Skip to main content

Numerical model of the saltation cloud

  • Conference paper
Aeolian Grain Transport 1

Part of the book series: Acta Mechanica Supplementum ((ACTA MECH.SUPP.,volume 1))

Summary

A computer model of the saltation cloud is described. Experimental results from high speed films are used to characterise the grain/bed collision. The importance of momentum exchange in determining the number of ejected grains from a collision is demonstrated. The modification of the wind velocity profile is discussed and a realistic wind profile is calculated. Also the mass flux profiles calculated compare well to their expected shape. The model attains a steady state, characterised by a steady wind and a stationary grain population, after roughly 2 seconds. The response of the total mass flux to shear velocity is approximately cubic. Finally, potential uses of the model in studying ripple formation and dust emission are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. S., Haff, P. K.: Simulation of eolian saltation. Science 241, 820–823 (1988).

    Article  Google Scholar 

  2. Werner, B. T.: A steady-state model of wind blown sand transport. J. Geol. 98, 1–17 (1990).

    Article  Google Scholar 

  3. Owen, P. R.: Saltation of uniform sand grains in air. J. Fluid. Mech. 20, 225–242 (1964).

    Article  MATH  Google Scholar 

  4. Sørensen, M.: Estimation of some eolian saltation transport parameters from transport rate profiles. Proc. Int. Wkshp. Physics of Blown Sand 1, 141–190 (1985).

    Google Scholar 

  5. White, B. R., Schulz, J. C.: Magnus effect in saltation. J. Fluid Mech. 81, 497–512 (1977).

    Article  Google Scholar 

  6. Hunt, J. C. R., Nalpanis, P.: Saltating and suspended particles over flat and sloping surfaces I. Modelling concepts. Proc. Int. Wkshp. Physics of Blown Sand 1, 9–36 (1985).

    Google Scholar 

  7. Morsi, S. A., Alexander, A. J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972).

    Article  MATH  Google Scholar 

  8. Schiller, L., Nauman, A.: Z. Ver. Dent. Ing. 77, 318 (1933).

    Google Scholar 

  9. White, F.: Viscous flow. New York: McGraw-Hill 1974.

    MATH  Google Scholar 

  10. Ungar, J. E., Haff, P. K.: Steady-state saltation in air. Sedimentology, 34, 289–299 (1987).

    Article  Google Scholar 

  11. Willetts, B. B., Rice, M. A.: Inter-saltation collisions. Proc. Int. Wkshp. Physics of Blown Sand 1, 83–100 (1985).

    Google Scholar 

  12. Mitha, S., Tran, M. Q., Werner, B. T., Haff, P. K.: The grain bed impact process in aeolian saltation. Acta Mech. 63, 267–278 (1988).

    Article  Google Scholar 

  13. Willetts, B. B., Rice, M. A.: Collision in aeolian transport: the saltation/creep link. In: Nickling, W. G. (ed.) Aeolian geomorphology. Allen & Unwin, pp. 1–17.

    Google Scholar 

  14. Owen, P. R.: The physics of sand movement. Lecture Notes, Wkshp on physics of desertification, Trieste, (1980).

    Google Scholar 

  15. Gerety, K. M.: Problems with determination of U* from wind velocity profiles in experiments with saltation. Proc. Int. Wkshp. Physics of Blown Sand 2, 271–300 (1985).

    Google Scholar 

  16. Bagnold, R. A.: The physics of wind blown sand and desert dunes. London: Chapman and Hall 1973.

    Google Scholar 

  17. Rasmussen, K. R., Mikkelsen, H. E.: Aeolian transport in a boundary layer wind tunnel. Geoskrifter Nr. 29, Geological Institute, Aarhus University (1988).

    Google Scholar 

  18. Willetts, B. B., Rice, M. A.: Collision of quartz grains with a sand bed: the influence of incident angle. Earth Surface Processes and Landforms 14, 719–730 (1989).

    Article  Google Scholar 

  19. Willetts, B. B., McEwan, I. K., Rice, M. A.: Initiation of motion of quartz sand grains (this volume).

    Google Scholar 

  20. Rice, M. A.: Grain shape effects on aeolian sediment transport (this volume).

    Google Scholar 

  21. Fletcher, B.: The erosion of dust by an airflow. J. Phys. D: Appl. Phys. 9, 913–924 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this paper

Cite this paper

McEwan, I.K., Willetts, B.B. (1991). Numerical model of the saltation cloud. In: Barndorff-Nielsen, O.E., Willetts, B.B. (eds) Aeolian Grain Transport 1. Acta Mechanica Supplementum, vol 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6706-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6706-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82269-2

  • Online ISBN: 978-3-7091-6706-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics