Structure, in “Gustation and Olfaction”, ed. G. Ohloffand A. F. Thomas, p. 165. New York: Academic Press. 1971.

    Google Scholar 

  164. Seifert, R. M., R. G. Buttery, D. G. Guadagin, D. R. Black, and J. G. Harris: Synthesis of some 2-Methoxy-3-alkylpyrazines with strong Bell-pepper like Odours. J. Agr. Food Chem. 18, 246 (1970).

    Article  CAS  Google Scholar 

  165. Murray, K. E., J. Shipton, and F. B. Whitfield: 2-Methoxypyrazines and the Flavour of Green Peas (Pisum sativum). Chem. & Ind. (London) 1970, 897.

    Google Scholar 

  166. Weindling, R., and O. Emerson: Isolation of a Toxic Substance from the Culture Filtrate of Trichoderma. Phytopath. 26, 1068 (1936).

    CAS  Google Scholar 

  167. Johnson, J. R., F. W. Bruce, and J. D. Dutcher: Gliotoxin, the Antibiotic Principle of Gliocladium fimbriatin. J. Am. Chem. Soc. 65, 2005 (1943).

    Article  CAS  Google Scholar 

  168. Crowfoot, D., and B. W. Rogers-Low: X-Ray Crystallography of Gliotoxin. Nature 153, 651 (1944).

    Article  CAS  Google Scholar 

  169. Johnson, J. R., A. R. Kidwa, and J. S. Warner: Gliotoxin XI. A Related Antibiotic from Penicillium terlikowskii. Gliotoxin Monoacetate. J. Am. Chem. Soc. 75, 2110 (1953).

    Article  CAS  Google Scholar 

  170. Richtsel, W. A., H. G. Schneider, B. J. Sloan, P. R. Grof, F. A. Miller, Q. R. Bartz, J. Ehrlich, and G. J. Dixon: Antiviral Activity of Gliotoxin. Nature 204, 1333 (1964).

    Article  Google Scholar 

  171. Taylor, A.: In Biochemistry of Some Foodborne Microbial Toxins, ed. R. I. Mateles and G. N. Wogan, p. 69. Cambridge, Massachusetts: The M. I. T. Press. 1967.

    Google Scholar 

  172. Bell, M. R., J. R. Johnson, B. S. Wildi, and R. B. Woodward: The Structure of Gliotoxin. J. Am. Chem. Soc. 80, 1001 (1958).

    Article  CAS  Google Scholar 

  173. Beecham, A. F., J. Fridrichsons, and A. Mc. L. Mathieson: The Structure and Absolute Configuration of Gliotoxin and the Absolute Configuration of Sporidesmin. Tetrahedron Letters 1956, 3131.

    Google Scholar 

  174. Lowe, G., A. Taylor, and L. C. Vining: Sporidesmins. VI. Isolation and Structure of Dehydrogliotoxin, a Metabolite of Penicillium terlikowskii. J. Chem. Soc. (C) 1966, 1799.

    Google Scholar 

  175. Safe, S., and A. Taylor: Sporidesmins. XI. The Reaction of Triphenylphosphine with Epipolythiodioxopiperazines. J. Chem. Soc. (C) 1971, 1189.

    Google Scholar 

  176. Fridrichsons, J., and A. Mc. L. Mathieson: The Structure of the Methylene Dibromide Adduct of Sporidesmin at — 150°. Acta Cryst. 18, 1043 (1965).

    Article  CAS  Google Scholar 

  177. Weber, H. P.: Molecular Structure and Absolute Configuration of Chaetocin. Acta Cryst. B28, 2945 (1972).

    Google Scholar 

  178. Davis, B. R., and I. Bernal: The Crystal Structure of 2,5-Piperazinediones Having Epipolysulphide Bridges Between C3 and C6: The Structure of N,N’Dimethyl-3,6-epitetrathio-2,5-piperazinedione. Proc. Nat. Acad. Sci. 70, 279 (1973).

    Article  CAS  Google Scholar 

  179. Leonard, N. J., T. W. Milligan, and T. L. Brown: Transannular Interactions between Sulphide and Ketone Groups. J. Am. Chem. Soc. 82, 4075 (1960).

    Article  CAS  Google Scholar 

  180. Trown, P. W.: Antiviral Activity of N,N’-Dimethyl-3,6-epidithio piperazine-2,5dione. A Synthetic Compound Related to the Gliotoxins, LLS 88 α and β-Chetomin, and the Sporidesmins. Biochem. Biophys. Res. Commun. 33, 402 (1968).

    Article  CAS  Google Scholar 

  181. Murdock, K. C., and R. B. Angier: Acetylaranotin: Displacement Reactions at the Disulphide Linkage. Chem. Commun. 1970, 55.

    Google Scholar 

  182. Schoberl, A., and E. Ludwig: Die Aufspaltung der Disulfidbindung mit Natriumsulfit und Kaliumcyanid und über die Colorimetrische Bestimmung von Sulfhydrylverbindungen und Disulfiden. Ber. 70B, 1422 (1937).

    CAS  Google Scholar 

  183. Beecham, A. F., and A. Mc. L. Mathieson: The Circular Dichroism of Gliotoxin. Tetrahedron Letters 1966, 3139.

    Google Scholar 

  184. Ziffer, H., U. Weiss, and E. Charney: Optical Activity of Non-planar Conjugated Dienes. IV. Interacting Chromophores in Gliotoxin. Tetrahedron 23, 3881 (1967).

    Article  CAS  Google Scholar 

  185. Moscowitz, A., E. Charney, U. Weiss, and H. Ziffer: Optical Activity in Skewed Dienes. J. Am. Chem. Soc. 83, 4661 (1961).

    Article  CAS  Google Scholar 

  186. Ali, M. S., J. S. Shannon, and A. Taylor: Isolation and Structures of 1,2,3,4Tetrahydro-1,4-dioxopyrazino[1,2-a]indoles from Cultures of Penicillium terlikowskii. J. Chem. Soc. 1968, 2044.

    Google Scholar 

  187. Nagarajan, N., L. L. Huckstep, D. H. Lively, D. L. Delong, M. M. Marsh, and N. Neuss: Aranotin and Related Metabolites from Arachniotus aureus. I. Determination of Structure. J. Am. Chem. Soc. 90, 2980 (1968).

    Article  CAS  Google Scholar 

  188. Cosulich, D. B., N. R. Nelson, and J. H. Van Den Hende: Crystal and Molecular Structure of LLS 88 a, an Antiviral Epidithiapiperazinedione Derivative from Aspergillus terreus. J. Am. Chem. Soc. 90, 6519 (1968).

    Article  CAS  Google Scholar 

  189. Moncrief, J. W.: Molecular Structure of Bisdethiodi(thiomethyl)acetylaranotin including Absolute Configuration. J. Am. Chem. Soc. 90, 6516 (1968).

    Article  Google Scholar 

  190. Nagarajan, N., N. Neuss, and M. M. Marsh: Aranotin and Related Metabolites. III. Configuration and Conformation of Acetylaranotin. J. Am. Chem. Soc. 90, 6518 (1968).

    Article  CAS  Google Scholar 

  191. Suhadolnik, R. J, and R. E. Chenoweth: Biosynthesis of Gliotoxin. I. Incorporation of Phenylalanine-l-and 2-C14. J. Am. Chem. Soc. 80, 4391 (1958).

    Article  CAS  Google Scholar 

  192. Winstead, J. A., and R. J. Suhadolnik: Biosynthesis of Gliotoxin. II. Further Studies on the Incorporation of Carbon-14 and Tritium Labelled Precursors. J. Am. Chem. Soc. 82, 1644 (1960).

    Article  CAS  Google Scholar 

  193. Johns, N., and G. W. Kirby: The Biosynthesis of Gliotoxin. Possible Involvement of a Phenylalanine Epoxide. Chem. Commun. 1971, 163.

    Google Scholar 

  194. Bu’Lock, J. D., and A. P. Ryles: The Biosynthesis of the Fungal Toxin, Gliotoxin. Chem. Commun. 1970, 1404.

    Google Scholar 

  195. Brannon, D. R., J. A. Mage, B. B. Molloy, and W. A. Day: Biosynthesis of Dithiadiketopiperazine Antibiotics. Comparison of Possible Aromatic Amino Acid Precursors. Biochem. Biophys. Res. Commun. 43, 588 (1971).

    CAS  Google Scholar 

  196. Bose, A. K., K. G. Das, P. T. Funke, I. Kugajersky, O. P. Shukla, K. S. Khandanchani, and R. J. Suhadolnik: Biosynthetic Studies on Gliotoxin Using Stable Isotopes and Mass Spectral Methods. J. Am. Chem. Soc. 90, 1038 (1968).

    Article  CAS  Google Scholar 

  197. Jerina, D. M., J. W. Daly, B. Witkop, P. Zalzman-Nirenberg, and S. Udenfriend: The Role of Areneoxide-Oxepin Systems in the Metabolism of Aromatic Substrates. III. Formation of 1,2-Naphthalene Oxide from Naphthalene by Liver Microsomes. J. Am. Chem. Soc. 90, 6525 (1968).

    Article  CAS  Google Scholar 

  198. Miller, P. A., P. W. Trown, W. Fulmar, G. O. Morton, and J. Karliner: An Epidithiapiperazinedione Antiviral Agent from Aspergillus terreus. Biochem. Biophys. Chem. Commun. 33, 219 (1968).

    CAS  Google Scholar 

  199. Machin, P. J., and P. G. Sammes: Addition of Sulphur Nucleophiles Across Dehydrocyclodipeptides. J. C. S. Perkin 1 1974, 698.

    Article  Google Scholar 

  200. Pojer, P. M., and I. D. Rae: Synthesis of 2-Benzamido-2-mercaptopropionic Acid. Tetrahedron Letters 1971, 3077.

    Google Scholar 

  201. Steglich, W., H. Tanner, and R. Hurnaus: 2-Dichlormethylenpseudooxazolon-(5). Chem. Ber. 100, 1824 (1967).

    Article  CAS  Google Scholar 

  202. Kaneda, A., and R. Sudo: The Preparation of α-Amino-α-benzylmercaptopropionic Acid Derivatives. Bull. Chem. Soc. (Japan) 43, 2159 (1970).

    Article  CAS  Google Scholar 

  203. Patel, S. M., J. O. Currie, and R. K. Olsen: The Synthesis of N-Acyl-α-mercaptoalanine Derivatives. J. Org. Chem. 38, 126 (1973).

    Article  CAS  Google Scholar 

  204. Wohl, A., and C. Oesterlin: Überführung der Weinsäure in Oxalessigsäure durch Wasserspaltung bei niederer Temperatur. Ber. 34, 1139 (1901).

    CAS  Google Scholar 

  205. Yoshimura, J., and Y. Sugiyama: An Attempted Synthesis of 3,6-Epidithio-2,5piperazinediones by Cyclization of N,N’-dialkyl-2,2’-dithiocinnamamides. Bull. Chem. Soc. (Japan) 45, 1554 (1972).

    Article  CAS  Google Scholar 

  206. Ottenheym, H. C. J., T. F. Spande, and B. Witkop: Approaches to Analogs of Anhydrogliotoxin. J. Am. Chem. Soc. 95, 1989 (1973).

    Article  CAS  Google Scholar 

  207. Poisel, H.. and U. Schmidt: Über die elektrophile Einführung von Alkylgruppen und Schwefelfunktionen in den 2,5-Dioxopiperazin-Kern. Chem. Ber. 105, 625 (1972).

    Article  CAS  Google Scholar 

  208. Ohler, E., H. Poisel, F. Tataruch, and U. Schmidt: Synthese des Epidithio-Lprolyl-L-prolin Anhydrids. Chem. Ber. 105, 635 (1972).

    Article  CAS  Google Scholar 

  209. Hind, T., and T. Sako: Synthesis of 3,6-Diethoxycarbonyl-3,6-epipolythio-2,5piperazinediones. Tetrahedron Letters 1971, 3127.

    Google Scholar 

  210. Ohler, E., F. Tataruch, and U. Schmidt: Über die Einführung von Säurestoffunktionen in Prolyl-prolinanhydrid mit Bleitetraacetat: Ein neuer Weg zum Epidisulfid des Prolyl-prolin-anhydrid. Chem. Ber. 106, 396 (1973).

    Article  CAS  Google Scholar 

  211. Ohler, E., F. Tataruch, and U. Schmidt: Nucleophile Einführung von Schwefelfunktionen über Sulfon und Hydroxyderivate Cyclisches Dipeptide (Dioxopiperazine). Chem. Ber. 106, 165 (1973).

    Article  CAS  Google Scholar 

  212. Kishi, Y., T. Fukuyama, and S. Nakatsuka: A New Method for the Synthesis of Epidithiodiketopiperazines. J. Am. Chem. Soc. 95, 6490 (1973).

    Article  CAS  Google Scholar 

  213. Kishi, Y., T. Fukuyama, and S. Nakatsuka: A Total Synthesis of Dehydrogliotoxin. J. Am. Chem. Soc. 95, 6492 (1973).

    Article  CAS  Google Scholar 

  214. Kishi, Y., S. Nakatsuka, T. Fukuyama, and M. Havel: A Total Synthesis of Sporidesmin A. J. Am. Chem. Soc. 95, 6493 (1973).

    Article  CAS  Google Scholar 

  215. Ronaldson, J. W., A. Taylor, E. P. White, and R. J. Abraham: Sporidesmins. Part I. Isolation and Characterisation of Sporidesmin and Sporidesmin B. J. Chem. Soc. 1963, 3172.

    Google Scholar 

  216. Hodges, R., J. W. Ronaldson, A. Taylor, and E. P. White: Sporidesmin and Sporidesmin B. Chem. & Ind. (London) 1963, 42.

    Google Scholar 

  217. Jamieson, W. D., R. Rahman, and A. Taylor: Sporidesmins. Part VIII. Isolation and Structure of Sporidesmin D and Sporidesmin F. J. Chem. Soc. (C) 1969, 1564.

    Google Scholar 

  218. Przybylska, M., E. M. Gopalkrishna, A. Taylor, and S. Safe: X-ray Crystallographic Determination of the Stereochemistry of the Tetrathio-bridge in Sporidesmin G. J. C. S. Chem. Commun. 1973, 554.

    Google Scholar 

  219. Francis, E., R. Rahman, S. Safe, and A. Taylor: Sporidesmins. Part XII. Isolation and Structure of Sporidesmin G, a Naturally Occurring 3,6-Epitetrathiopiperazine2,5-dione. J. C. S. Perkin I 1972, 470.

    Google Scholar 

  220. Safe, S., and A. Taylor: Sporidesmins. Part X. Synthesis of Polysulphides by Reaction of Dihydrogen Disulphide with Disulphides and Thiols. J. Chem. Soc. (C) 1970, 432.

    Google Scholar 

  221. Rahman, R., S. Safe, and A. Taylor: The Stereochemistry of Polysulphides. Quart. Rev. 24, 233 (1970).

    Google Scholar 

  222. Hodges, R., and J. S. Shannon: The Isolation and Structure of Sporidesmin C. Austral. J. Chem. 19, 1059 (1966).

    Article  CAS  Google Scholar 

  223. Horn, M. J., D. B. Jones, and S. J. Ringel: Isolation of a New Sulphur-containing Amino Acid (Lanthionine) from Sodium Carbonate Treated Wool. J. Biol. Chem. 138, 141 (1941).

    CAS  Google Scholar 

  224. Nakagawa, M., T. Kaneko, and H. Yamaguchi: Photoinduced Oxidation of Tryptamine Derivatives. Formation of Pyrrolo[2,3-b]indole and Nb-(4-Cyanobutadienyl)tryptamine. J. C. S. Chem. Commun. 1972, 603.

    Google Scholar 

  225. Ohno, M., T. F. Spande, and B. Witkop: Cyclisation of Tryptophan and Tryptamine Derivatives to 2,3-Dihydropyrrolo[2,3-b]indoles. J. Am. Chem. Soc. 92, 343 (1970).

    Article  CAS  Google Scholar 

  226. Foote, C. S., S. Mazur, P. A. Burns, and D. Lerdal: Chemistry of Singlet Oxygen. XVII. 1,4-Addition Products from Styrene Derivatives. J. Am. Chem. Soc. 95, 586 (1973).

    Article  CAS  Google Scholar 

  227. Amit, R. G., F. W. Eastwood, and I. D. Rae: Addition of a Highly Oxygenated Side Chain to an Indole Derivative. Chem. Commun. 1971, 1614.

    Google Scholar 

  228. Minato, H., M. Matsumoto, and T. Katayama: Verticillin A, a New Antibiotic from Verticillium sp. Chem. Commun. 1971, 44.

    Google Scholar 

  229. Minato, H., M. Matsumoto, and T. Katayama: Studies on the Metabolites of Verticillium sp. Structures of Verticillin A, B, and C. J. C. S. Perkin I 1973, 1819.

    Google Scholar 

  230. Hauser, D., H. P. Weber, and H. P. Sigg: Isolierung und Strukturaufklärung von Chaetocin. Helv. chim. Acta 53, 1061 (1970).

    Article  CAS  Google Scholar 

  231. Hauser, D., H. R. Loosli, and P. Niklaus: Isolierung von 11 α,11 α’-Dihydroxychaetoxin am Verticillium tenerum. Helv. chim. Acta 55, 2182 (1972).

    Article  CAS  Google Scholar 

  232. Waksman, S. A., and E. Bugie: Chaetomin, a New Antibiotic Substance produced by Chaetomium cochliodes. J. Bacteriol. 48, 527 (1944).

    CAS  Google Scholar 

  233. Safe, S., and A. Taylor: The Characterisation of Chetomin, a Toxic Metabolite of Chaetomium cochliodes and Chaetomium globosum. J. C. S. Perkin I 1972, 472.

    Google Scholar 

  234. Kato, A., T. Saeki, S. Suzuki, K. Ando, G. Tamura, and K. Arima: Oryzachloride, a New Antiviral Disulphide Dioxopiperazine Derivative. J. Antibiot. (Tokyo) 22, 322 (1969).

    Article  CAS  Google Scholar 

  235. Argoudelis, A. D.: Melinacidins II, III, and IV. New 3,6-Epidithiadiketopiperazine Antibiotics. J. Antibiot. (Tokyo) 25, 171 (1972).

    Article  CAS  Google Scholar 

  236. Kamiya, T., S. Maeno, M. Hashimoto, and Y. Mini: Bicyclomycin, a New Antibiotic. II. Structure Elucidation and Acyl Derivatives. J. Antibiot. (Tokyo) 25, 576 (1972).

    Article  CAS  Google Scholar 

  237. Miyoshi, T., N. Miyawa, H. Aobi, M. Kohsaka, H. Sakai, and H. Imanaka: Bicyclomycin, a New Antibiotic. II. Taxonomy, Isolation, and Characterization. J. Antibiot. (Tokyo) 25, 569 (1972).

    Article  CAS  Google Scholar 

  238. Nishida, M., Y. Mini, and T. Matsubara: Bicyclomycin, a New Antibiotic. III. In vitro and in vivo Antimicrobial Activity. J. Antibiot. (Tokyo) 25, 582 (1972).

    Article  CAS  Google Scholar 

  239. Sharma, G. M., and P. R. Burkholder: Structure of Dibromophakellin, a New Bromine-containing Alkaloid from the Marine Sponge, Phakellia flabellata. Chem. Commun. 1971, 151.

    Google Scholar 

  240. Chen, Y.-S.: Studies on the Metabolic Products of Roselinia necatrix. I. Isolation and Characterization of Several Physiologically Active, Neutral Substances. Bull. Agric. Chem. Soc. Japan 24, 372 (1960).

    Article  CAS  Google Scholar 

  241. Johnson, J. L., W. G. Jackson, and T. E. Eble: Isolation of L-leucyl-L-proline Anhydride from Microbiological Formulations. J. Am. Chem. Soc. 73, 2947 (1951).

    Article  CAS  Google Scholar 

  242. Kodaira, Y.: Toxic Substances to Insects Produced by Aspergillus achraceus and Oospora destructor. Agr. Biol. Chem. (Tokyo) 25 261 (1961).

    CAS  Google Scholar 

  243. Birkenshaw, J. H., and Y. S. Mohammed: Studies in the Biosynthesis of Microorganisms. 111. The Production of L-Phenylalanine Anhydride (cis-L-3,6-dibenzyl2,5-dioxopiperazine) by Penicillium nigricans (Bainier) Thom. Biochem. J. 85, 523 (1962).

    Google Scholar 

  244. Brown, R., C. Kelly, and S. E. Wibberley: The Production of 3-Benzylidene-6isobutylidene-2,5-dioxopiperazine, 3,6-Dibenzylidene-2,5-dioxopiperazine, and 3,6Dibenzyl-2,5-dioxopiperazine by a Variant of Streptomyces noursei. J. Org. Chem. 30, 277 (1965).

    Article  CAS  Google Scholar 

  245. Caesar, F., K. Janssen, and E. Mutschler: Nigragillin, a New Alkaloid from the Aspergillus niger Group. 1. Isolation and Structure Elucidation of Nigragillin and a Dioxopiperazine. Pharm. Acta Hely. 44, 676 (1969).

    CAS  Google Scholar 

  246. Jensen, N. P., C. O. Gitterman, T. Y. Chen, B. H. Arison, and J. L. Beck: Isolation of a New Antitumour Antibiotic from Streptomyces griseoluteus. Chem. and Eng. News April 14-th, 1973, p. 24.

    Google Scholar 

  247. Gerber, N. N.: Phenazines, Phenoxazinones, and Dioxopiperazines from Streptomyces thioluteus. J. Org. Chem. 32, 4055 (1967).

    Article  CAS  Google Scholar 

  248. Heinemann, B., M. A. Kaplan, R. U. Muir, and I. R. Hooper: Amphomycin, a New Antibiotic. Antibiot. and Chemother. 3, 1239 (1953).

    CAS  Google Scholar 

  249. Casnati, G., A. Quilico, and A. Ricca: Aspergillus glaucus Group. XVIII. Echinulin. 12. Gazz. Chim. Ital. 92, 129 (1962).

    CAS  Google Scholar 

  250. Dutcher, J. D.: Aspergillic Acid, an Antibiotic Substance produced by Aspergillus flavus. III. The Structure of Hydroxyaspergillic Acid. J. Biol. Chem. 232, 785 (1958).

    CAS  Google Scholar 

  251. Yokotsuka, T., M. Sasaki, T. Kikuchi, Y. Asao, and A. Nobuhara: Compounds Produced by Moulds. I. Fluorescent Compounds Produced by Japanese Industrial Moulds. Bull. Agric. Chem. Soc. Japan 41, 32 (1967).

    CAS  Google Scholar 

  252. Yokotsuka, T., T. Kikuchi, M. Sasaki, and K. Oshita: Aflatoxin G — like Compounds with Green Fluorescence Produced by Japanese Industrial Moulds. Bull. Agric. Chem. Soc. Japan 42, 581 (1968).

    CAS  Google Scholar 

  253. Terao, M., K. Karasawa, N. Tanaka, H. Yonehara, and H. Umezawa: A New Antibiotic, Emimycin. J. Antibiot. Ser. A 13, 401 (1960).

    CAS  Google Scholar 

  254. Terao, M.: Emimycin, a New Antibiotic. II. The Structure of Emimycin. J. Antibiot. Ser. A 16, 182 (1963).

    CAS  Google Scholar 

  255. Yamazaki, M.: Deoxyneo- 3-hydroxyaspergillic Acid. Chem. Pharm. Bull. (Japan) 20, 2274 (1972).

    Article  CAS  Google Scholar 

  256. Rahman, R., S. Safe, and A. Taylor: Sporidesmins. Part IX. Isolation and Structure of Sporidesmin E. J. Chem. Soc. (C) 1969, 1665.

    Google Scholar 

  257. Taylor, A.: The Toxicology of Sporidesmins and Other Epipolythiodioxopiperazines, in “Microbial Toxins”, ed. S. Kadis, A. Ciegler, and S. J. Ajl, Vol. VII, chapter 10. New York: Academic Press. 1971.

    Google Scholar 

  258. Cheeseman, G. W. H., and E. S. G. Werstuik: Recent Advances in Pyrazine Chemistry. Adv. Heterocyclic Chem. 14, 99 (1972).

    Article  CAS  Google Scholar 

  259. Tamura, S., A. Susuki, Y. Aoka, and N. Otaki: Isolation of Several Dioxopiperazines from Peptone. Agr. Biol. Chem. (Japan) 28, 650 (1964)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sammes, P.G. (1975). Naturally Occurring 2,5-Dioxopiperazines and Related Compounds. In: Zechmeister, L., Herz, W., Grisebach, H., Kirby, G.W. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 32. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7083-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7083-0_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7085-4

  • Online ISBN: 978-3-7091-7083-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics