
9Contact Problems of Functionally Graded
Materials

Modern technological developments require innovative materials to meet ever in-
creasing performance demands. An example of this is functionally graded materials
(FGMs) whose material composition or micro-structure varies continually within
the volume in a pre-defined way. In this manner, the material properties can be
set (possibly independently of each other) to the optimal values. A controlled gra-
dient of the elasticity modulus has been proven to lead to a greater resistance to
contact and friction damage (Suresh 2001). For instance, Hertzian cone cracks
are suppressed due to the reduction of the maximum tensile stresses in the surface
(Jitcharoen et al. 1998) and the wear resistance is increased (Suresh et al. 1999).
In mechanical engineering, components such as cutting tools, gears, and parts of
roller bearings or turbine blades are made from FGMs. This is just a small sample
of the constantly expanding range of applications of FGMs (Miyamoto et al. 1999).
In the biomedical arena, for endoprosthetics in particular, the use of FGMs in arti-
ficial knee and hip joints is intended to improve biocompatibility and reduce wear,
extending the service life of the endoprosthesis and, thereby, increasing quality of
life (Sola et al. 2016). A high degree of biocompatibility is also essential for dental
implants (Mehrali et al. 2013).

Many insects and animals such as geckos possess highly effective attachment
devices, allowing them to stick to and move on surfaces of widely varying ranges
of roughness and topographies. This has inspired a great amount of research into the
adhesion of biological structures with the aim of manufacturing artificial surfaces
with similar adhesive properties (Boesel et al. 2010; Gorb et al. 2007). In fact, many
biological structures exhibit functional material gradients which serve to optimize
the adhesive properties (Peisker et al. 2013; Liu et al. 2017). Furthermore, the
adhesive properties of FGMs are of importance to the fields of innovative nano-
electromechanical and micro-electromechanical systems (NEMS, MEMS).

Although the term “functionally graded material” was only coined in 1986
(Miyamoto et al. 1999), analytical and experimental research of their contact
mechanical behavior had already been conducted much earlier. The origin lies in
the field of geomechanics where the influence of the elasticity modulus, which in-
creases with the depth of the soil foundation, on the stresses and displacements was
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of particular interest (Fröhlich 1934; Holl 1940). Over the years, different functions
for the varying elasticity modulus were in use. On this issue, the works of Selvadu-
rai (2007) and Aleynikov (2011) offer a good overview and we can safely skip
over providing a complete list of references. In nearly all cases, the calculations
are exceedingly complex and only allow numerical solutions. The majority of the
publications deal with an exponential increase or a power-law dependent increase
of the elasticity modulus. For an exponential change of the elasticity modulus, only
approximate solutions exist (so far) (Giannakopoulos and Suresh 1997). However,
contact problems of elastically inhomogeneous materials that obey the law

E.z/ D E0

�
z

c0

�k

with � 1 < k < 1 (9.1)

can be solved exactly in an analytical manner. The Poisson’s ratio is assumed to be
constant. Due to the fact that the elasticity modulus of the foundation always in-
creases with the depth, law (9.1) was initially restricted to positive exponents. The
first solutions go back to Holl (1940) and Rostovtsev (1961), who imposed the addi-
tional restriction � D 1=.2Ck/. Complete solutions of frictionless normal contacts
were provided by Booker et al. (1985) and Giannakopoulos and Suresh (1997). A
special case of (9.1) is the famous Gibson medium: the linear-inhomogeneous, in-
compressible half-space .k ! 1; � ! 1=2/. Gibson (1967) managed to prove that
such a medium behaves like a Winkler foundation (see also the work of Awojobi
and Gibson 1973). If the solutions of the contact without adhesion are known, the
work required to transfer that understanding to the adhesive normal contact between
graded materials is not too great. Still, for an elastic inhomogeneity according to
(9.1), the problem was only solved in the previous decade and remains the subject
of current research (Chen et al. 2009; Jin et al. 2013, 2016; Willert 2018). How-
ever, all of these works assume a positive value of the exponent, which restricts their
theoretical application to the class of graded materials where the elasticity modulus
grows with increasing depth. Yet, as already mentioned in this chapter, plenty of
practical applications exist (e.g., cutting tools, dental implants) which require a hard
surface along with a softer core. A careful examination of the literature revealed that
the theory is equally valid for negative exponents �1 < k < 0 (Rostovtsev 1964;
Fabrikant and Sankar 1984). Although law (9.1) now permits the representation of
positive and negative material gradients, and barring the special case of k D 0, the
law remains physically unrealistic for homogeneous materials due to the vanishing
or infinitely large elasticity modulus at the surface and at infinite depth, respectively.
Nevertheless, FEM calculations by Lee et al. (2009) confirmed that it yields qualita-
tively correct results for functional gradients, if the modulus is described piecewise
by a power-law.

Analytical solutions of tangential contacts between materials exhibiting an elas-
tic inhomogeneity according to (9.1) were only recently developed by Heß (2016b)
and Heß and Popov (2016). Up until then, merely the plane tangential contact prob-
lem between a rigid, infinitely long cylinder and the elastically inhomogeneous
half-space was considered completely solved (Giannakopoulos and Pallot 2000). In
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very recent times, the MDR-based theory of Heß and Popov enabled the fast calcu-
lation of even complicated impact problems of FGMs (Willert and Popov 2017a,b).

Following the order in which the applications of FGMs are presented in this
chapter, we will now discuss frictionless normal contacts (Sect. 9.1), adhesive nor-
mal contacts (Sect. 9.2), and tangential contacts with partial slip (Sect. 9.3). We
restrict the consideration to the elastic inhomogeneity given by (9.1). Furthermore,
the parameter studies of the majority of the graphical solutions were conducted for
positive exponents 0 � k < 1 only. Yet it must be expressly noted that all provided
solutions are also valid for negative exponents �1 < k < 0. Additionally, our
examination is usually limited to the contact of a rigid indenter and a functionally
graded material. However, the theory is equally applicable to the contact between
two elastically inhomogeneous bodies of the same exponent k and of the same char-
acteristic depths c0. In this case, the Poisson’s ratios �i and the elastic parameters
E0i are allowed to differ. It should also be noted that the special case k D 0 yields
many of the solutions for the contact problems of elastically homogeneousmaterials
previously examined in Chaps. 2, 3, and 4.

9.1 Frictionless Normal Contact Without Adhesion

The frictionless normal contact between a rigid indenter of the shape f .r/ and a
functionally graded material is shown in Fig. 9.1. Here, we differentiated between
an elasticity modulus which drops with increasing depth (left) and one which rises
with increasing depth (right). Law (9.1) has been demonstrated using a graphical
representation.

9.1.1 Basis for Calculation of theMDR

For the solution of frictionless normal contacts without adhesion under considera-
tion of the elastic inhomogeneity given by (9.1), we make use of the mapping rules
and calculation formulas of the MDR developed by Heß (2016a). Accordingly, the
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Fig. 9.1 Indentation of a rigid indenter with the profile f .r/ in an elastically inhomogeneous half-
space, whose elasticity modulus drops (left) or rises (right) with increasing depth according to the
power-law (9.1), depending on whether the exponent k is negative or positive
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Fig. 9.2 The equivalent
substitute model for the nor-
mal contact between two
elastically inhomogeneous
half-spaces whose elasticity
moduli satisfy condition (9.1)
while assuming that both
media have equal exponents k
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contact problem shown in Fig. 9.1 is equivalent to the indentation of a rigid, planar
profile of the shape g.x/ in a one-dimensional Winkler foundation with respect to
the relationships between normal force, contact radius, and indentation depth. This
is valid for Winkler foundations whose stiffness depends on the coordinate x, which
is expressed by a laterally varying foundation modulus cN .x/ (spring stiffness di-
vided by spring distance �x). The equivalent substitute model is demonstrated in
Fig. 9.2.

The planar profile g.x/, which is sometimes called the equivalent, one-dimen-
sional substitute profile, is calculated according to:

g.x/ D jxj1�k

jxjZ

0

f 0.r/

.x2 � r2/
1�k
2

dr: (9.2)

The spring stiffness is given by equation:

�kz.x/ D cN .x/ � �x: (9.3)

Here, cN .x/ refers to the foundation modulus (stiffness per unit of distance) which,
in this case, depends on the distance to the contact mid-point

cN .x/ D
�

1 � �21
hN .k; �1/E01

C 1 � �22
hN .k; �2/E02

��1 � jxj
c0

�k

: (9.4)

The coefficient hN is dependent on the Poisson’s ratio � and the exponent k of the
inhomogeneity in the following way:

hN .k; �/ D 2.1 C k/ cos
�
k�
2

�


�
1 C k

2

�
p
�C.k; �/ˇ.k; �/ sin

�
ˇ.k;�/�

2

�


�
1Ck
2

� ; (9.5)

with

C.k; �/ D
21Ck


�
3CkCˇ.k;�/

2

�


�
3Ck�ˇ.k;�/

2

�

�
.2 C k/
(9.6)
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and

ˇ.k; �/ D
s
.1 C k/

�
1 � k�

1 � �

�
: (9.7)

Thereby making use of the Gamma function:


.z/ WD
1Z

0

tz�1 exp.�t/dt: (9.8)

Due to the mutual independence of the springs, the vertical displacement of the
springs at location x is given by the obvious equation

w1D.x/ D d � g.x/: (9.9)

The indentation depth d is determined from the condition of a vanishing displace-
ment at the edge of the contact:

w1D.a/ D 0 ) d D g.a/: (9.10)

The normal force FN is the sum of all spring forces in the contact:

FN .a/ D
aZ

�a

cN .x/w1D.x/dx: (9.11)

Additionally, thenormaldisplacementof theWinkler foundationw1D.x/ D d�g.x/

uniquely defines the pressure distribution and the normal surface displacement:

p.r I a/ D �cN .c0/

�ck0

1Z

r

w0
1D.x/

.x2 � r2/
1�k
2

dx;

w.r I a/ D

8̂
ˆ̂<
ˆ̂̂:

2 cos
�
k�
2

�
�

Z r

0

xkw1D.x/

.r2 � x2/
1Ck
2

dx for r � a;

2 cos
�
k�
2

�
�

Z a

0

xkw1D.x/

.r2 � x2/
1Ck
2

dx for r > a:

(9.12)
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These equations also solve sets of problems related to situations where the stresses
at the half-space surface are known and the displacements are the desired quanti-
ties. This requires the preliminary calculation of the displacement of the Winkler
foundation using the stresses according to

w1D.x; a/ D 2ck0 cos
�
k�
2

�
cN .c0/

aZ

x

rp.r/

.r2 � x2/
1Ck
2

dr; (9.13)

which are then inserted into (9.12).
Here it should be noted that contact problems between FGMs with arbitrary

elastic inhomogeneities can always be represented by the MDR-based model from
Fig. 9.2. The difficulty lies in finding the correct calculation formula for the one-
dimensional profile and determining the foundation modulus depending on the co-
ordinate x (Argatov et al. 2018). Taking advantage of the expanded model from
Fig. 9.20, these statements even extend to adhesive contact problems.

9.1.2 The Cylindrical Flat Punch

The complete solution of the contact problem between a rigid, cylindrical flat punch
and an inhomogeneous half-space (shown in Fig. 9.3) is attributed to Booker et al.
(1985). The simple geometry of the contact allows for an extremely simple deriva-
tion of the solution using the MDR. Since the profile function is always measured
from the indenter tip f .r/ D 0, it follows from (9.2) that g.x/ D 0. The surface
displacement of the 1D Winkler foundation is then

w1D.x/ D d ŒH.x C a/ � H.x � a/� ; (9.14)

where H.�/ represents the Heaviside function. For the contact of a flat punch, the
indentation depth is independent of the (fixed) contact radius. Thus the evaluation

Fig. 9.3 Normal indentation
of the elastically inhomo-
geneous half-space by a flat
cylindrical punch
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a
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of (9.10) is not necessary and the solution of the contact problem merely requires
applying (9.11) and (9.12). Under consideration of the derivative

w0
1D.x/ D d Œı.x C a/ � ı.x � a/� ; (9.15)

with the Delta distribution ı.�/ and its filter property, it follows that:

FN .d/ D 2hN .k; �/E0da
1Ck

.1 � �2/.1 C k/ck0
;

p.r Id/ D � hN .k; �/E0

�.1 � �2/ck0

1Z

r

d Œı.x C a/ � ı.x � a/�

.x2 � r2/
1�k
2

dx

D hN .k; �/E0d

�.1 � �2/ck0 .a
2 � r2/

1�k
2

w.r Id/ D 2 cos
�
k�
2

�
�

aZ

0

xkd

.r2 � x2/
1Ck
2

dx

D cos
�
k�
2

�
d

�
B

�
a2

r2
I 1 C k

2
;
1 � k

2

�
; (9.16)

where B.zIx; y/ represents the incomplete Beta function according to:

B.zIx; y/ WD
zZ

0

tx�1.1 � t/y�1dt 8x; y 2 RC: (9.17)

The pressure distribution normalized to the average pressure in the contact area
is shown in Fig. 9.4. It is clear to see that a rising exponent of the elastic inhomo-

Fig. 9.4 Pressure distribu-
tion for the indentation by a
flat cylindrical punch for dif-
ferent exponents of the elastic
inhomogeneity k, normalized
to the average pressure
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Fig. 9.5 Normal surface displacement of the inhomogeneous half-space for the contact of a flat
punch and different exponents of the elastic inhomogeneity k, normalized to the indentation depth

geneity reduces the singularity at the contact edge. Figure 9.5 displays the normal
surface displacements for different k at equal indentation depth d. It shows that the
displacement of the half-space surface outside the contact area drops with increas-
ing k.

9.1.3 The Cone

Most solutions and the insights derived therefrom for the conical contact as shown
in Fig. 9.6 can be found in the work of Giannakopoulos and Suresh (1997). The
shape of the rigid conical indenter is given by:

f .r/ D r tan �: (9.18)

Fig. 9.6 Normal indentation
of the elastically inhomoge-
neous half-space by a conical
indenter
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Applying the mapping rule (9.2) leads to the equivalent plane profile

g.x/ D 1

2
jxjB

�
1

2
;
1 C k

2

�
tan �; (9.19)

where B.x; y/ denotes the complete beta function, which is related to the incom-
plete beta function (9.17), according to B.x; y/ WD B.1Ix; y/. Substituting (9.19)
into (9.10)–(9.12), gives the solution of the contact problem, after a short calcula-
tion:

d.a/ D 1

2
a tan �B

�
1

2
;
1 C k

2

�
;

FN .a/ D hN .k; �/ tan �B
�
1
2
; 1Ck

2

�
E0a

kC2

.1 � �2/ck0 .k C 1/.k C 2/
;

p.r I a/ D hN .k; �/ tan �B
�
1
2
; 1Ck

2

�
E0

4�.1 � �2/ck0
rk

�
�
B

��k

2
;
1 C k

2

�
� B

�
r2

a2
I �k

2
;
1 C k

2

�	
;

w.r I a/ D tan �B
�
1
2
; 1Ck

2

�
cos

�
k�
2

�
a

2�

�
�
B
�
a2

r2
I 1 C k

2
;
1 � k

2

�
� r

a
B
�
a2

r2
I 3 C k

2
;
1 � k

2

�	
for r > a:

(9.20)
Since the beta function in the pressure distribution partially contains negative ar-
guments, we expand the definition of (9.17) by using (for negative arguments) the
representation via the hypergeometric series

B.zIx; y/ D zx

x
2F1.x; 1 � yI 1 C xI z/: (9.21)

The definition of the hypergeometric series is given in Chap. 11 by (11.93). To
obtain the limiting case of the homogeneous half-space, k ! 0 should be set.

From (9.20) it can be seen that (among other things) with the same normal force
the contact radius depends both on the exponent k and on the characteristic depth
c0. If one normalizes the contact radius by the contact radius ah, which would be
valid for contact with a homogeneous half-space, then it is

a

ah
D
 

�.1 C k/.2 C k/

2hN .k; �/B
�
1
2
; 1Ck

2

�
! 1

2Ck �
c0

ah

� k
2Ck

: (9.22)

Depending on the choice of k and c0, a larger or smaller contact radius can result in
comparison to the homogeneous half-space. This can be seen from the abscissa in
Figs. 9.7 and 9.8 which illustrate the pressure distribution for various characteristic
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Fig. 9.7 Stress distribution
in a contact with a cone for
different exponents of elastic
inhomogeneity k, normalized
to the mean pressure ph,
which results from contact
with the homogeneous half-
space. The characteristic
depth is c0 D ah
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Fig. 9.8 Stress distribution
in a contact with a cone for
different exponents of elastic
inhomogeneity k, normalized
to the mean pressure ph,
which results from contact
with the homogeneous half-
space. The characteristic
depth is c0 D 0:1ah
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depths. Thereby the pressure was normalized to the average pressure ph in conical
contact with a homogeneous half-space, which is known to be independent of the
contact radius:

ph WD FN

�a2
h

D E0 tan �

2 .1 � �2/
: (9.23)

The influence of the elastic inhomogeneity is reflected, above all, in the maxi-
mum pressure in the center of the contact area. Because the pressure singularity in
the homogeneous case is suppressed the pressure maximum takes a finite value.

In Fig. 9.9, the surface normal displacements of the inhomogeneous half-space
are graphically compared for different exponents k at the same contact radii. They
were normalized to the indentation depth dh, which results in contact with a homo-
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Fig. 9.9 Normalized normal displacements of the surface of the inhomogeneous half-space for a
contact with a cone for different exponents of elastic inhomogeneity k; dh is the indentation depth,
corresponding to the homogeneous half-space

geneous half-space. By increasing k the indentation depth and the displacements
decrease successively.

9.1.4 The Paraboloid

Figure 9.10 shows the normal contact between a rigid parabolic indenter and an
elastically inhomogeneous half-space. The shape of the rigid indenter is given by
the function

f .r/ D r2

2R
(9.24)

Fig. 9.10 Normal inden-
tation of the elastically
inhomogeneous half-space
by a parabolic indenter
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and can be understood as a (parabolic) approximation for a spherical contact with
the radius of curvature R. The equivalent planar profile follows from (9.2):

g.x/ D x2

.k C 1/R
: (9.25)

Considering (9.25), the evaluation of (9.10)–(9.12) provides the solution to the
contact problem:

d.a/ D a2

.k C 1/R
;

FN .a/ D 4hN .k; �/E0a
kC3

.1 � �2/ck0 .k C 1/2.k C 3/R
;

p.r I a/ D 2hN .k; �/E0a
kC1

�.1 � �2/ck0 .k C 1/2R

�
1 �

� r
a

�2	 1Ck
2

;

w.r I a/ D a2 cos
�
k�
2

�
.k C 1/�R

"
B

�
a2

r2
I 1 C k

2
;
1 � k

2

�

� r2

a2
B
�
a2

r2
I 3 C k

2
;
1 � k

2

�#
for r > a; (9.26)

where B.zIx; y/ is the incomplete beta function from (9.17).
Figure 9.11 shows the pressure distribution in the parabolic contact normalized

to the maximum pressure in the Hertzian contact. At the same normal force, a Pois-
son’s number of � D 0:3 and a characteristic depth c0 (which was chosen equal to
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Fig. 9.11 Pressure distribution in parabolic contact for different exponents of elastic inhomogene-
ity k, normalized to the maximum pressure of Hertzian contact p0;H
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Fig. 9.12 Normalized surface normal displacements of the inhomogeneous half-space in a
parabolic contact and different exponents of elastic inhomogeneity k

the contact radius aH in Hertzian contact), the maximum pressure decreases with
increasing exponent k of the elastic inhomogeneity with simultaneous enlargement
of the contact area. It should be noted that, depending on the choice of the char-
acteristic depth and the Poisson’s number, an opposite effect can also occur. In
Fig. 9.12, the normalized normal displacements of the surface of the inhomoge-
neous half-space are visualized for different exponents k at the same contact radii.
By increasing k the indentation depth and the displacements decrease successively.

In the limiting case k D 1 the displacements outside the contact area disap-
pear completely—the inhomogeneous half-space behaves like a (two-dimensional)
Winkler foundation. Strictly speaking, the latter behavior is coupled to the linear-
inhomogeneous incompressible half-space because only the � D 0:5 contact has a
non-zero contact stiffness (see Sect. 9.1.8).

9.1.5 The Profile in the Form of a Power-Law

The contact between the inhomogeneous half-space and an axisymmetric indenter
whose shape meets the power-law

f .r/ D Anr
n with n 2 RC; An D const (9.27)

(see Fig. 9.13) was examined by Rostovtsev (1961) for the special case
� D 1= .2 C k/. A general solution was provided by Giannakopoulos and Suresh
(1997). Their derivation by means of the MDR requires the calculation of the
equivalent plane profile according to (9.2):

g.x/ D 	.n; k/Anjxjn D 	.n; k/f .jxj/: (9.28)
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Fig. 9.13 Normal indentation
of the elastically inhomo-
geneous half-space by an
indenter whose profile is de-
scribed by a power function
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Equation (9.28) clearly shows that the equivalent profile results from a simple
stretch from the original profile. The stretch factor is dependent on the exponent of
the power function and the exponent of the elastic inhomogeneity,

	.n; k/ D
1Z

0

n&n�1

.1 � &2/
1�k
2

d& D n

2

1Z

0

t
n
2 �1.1 � t/

kC1
2 �1dt

DW n
2
B

�
n

2
;
k C 1

2

�
; (9.29)

where B.x; y/ denotes the complete beta function, which follows as a special case
B.x; y/ WD B.1Ix; y/ from the definition of the incomplete beta function (9.17).

The stretch factor increases as the exponent of the power profile increases (see
Fig. 9.14). In homogeneous cases, the known values 	.1; 0/ D �=2 for the conical
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Fig. 9.14 Dependence of the stretch factor 	 on the exponent n of the power-law profile function
for different exponents k of the elastic inhomogeneity (from Heß 2016a)
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and 	.2; 0/ D 2 for the parabolic indenter are reproduced. As the exponent of
elastic inhomogeneity increases, the stretch factor decreases. The limiting case,
k ! 1 coincides with the simple cross-section of the three-dimensional profile in
the x–z-plane.

The application of rules (9.10)–(9.12) leads to the solution of the contact prob-
lem:

d.a/ D 	.n; k/Ana
n;

FN .a/ D 2hN .k; �/	.n; k/nAnE0a
nCkC1

.1 � �2/ck0 .k C 1/.n C k C 1/
;

p.r I a/ D hN .k; �/	.n; k/nAnE0

2�.1 � �2/ck0
rnCk�1

�
�
B
�
1 � k � n

2
;
1 C k

2

�
� B

�
r2

a2
I 1 � k � n

2
;
1 C k

2

�	
;

w.r I a/ D cos
�
k�
2

�
	.n; k/Ana

n

�

�
"
B

�
a2

r2
I 1 C k

2
;
1 � k

2

�

�
� r
a

�n
B

�
a2

r2
I 1 C k C n

2
;
1 � k

2

�#
for r > a: (9.30)

As already discussed in the context of the investigation of the conical contact
(Sect. 9.1.3), the expanded definition of the beta function according to (9.21)
should be used.

9.1.6 The Concave Paraboloid (Complete Contact)

The shape of a cylindrical indenter with a parabolic-concave end is described by:

f .r/ D �h0
r2

a2
for 0 � r � a with h0 D a2

2R
: (9.31)

The complete indentation of such a punch (so that all points of the face are in con-
tact) leads to a surface displacement in the contact area

w.r Id0/ D d0 � f .r/; (9.32)

where d0 denotes the displacement in the center of the punch. The contact geometry
is shown in Fig. 9.15. Adding a suitable rigid body displacement fraction and taking
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Fig. 9.15 Normal indentation
of the elastically inhomo-
geneous half-space by a
parabolic concave indenter

d

FN

z~

a

r
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h0

into account (9.31), (9.32) can be written as follows:

w.r Id0/ D d0 C a2

.k C 1/R„ ƒ‚ …
Dw1

�
�

a2

.k C 1/R
� r2

2R

�
„ ƒ‚ …

Dw2

: (9.33)

According to (9.33), the displacement can be represented as the difference be-
tween the rigid body displacement w1 and the displacement w2 resulting from a
parabolic contact. For both separate fractions the solutions have already been de-
veloped (see (9.16) and (9.26)). Due to the validity of the superposition principle,
the overall solution is the difference of the partial solutions

FN .d0/ D F1 � F2 D 2hN .k; �/E0a
kC1

.1 � �2/.1 C k/ck0

�
d0 C 2h0

k C 3

�
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1�k
2

"
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�#
;
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k�
2

�
�

"
d0B

�
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r2
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2
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2
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C 2h0

k C 1

r2

a2
B

�
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r2
I 3 C k

2
;
1 � k

2

�#
: (9.34)

With the exeption of the displacements, solutions (9.34) were derived by Jin et al.
(2013). It should be emphasized that these solutions are only valid under the condi-
tion of complete contact; for this, the requirement p.r D 0/ > 0 must be fulfilled,
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Fig. 9.16 Pressure distribution when indented by a cylindrical punch with parabolic-concave tip
for different exponents of elastic inhomogeneity k and h0=d0 D 0:2, normalized to the mean
pressure p in the contact area

which suggests:

d0 >
2.1 � k/

.1 C k/2
h0 or FN >

16hN .k; �/E0a
1Ckh0

.1 � �2/ck0 .1 C k/3.3 C k/
: (9.35)

Figure 9.16 shows the pressure distribution in the contact area, normalized to the
mean pressure p for h0 D 0:2d0. As the k increases the graph progressively
approaches the shape of the indenter. For the same specification, the surface dis-
placements are illustrated in Fig. 9.17.

Finally, to solve contact problems with concave profiles, the MDR rules (9.2),
(9.11), and (9.12) are still valid. However, care must be taken to ensure that the cen-
ter displacement d0 is used instead of the indentation depth. In addition, complete
contact in the replacement model does not necessarily result in full contact with the
original problem so the requirement p.r/ > 0 always has to be checked. For the
contact problem investigated here the following is valid:

g.x/ D � 2h0

k C 1

x2

a2
) w1D.x/ WD d0 � g.x/ D d0 C 2h0

k C 1

x2

a2
: (9.36)

An evaluation of (9.11) and (9.12), and taking into account (9.36), gives solutions
(9.34) exactly.



268 9 Contact Problems of Functionally Graded Materials

0 1 2 3 4

0.0

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

−
(

)/
w

r
d 0 k = 0

k = 0.3
k = 0.6
k = 0.9

h0 /d 0 0.2

r/a

=

Fig. 9.17 Surface normal displacements normalized by the center displacement d0 on impression
with a cylindrical indenter with parabolic-concave tip for different exponents of elastic inhomo-
geneity k and h0=d0 D 0:2

9.1.7 The Profile That Generates Constant Pressure

In contrast to the previous contact problems, where the indenter shape was known
a priori, the issue now lies in determining the surface displacement caused by a
known constant pressure distribution:

p.r/ D p0 for 0 � r � a: (9.37)

This requires first determining the 1D displacement of the foundation according to
(9.13):

w1D.x/ D 2ck0 .1 � �2/ cos
�
k�
2

�
hN .k; �/E0

aZ

x

rp0

.r2 � x2/
1Ck
2

dr

D 2ck0 .1 � �2/ cos
�
k�
2

�
p0.a

2 � x2/
1�k
2

hN .k; �/.1 � k/E0

: (9.38)

The displacement at location r D 0 in the original must coincide with the displace-
ment at location x D 0 in the substitute model, as follows:

wc WD w.r D 0/ � w1D.x D 0/ D 2ck0
�
1 � �2

�
cos

�
k�
2

�
hN .k; �/.1 � k/E0�

FN

a1Ck
; (9.39)

taking into account that FN D p0�a
2. When the stresses are specified instead of

the indenter shape, the equivalent quantity to the indentation depth is the center dis-
placement. Inserting (9.38) in (9.12) yields, after a short calculation, the following
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surface displacements of the inhomogeneous half-space:
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�
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(9.40)

which coincide with ones calculated by Booker et al. (1985). The displacements
normalized to the center displacement of the homogeneous half-space,

wc;h D 2.1 � �2/p0a

E0

; (9.41)

are displayed in Figs. 9.18 and 9.19. Fig. 9.18 studies the influence of the elastic
inhomogeneity exponent at a fixed characteristic depth c0. For the chosen charac-
teristic depth, an increasing exponent k causes a rise of the displacements within
the load zone and a drop outside this zone. We consciously avoided particularly
large exponents k since it results in unbounded displacements within the load zone
(see the discussion in Sect. 9.1.8). Figure 9.19, on the other hand, demonstrates
decreasing displacements for a reduction of the characteristic depth, which is fixed
at k D 0:2. It should be noted that these graphs are offered as examples and do
not present all characteristics. However, a complete analysis of the fundamental
displacement behavior depending on k, c0, and p0 can already be gained from the
power-law of the elastic inhomogeneity from (9.1).
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9.1.8 Notes on the Linear-Inhomogeneous Half-Space—the Gibson
Medium

In a linear-inhomogeneous half-space, the elasticity modulus increases proportion-
ally with the depth z. This dependency is covered by the general power-law (9.1); it
merely requires the setting of k D 1. Accounting for this condition in (9.2)–(9.12)
exposes some interesting characteristics, independent of the geometry of the con-
tact. For instance, it follows that the equivalent planar profile coincides with the
cross-section of the real profile in the x-z-plane,

g.x/ D f .jxj/: (9.42)

Hence the rule for the calculation of the indentation depth (9.10) already returns an
unusual result of

d D f .a/ ) w.r/ D f .a/ � f .r/ for 0 � r � a: (9.43)

According to (9.43), the displacement of the half-space surface at the contact edge
is zero like in the 1D model. The calculation formula for the displacements of
(9.12) even reveals that the half-space surface exterior of the contact area remains
in its original, undeformed state. Such behavior is typical for a (two-dimensional)
Winkler foundation, whose surface points are displaced in proportion to the normal
stresses acting locally at these points. However, an evaluation of the rule for the
calculation of the pressure distribution from (9.12) reveals that this proportionality
is valid only for the special case of a linear-homogeneous, incompressible half-
space since the factor h.1; �/ takes on a non-zero value only for � D 0:5. With
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h.1; 0:5/ D �=2 it follows that:

p.x; y/ D 2E0

3c0
w.x; y/: (9.44)

The latter finding goes back to Gibson (1967), which is why the linear-inhomoge-
neous incompressible half-space is also named the Gibson medium. A normal load
on a linear-inhomogeneous, compressible half-space results in unbounded surface
displacements within the load zone (Awojobi and Gibson 1973). This is indicated
by (9.11). The foundation modulus vanishes according to (9.4). Therefore the
effects of an external force cannot be balanced out. The indeterminateness of the
displacements is a consequence of the vanishing elasticity modulus at the half-space
surface in a medium defined by (9.1) (Brown and Gibson 1972).

9.2 Frictionless Normal Contact with JKR Adhesion

9.2.1 Basis for Calculation of theMDR and General Solution

The framework provided by the JKR theory (see Sects. 3.2 and 3.3 in Chap. 3 of this
book) permits a particularly easy solution to contact problems with adhesion since
the basic idea relies on a simple superposition of the corresponding non-adhesive
contact and a rigid-body translation. The latter does depend on the particular contact
radius but not on the shape of the indenter. Application of this approach to contact
problems related to the elastically inhomogeneous half-space gives the indentation
depth as a function of the contact radius

d.a/ D dn:a:.a/ � �`.a/ with �`.a/ WD
s

2���ck0 a
1�k

E�hN .k; �/
: (9.45)

Here, dn:a: refers to the indentation depth of the contact without adhesion (which
would lead to the same contact radius as the one of the adhesive contact). The
unusual notation of the superimposed rigid-body translation �`.a/ stems from the
substitute model of the MDR displayed in Fig. 9.20.

Fig. 9.20 Equivalent substi-
tute model for the adhesive
normal contact between two
elastically inhomogeneous
half-spaces, whose elastic-
ity moduli satisfy condition
(9.1), assuming equal expo-
nents k of both media

http://dx.doi.org/10.1007/978-3-662-58709-6_3
http://dx.doi.org/10.1007/978-3-662-58709-6_3
http://dx.doi.org/10.1007/978-3-662-58709-6_3
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For the complete solution of a contact problem with adhesion via the MDR, all
rules and calculation formulas from Sect. 9.1.1 remain valid with the exception of
(9.10). It must be replaced by the condition

w1D.a/ D ��`.a/ D �
s

2���ck0 a
1�k

E�hN .k; �/
(9.46)

with the displacement of the spring elements given by the same equation as in the
non-adhesive case:

w1D.x/ D d � g.x/: (9.47)

This means that (under the condition that all springs in the contact area remain in
contact) the critical detachment state of the edge springs is achieved when the elon-
gation of the springs at the edge reaches the pre-defined value�`.a/ (see Fig. 9.20).

For convex profiles, the solution approach via the MDR additionally offers a
simple way to calculate the critical contact radii (after achieving this, no equilib-
rium state of the contact as a whole exists). The critical contact radii satisfies the
following equation:

�`.ac/

ac
D QC.k/

@g.a/

@a

ˇ̌
ˇ̌
ac

with QC.k/ WD

8̂
<
:̂

2

3 C k
for FN D const;

2

1 � k
for d D const:

(9.48)

The definition of the coefficient QC.k/ varies depending on whether the experiment
is force-controlled or displacement-controlled (Heß 2016a).

Taking (9.47) into consideration, (9.11) and (9.12) yield the general solution of
the contact with adhesion:

FN .a/ D Fn:a:.a/ � 2hN .k; �/E
��`.a/a1Ck

.1 C k/ck0
;

p.r I a/ D pn:a:.r I a/ � hN .k; �/E
��`.a/

�ck0 .a
2 � r2/

1�k
2

;

w.r I a/ D

8̂
<
:̂
dn:a:.a/ � f .r/ � �`.a/ for r � a;

wn:a:.r I a/ � cos
�
k�
2

�
�`.a/

�
B

�
a2

r2
I 1 C k

2
;
1 � k

2

�
for r > a:

(9.49)
The quantities with the indices “n.a.” indicate the solutions of the non-adhesive
contact. The additional terms result from the rigid-body translation and correspond
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to the solutions of the flat punch contact (if, instead of the indentation depth d, the
(negative) rigid-body translation ��`.a/ is used).

9.2.2 The Cylindrical Flat Punch

When applying a tensile force to a cylindrical flat punch of radius a, which is adher-
ing to the surface of the inhomogeneous half-space, all points in the contact area are
subjected to the same displacement w.r/ D d < 0. Therefore, except for the neg-
ative value of the indentation depth d, the boundary conditions match those of the
indentation of a cylindrical flat punch in an inhomogeneous half-space. Therefore,
we can adopt the solutions from Sect. 9.1.2:

FN .d/ D 2hN .k; �/E0da
1Ck

.1 � �2/.1 C k/ck0
;

p.r Id/ D hN .k; �/E0d

�.1 � �2/ck0 .a
2 � r2/

1�k
2

;

w.r Id/ D cos
�
k�
2

�
d

�
B

�
a2

r2
I 1 C k

2
;
1 � k

2

�
: (9.50)

Since the contact radius cannot (stably) decrease in a tensile test, the adhesive con-
tact radius of the flat punch becomes unstable once the “indentation depth” reaches
the critical value

dc.a/ D ��`.a/ D �
s

2���ck0 a
1�k

E�hN .k; �/
: (9.51)

In this case, the flat punch will instantly completely detach from the half-space sur-
face. The corresponding normal force, the absolute value of which is the maximum
pull-off force, is:

Fc.a/ D �
aZ

�a

cN .x/�`.a/dx D �
s

8���hN.k; �/E�a3Ck

.k C 1/2c0k
: (9.52)

A comparison of (9.51) and (9.52) with the equilibrium conditions (9.49) for curved
profiles reveals that the solution of the contact without adhesion is calculated by
summing the aforementioned terms. This is a pre-requisite step for the solution of
the adhesive contact.

9.2.3 The Paraboloid

The solution of the contact problem between a parabolic, rigid indenter and the
elastically inhomogeneous half-space, displayed in Fig. 9.21, is gained from the
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Fig. 9.21 Adhesive nor-
mal contact between a rigid
parabolic indenter and an
elastically inhomogeneous
half-space

~z

FN

R

a
r

d

universal superposition (9.49) by incorporating the solution of the non-adhesive
contact problem (9.26):

d.a/ D a2

.k C 1/R
�
s

2���ck0 a
1�k

E�hN .k; �/
;

FN .a/ D 4hN .k; �/E
�akC3

ck0 .k C 1/2.k C 3/R
�
s

8���hN.k; �/E�a3Ck

.k C 1/2c0k
;

p.r I a/ D 2hN .k; �/E
�akC1

�ck0 .k C 1/2R

�
1 �

� r
a

�2	 1Ck
2

�
s

2hN .k; �/��E�ak�1

�c0k

�
1 �

� r
a

�2	 k�1
2

;

w.r I a/ D a2 cos
�
k�
2

�
.k C 1/�R

" 
1 � .1 C k/R

s
2���ck0 a

�3�k

E�hN .k; �/

!

� B
�
a2

r2
I 1 C k

2
;
1 � k

2

�
� r2

a2
B

�
a2

r2
I 3 C k

2
;
1 � k

2

�#
: (9.53)

The calculation of the critical contact radii from the condition of global stability
(9.48) merely requires a knowledge of the slope of the equivalent substitute profile
at the contact edge. From (9.25) it follows that

g0.a/ D 2a

.1 C k/R
; (9.54)

and thus, with (9.48), a short calculation yields:

ac D
�
�.1 C k/2R2��c0

k

2 QC.k/2hN .k; �/E�

� 1
3Ck

: (9.55)
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Fig. 9.22 Normal force as a function of the indentation depth in normalized representation for
k D 0:5 at different characteristic depths c0

Inserting the critical contact radii (9.55) into the first two equations of (9.53) returns
the following critical indentation depths and normal forces:

dc D 1 � 2 QC.k/

.1 C k/R

�
�.1 C k/2R2��ck0

2 QC.k/2hN .k; �/E�

� 2
3Ck

;

Fc D
 
1 � QC.k/.3 C k/

QC.k/2.3 C k/

!
2���R

D

8̂
<
:̂

�k C 3

2
���R .force-control/

� .1 � k/.5 C 3k/

2.3 C k/
���R .displacement-control/:

(9.56)

Solutions (9.53)–(9.56) were derived by Chen et al. (2009), and are focused on
force-controlled experiments. They noted that, according to (9.56), the maximum
pull-off force (absolute value of the critical normal force under force-control) is in-
dependent of the elasticity parameters and characteristic depth, as for homogeneous
cases. This is made clear in Fig. 9.22, which provides a graph of the normal force in
relation to the maximum pull-off force in the classic JKR theory as a function of the
normalized indentation depth. Equilibrium states corresponding to the dotted parts
of the curves can only be realized for displacement-control. Additionally, Fig. 9.23
shows that the maximum pull-off force rises by increasing k, while the absolute
value of the pull-off force decreases under displacement-controlled test conditions.
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Fig. 9.24 Normalized pressure distribution in the contact area for a varying exponent k and an
incompressible material at a fixed characteristic depth c0

The pressure distribution in the critical state, i.e., under the effect of the max-
imum pull-off force, is demonstrated for an incompressible material in Fig. 9.24.
For the chosen parameters, the critical radius drops by increasing k. Figure 9.25
demonstrates that this property is not universally valid but instead dependent on the
characteristic depth. Here we can also see that, for a fixed k, a decrease in the char-
acteristic depth also leads to a decrease of the critical contact radius. Furthermore,



9.2 Frictionless Normal Contact with JKR Adhesion 277

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

a c
/R

R/c0 = 10
R/c 0 = 100
R/c0 = 1000

ν = 0.5

E 0 R / ∆γ = 500

k

Fig. 9.25 Critical contact radius (fixed-load) as a function of k for select characteristic depths c0
and incompressible material

the maximum pressure is extremely sensitive to parameter variations and must be
determined on a case-by-case basis. For the given parameters, the maximum pres-
sure is reached at k � 0:19. In the Gibson medium .k ! 1/ the maximum pressure
and, consequently, the (critical) indentation depth is zero.

As a last point, we have provided the following dimensionless equations:

Qd. Qa/ D 1

1 � 2 QC.k/

�
Qa2 � 2 QC.k/ Qa 1�k

2

�
with Qd WD d

dc
and Qa WD a

ac
;

QFN . Qa/ D 1

1 � .3 C k/ QC.k/

h
Qa3Ck � .3 C k/ QC.k/ Qa 3Ck

2

i
with QFN WD FN

Fc

;

(9.57)
where the indentation depth, the normal force, and the contact radius are given in
relation to their critical value. Jin et al. (2016) noted that the dimensionless forms
of (9.57) depend solely on the exponent of the elastic inhomogeneity k.

9.2.4 The Profile in the Form of a Power-Law

Taking into consideration solutions (9.30) for the contact without adhesion, the uni-
versal superposition (9.49) provides the solution of the adhesive contact. For the
adhesive normal contact of a rigid indenter with a profile in the shape of a power-law
and an elastically inhomogeneous half-space, displayed schematically in Fig. 9.26,
we obtain the following relationships between the indentation depth, contact radius,
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Fig. 9.26 Adhesive normal
contact between a rigid in-
denter with a profile in the
form of a power-law and an
elastically inhomogeneous
half-space ~z
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The pressure distribution in the contact area and the normal surface displacement
outside of the contact area are given by:
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: (9.59)

The critical contact radii are determined by evaluating condition (9.48), which
requires the slope of the equivalent profile at the contact edge as its input. Dif-
ferentiation of (9.28) yields g0.a/ D n	 .n; k/Ana

n�1, resulting in the following
critical radii:

ac D
�

2���c0
k

hN .k; �/E� QC.k/2	.n; k/2n2An
2

� 1
2nCk�1

: (9.60)
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Substituting (9.60) into (9.58) leads to critical indentation depths and forces,

dc D
"�

2���c0
k

hN .k; �/E�

�n �
1

QC.k/n	.n; k/An

�1�k
# 1

2nCk�1
 
1 � n QC.k/

n QC.k/

!
;

Fc D 2

 
1 � QC.k/.n C k C 1/

QC.k/.n C k C 1/.k C 1/
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�
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hN .k; �/E�

�2�n �
1
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# 1

2nCk�1

: (9.61)

Jin et al. (2013) presented a detailed examination of the maximum pull-off force
depending on the shape exponents n. For scaling reasons, the indenter shape was
specified according to slightly modified function f .r/ D rn=.nRn�1/ instead of
(9.27). Normalizing their result to the maximum pull-off force of the classical JKR
problem, they derived the following relationship:

Fc

1:5���R
D 2.1 � k � 2n/

3�.n C k C 1/.k C 1/

�
"
.2�/nCkC1

�
1 � �2
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�2�n �
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2	.n; k/

�kC3

�
�
R

c0

�k.n�2/ �
E0R

��

�n�2
# 1

2nCk�1

; (9.62)

which is visualized for selected parameters and shape exponents in Fig. 9.27. It is
clear to see that the maximum pull-off force changes linearly with k only for the
parabolic contact (n D 2) and otherwise exhibits a non-linear dependency.

Putting the indentation depth and normal force in relation to their critical values
results in the following dimensionless representations, which depend solely on the
exponents k and n (see Heß 2016a):

Qd. Qa/ D 1

1 � QC.k/n

�
Qan � n QC.k/ Qa 1�k

2

�
with Qd WD d

dc
and Qa WD a

ac
;

QFN . Qa/ D 1

1 � QC.k/.n C k C 1/

h
QanCkC1 � QC.k/.n C k C 1/ Qa kC3

2

i

with QFN WD FN

Fc

: (9.63)

9.2.5 The Concave Paraboloid (Complete Contact)

In the following, we will assume that a rigid, cylindrical, concave punch is initially
pressed into the inhomogeneous half-space to the point of complete contact. During
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Fig. 9.27 Maximum pull-off force as a function of the exponent of the elastic inhomogeneity k
for different exponents of the power-law profile according to Jin et al. (2013)

the subsequent unloading, two competing mechanisms lead to the separation of the
surfaces:

1. For slightly concave punch profiles, the separation of the punch is caused (as in
convex profiles) by the stress singularity at the contact edge.

2. For highly concave punch profiles, the separation occurs in the center of the
contact area because of too high tensile stresses, whose absolute values exceed
the theoretical tensile strength (of the adhesion) �th.

The two states, whose accompanying quantities we denote by the indices “P” (Pe-
riphery) and “C” (Center), were examined in greater detail by Jin et al. (2013). The
critical state, at which the separation at the edge occurs, satisfies the equilibrium
condition (9.45). The displacement of the Winkler foundation is taken from the so-
lution of the corresponding contact without adhesion, (9.36). By replacing d by dP
we get:

w1D.x/ D dP � h0 C 2h0

k C 1

x2

a2
: (9.64)

The evaluation of condition (9.45) yields the critical indentation depth dP at which
the edge begins to separate:

dP D �
s

2���ck0 a
1�k

hN .k; �/E� � h0
1 � k

1 C k
: (9.65)

The remaining terms of the complete solution of the contact problem are obtained
by simply inserting (9.65) into (9.34), taking into account that d0 D dP � h0. Here,
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we restrict the presentation to the normal force and the pressure distribution:

FP.a/ D �
s
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� 8hN .k; �/E

�h0a1Ck

.k C 1/2.k C 3/ck0
;

pP.r I a/ D hN .k; �/E
�

�ck0 .a
2 � r2/

1�k
2

2
4�

s
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1 � r2

a2

�3
5 : (9.66)

The first term of the critical force in (9.66) returns exactly the adhesive force of
the flat punch according to (9.52). The second term results from the concave shape.
Since both terms have the same sign, the maximum pull-off force of weakly concave
profiles is always greater than the one of the flat punch contact.

For strongly concave profiles, the separation begins in the center of the contact
area upon reaching the theoretical adhesive tensile strength. The critical indentation
depth is gained from the condition p.r D 0/ D ��th, where once again, in the
pressure distribution of the contact without adhesion (9.34), d is replaced by dC.
Therefore, we obtain:

dC D � �ck0 a
1�k

hN .k; �/E� �th C 3 C k2

.1 C k/2
h0; (9.67)

from which the normal force and the pressure distribution in the critical state follow
as:

FC.a/ D � 2�a2

.1 C k/
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�akC1
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;

pC.a/ D 1

.a2 � r2/
1�k
2

�
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�.k C 1/2ck0

r2

a2

	
: (9.68)

For k D 0, these solutions coincide with those of Waters et al. (2011).

9.2.6 The IndenterWhich Generates a Constant Adhesive Tensile
Stress

The optimal profile of a rigid, concave, cylindrical indenter is defined by the condi-
tion that, in the critical state, the constant tensile stresses in the contact area are (in
absolute terms) equal to the theoretical adhesive tensile strength (see Gao and Yao
2004):

popt.r/ D ��th for r � a; (9.69)

The maximum pull-off force is then

Fopt.a/ D ��th�a
2: (9.70)

Determining the corresponding optimal shape is rendered particularly easy when
accounting for the results from Sect. 9.1.7. Equations (9.39) and (9.40) determine
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the necessary surface displacement to generate a constant pressure in the contact
area. Replacing p0 with ��th or, alternatively, FN by Fopt according to (9.70) leads
to the surface displacement of the considered problem:
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ˆ̂:
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�
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2
;
1 C k

2
I 1I r
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2
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�1Ck
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�
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2
;
1 C k

2
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2

r2
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(9.71)
with

wc;opt D � 2ck0 cos
�
k�
2

�
a1�k

hN .k; �/.1 � k/E� �th: (9.72)

The optimal indenter shape fopt can basically be extracted from (9.71) and (9.72).
Accounting for fopt.r D 0/ D 0 returns:

fopt.r/ D wc;opt

�
1 � 2F1

�
k � 1

2
;
1 C k

2
I 1I r

2

a2

�	
: (9.73)

For the purposes of a graphical representation of the influence of the elastic inhomo-
geneity k and the normalized characteristic depth c0=a, it seems more appropriate
to use the function shifted by the boundary value fopt.a/

Qfopt.r/ WD fopt.r/ � fopt.a/ (9.74)

In Figs. 9.28 and 9.29 the optimal profile functions are plotted for different values
of k and c0=a, according to the publication by Jin et al. (2013). For a fixed exponent
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Fig. 9.28 Optimal concave profile for a fixed characteristic depth c0 and different set parameters k



9.3 Tangential Contact 283

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

c0 = a
c0 = 0.1
c0 = 0.01
c0 = 0.001

ν = 0.3 ; k = 0.1

r/a

f̃ o
p
t
E

/σ
th

a

*

a
a
a
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k, a decrease of the characteristic depth c0 causes a drop in the height of the concave
section.

9.3 Tangential Contact

9.3.1 Basis of Calculation and Restricting Assumptions

In the following, we present selected solutions of tangential contact problems with
partial slip between two bodies constructed of FGMs, according to (9.1). For both
bodies we assume equal exponents k and characteristic depths c0. Furthermore, as
in the classical theory of Cattaneo (1938) and Mindlin (1949) (see Chap. 4), we
operate under the assumption of a decoupling of the normal and tangential contact,
which is valid for the following material pairings:

1. Equal elastic materials: �1 D �2 DW � and E01 D E02 DW E0

2. One body is rigid and the other elastic with a Poisson’s ratio equal to the Holl
ratio: E0i ! 1 and �j D 1=.2 C k/ with i ¤ j

3. The Poisson’s ratios of both materials are given by the Holl ratio: �1 D �2 D
1=.2 C k/

Note that, due to thermodynamic stability, the Holl ratio can only be fulfilled for
positive k. If we assume that the bodies are initially pressed together by a normal
force FN and subsequently (under a constant normal force) are subjected to a tan-
gential force, then the contact area will be composed of an inner stick zone and an
outer slip zone (see Fig. 9.30).

http://dx.doi.org/10.1007/978-3-662-58709-6_4
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Fig. 9.30 Tangential contact
with partial slip between two
elastically inhomogeneous
bodies; the contact area is
composed of an inner stick
zone and an outer slip zone

FN

FN

Fx

Fx

x

E01, ν1, k

E02, ν2, k

The boundary conditions are determined by the rigid-body translation of the
points of the stick zone

u.x; y/ D const: and v.x; y/ D 0 for 0 < r < c (9.75)

and by the Coulomb law of friction
ˇ̌
ˇ! .r/

ˇ̌
ˇ < �p.r/ for 0 � r < c;ˇ̌

ˇ! .r/
ˇ̌
ˇ D �p.r/ for c � r � a: (9.76)

In the slip zone, the tangential stresses must be additionally directed opposite to the
relative tangential displacement of the surface points. With increasing tangential
force, the stick zone shrinks until, finally, gross slip sets in. For the calculation of
this problem using the generalized Ciavarella–Jäger theorem is recommended, ac-
cording to which the tangential contact can be represented as the superposition of
two normal contacts. For the tangential stress, the tangential force, and the relative
tangential displacement u.0/ between two remote material points—within the con-
tacting bodies and far from the contact interface—the following is valid (see Heß
2016b):

.r/ D �Œp.r; a/ � p.r; c/�;

Fx D �ŒFN .a/ � FN .c/�;

u.0/ D �˛Œd.a/ � d.c/�: (9.77)

We have defined .r/ WD �zx.r/ and assume that a tangential force in the x-
direction only leads to tangential stresses in the same x-direction. ˛ represents the
ratio of normal stiffness to tangential stiffness:

˛.k; �i ; E0i / WD
1

hT .k; �1/E01

C 1

hT .k; �2/E02

1 � �21
hN .k; �1/E01

C 1 � �22
hN .k; �2/E02

; (9.78)
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where

hT .k; �/ D
2ˇ.k; �/ cos

�
k�
2

�


�
1 C k

2

�
.1 � �2/

p
�C.k; �/ sin

�
ˇ.k;�/�

2

�


�
3Ck
2

�C ˇ.k; �/.1 C �/

�
1 C k

2

� ; (9.79)

and the additional functional relationships are defined as an addendum to (9.5).
With (9.77) we are able to solve the tangential contact between arbitrarily shaped
bodies, provided the solutions of the corresponding normal contact problem are
known. It is noted that tangential contacts can be solved in an equally simple fashion
using the MDR (Heß and Popov 2016).

9.3.2 Tangential Contact Between Spheres (Parabolic
Approximation)

Applying (9.77) to the (parabolic) contact of two equally elastically inhomogeneous
spheres of radius R leads to the following results:
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1Ck
2 � .c2 � r2/

1Ck
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.a2 � r2/
1Ck
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Fx.c; a/ D �FN .a/

�
1 �

� c
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�kC3
	
;

u.0/.c; a/ D �
hN .k; �/

.1 � �2/hT .k; �/
d.a/

�
1 �

� c
a

�2	
; (9.80)

where FN .a/ and d.a/ are taken from the solutions of the normal contact (9.26).
Figure 9.31 shows the values of the tangential stresses along the x-axis under

the assumption that the normal force is kept constant for all selected exponents k of
the elastic inhomogeneity. The quantities are normalized to the maximum pressure
p0;H and the contact radius aH of the Hertzian contact problem. It is clearly visible
that, compared to the respective Hertzian contact radius (contact of homogeneous
materials), the contact radii are smaller for negative exponents and greater for pos-
itive exponents. In contrast, the tangential stress is greater for negative exponents
and vice-versa. However, this behavior of the stresses is only observed in the slip
zone and not necessarily true for the entire contact area. The curves presented in
Fig. 9.32 make it clear that gross slip sets in at a small tangential displacement
u.0/ for negative exponents, and at a substantially greater displacement for positive
exponents. For ease of comparison, the quantities are normalized to the tangential
displacement u.0/

c;hom, which marks the onset of gross slip of elastically homogeneous
materials.
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9.3.3 Oscillating Tangential Contact of Spheres

Two bodies with parabolically curved surfaces (curvature radii R) of the same elas-
tically inhomogeneous material according to (9.1) are initially pressed together by
a normal force, and subsequently (under a constant normal force) are subjected to
the oscillating tangential force given in Fig. 9.33. Accordingly, the tangential force
varies within the bounds ˙0:9�FN to avoid gross slip at every point in time.

The solutions of the contact problem for the initial rise to Point A on the load
curve were covered in Sect. 9.3.2. Slip will occur, beginning at the edge of the con-
tact, during a subsequent successive reduction of the tangential force. It is directed
opposite to the initial slip and propagates inwards during the unloading process. In
the new ring-shaped slip zone b < r � a, frictional stresses develop, which are
again directed opposite to the initial frictional stresses. Therefore, a reduction in
the tangential force leads to a change of the frictional stresses in the ring-shaped
slip zone by �2�p.r/. Yet since no slip occurs in the remaining contact area, all
surface points in that domain are subjected to the same change in their tangential
displacement. Therefore the change of the tangential force leads to changes of the
tangential stresses and tangential displacements, which solve the contact problem
formulated in Sect. 9.3.1. Thus, except for the factor “2” and a negative sign, the
changes satisfy (9.77):

�.r/ D �2�Œp.r; a/ � p.r; b/�;

�Fx D �2�ŒFN .a/ � FN .b/�;

�u.0/ D �2�˛Œd.a/� d.b/�: (9.81)
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The absolute values result from the summation of the state variables in Point A and
the changes (9.81). For the stresses, this leads to:
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2 for 0 � r � c;

�.a2 � r2/
1Ck
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(9.82)

and for the tangential force and the tangential displacements, this leads to:
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(9.83)
FA and u

.0/
A represent the load and displacement quantities in Point A, and c is the

radius of the corresponding stick zone. For the selected exponents of the elastic
inhomogeneity k D 0:5 and k D �0:5, Figs. 9.34 and 9.35 display the tangen-
tial stress distribution along the x-axis for the characteristic points A through E
of the unloading curve (see Fig. 9.33). In both cases, the same normal force was
applied and the representation was normalized to the radius aH of the Hertzian con-
tact corresponding to this normal force. For positive k, the increase of the contact
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Fig. 9.34 Curve of the normalized tangential stresses along the x-axis for different points of the
load curve from Fig. 9.33 and positive exponents of the elastic inhomogeneity k D 0:5
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area is coupled with a decrease in the tangential stresses. On the other hand, neg-
ative exponents reduce the contact area, resulting in an increase of the tangential
stresses compared to the homogeneous case k D 0. However, this effect is ex-
tremely sensitive to changes in the characteristic depth and can even manifest in
the inverse behavior. In Figs. 9.34 and 9.35 it is assumed that c0 D aH . The char-
acteristic difference in the shape of the curves for positive and negative exponents
remain unaffected. The dependency of the stress distribution on the loading history
is demonstrated best at the load point C. Here, non-zero tangential stresses arise,
even though no external tangential force is applied.

The solutions for the load curve from E to F (see Fig. 9.33) follow in complete
analogy to the solution from A to E.

Using (9.83), the tangential force can be expressed as a function of the tangential
displacement for the unloading path from A to E and in the same manner for the
subsequent loading path from E to F. These are:

A ! EWFx D FA � 2�FN .a/

2
41 �

 
1 C u.0/ � u

.0/
A

2˛�d.a/

! kC3
2

3
5 ;

E ! F WFx D �FA C 2�FN .a/

2
41 �

 
1 � u.0/ C u

.0/

A

2˛�d.a/

! kC3
2

3
5 : (9.84)
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Fig. 9.36 Hysteresis loops as a result of an oscillating tangential contact for different exponents
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where the tangential displacement in Point A depends on the corresponding tangen-
tial force according to:

u
.0/
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"
1 �

�
1 � FA

�FN

� 2
kC3

#
: (9.85)

Equations (9.84) characterize a hysteresis curve, a graphical representation of which
is given in Fig. 9.36 for different values of the exponent k. In the chosen normaliza-
tion, it is quite visible that, compared to the homogeneous case, the gradient of the
hysteresis is greater for negative exponents and smaller for positive exponents. Ad-
ditionally, an increasing k is connected with an increase of the area enclosed by the
hysteresis loop and, therefore, the dissipated energy per loading cycle. An explicit
calculation of the energy dissipated per cycle yields:
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The special case of elastically homogeneous bodies (k D 0) leads to the result
derived by Mindlin and Deresiewicz (1953):

�W D 18�2F 2
N

5G�a

"
1 �

�
1 � FA

�FN

� 5
3

� 5

6

FA

�FN

 
1 C

�
1 � FA

�FN

� 2
3

!#
: (9.87)

References

Aleynikov, S.M.: Spatial contact problems in Geotechnics: boundary-element method. Springer,
Heidelberg, pp 55–83 (2011). ISBN 978-3-540-25138-5

Argatov, I., Heß, M., Popov, V.L.: The extension of the method of dimensionality reduction to
layered elastic media. Z. Angew. Math. Mech. 98(4), 622–634 (2018)

Awojobi, A.O., Gibson, R.E.: Plane strain and axially-symmetric problems of a linearly non-
homogeneous elastic half-space. Q. J. Mech. Appl. Math. 26(3), 285–302 (1973)

Boesel, L.F., Greiner, C., Arzt, E., Del Campo, A.: Gecko-inspired surfaces: a path to strong and
reversible dry adhesives. Adv. Mater. 22(19), 2125–2137 (2010)

Booker, J.R., Balaam, N.P., Davis, E.H.: The behavior of an elastic non-homogeneous half-space.
Part II—circular and strip footings. Int. J. Numer. Anal. Methods. Geomech 9(4), 369–381
(1985)

Brown, P.T., Gibson, R.E.: Surface settlement of a deep elastic stratum whose modulus increases
linearly with depth. Can. Geotech. J. 9(4), 467–476 (1972)

Cattaneo, C.: Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti
Dell’accademia Nazionale Dei Lincei 27, 342–348, 434–436, 474–478 (1938)

Chen, S., Yan, C., Zhang, P., Gao, H.: Mechanics of adhesive contact on a power-law graded
elastic half-space. J. Mech. Phys. Solids 57(9), 1437–1448 (2009)

Fabrikant, V.I., Sankar, T.S.: On contact problems in an inhomogeneous half-space. Int. J. Solids
Struct. 20(2), 159–166 (1984)

Fröhlich, O.K.: XI Das elastische Verhalten der Böden. In: Druckverteilung im Baugrunde, pp.
86–108. Springer, Vienna (1934)

Gao, H., Yao, H.: Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl.
Acad. Sci. U.S.A. 101(21), 7851–7856 (2004)

Giannakopoulos, A.E., Pallot, P.: Two-dimensional contact analysis of elastic graded materials. J.
Mech. Phys. Solids 48(8), 1597–1631 (2000)

Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties: Part
II. Axi-symmetric indentors. Int. J. Solids Struct. 34(19), 2393–2428 (1997)

Gibson, R.E.: Some results concerning displacements and stresses in a non-homogeneous elastic
half-space. Geotechnique 17(1), 58–67 (1967)

Gorb, S., Varenberg, M., Peressadko, A., Tuma, J.: Biomimetic mushroom-shaped fibrillar adhe-
sive micro-structure. J. R. Soc. Interface 4(13), 271–275 (2007)

Heß, M.: A simple method for solving adhesive and non-adhesive axi-symmetric contact problems
of elastically graded materials. Int. J. Eng. Sci. 104, 20–33 (2016a)

Heß, M.: Normal, tangential and adhesive contacts between power-law graded materials. Pre-
sentation at the Workshop on Tribology and Contact Mechanics in Biological and Medical
Applications, TU-Berlin, 14.–17. Nov. 2016. (2016b)

Heß, M., Popov, V.L.: Method of dimensionality reduction in contact mechanics and friction: a
user’s handbook. II. Power-law graded materials. Facta Univ. Ser. Mech. Eng. 14(3), 251–268
(2016)

Holl, D.L.: Stress transmission in earths. Highway Res. Board Proc. 20, 709–721 (1940)
Jin, F., Guo, X., Zhang, W.: A unified treatment of axi-symmetric adhesive contact on a power-law

graded elastic half-space. J. Appl. Mech. 80(6), 61024 (2013)



292 9 Contact Problems of Functionally Graded Materials

Jin, F., Zhang, W., Wan, Q., Guo, X.: Adhesive contact of a power-law graded elastic half-space
with a randomly rough rigid surface. Int. J. Solids Struct. 81, 244–249 (2016)

Jitcharoen, J., Padture, P.N., Giannakopoulos, A.E., Suresh, S.: Hertzian-crack suppression in
ceramics with elastic-modulus-graded surfaces. J. Am. Ceram. Soc. 81(9), 2301–2308 (1998)

Lee, D., Barber, J.R., Thouless, M.D.: Indentation of an elastic half-space with material properties
varying with depth. Int. J. Eng. Sci. 47(11), 1274–1283 (2009)

Liu, Z., Meyers, M.A., Zhang, Z., Ritchie, R.O.: Functional gradients and heterogeneities in
biological materials: design principles, functions, and bioinspired applications. Prog. Mater.
Sci. 88, 467–498 (2017)

Mehrali, M., Shirazi, F.S., Mehrali, M., Metselaar, H.S.C., Kadri, N.A.B., Osman, N.A.A.: Dental
implants from functionally graded materials. J. Biomed. Mater. Res. A 101(10), 3046–3057
(2013)

Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16(3), 259–268 (1949)
Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl.

Mech. 20, 327–344 (1953)
Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally graded ma-

terials: design, processing and applications. Kluwer Academic Publishers, Boston, Dordrecht,
London (1999)

Peisker, H., Michels, J., Gorb, S.N.: Evidence for a material gradient in the adhesive tarsal setae
of the ladybird beetle Coccinella septempunctata. Nat. Commun. 4, 1661 (2013)

Rostovtsev, N.A.: An integral equation encountered in the problem of a rigid foundation bearing
on non-homogeneous soil. J. Appl. Math. Mech. 25(1), 238–246 (1961)

Rostovtsev, N.A.: On certain solutions of an integral equation of the theory of a linearly de-
formable foundation. J. Appl. Math. Mech. 28(1), 127–145 (1964)

Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60(3), 87–106
(2007)

Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications—an
update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)

Suresh, S.: Graded materials for resistance to contact deformation and damage. Sci. Compass
Rev. 292(5526), 2447–2451 (2001)

Suresh, S., Olsson, M., Giannakopoulos, A.E., Padture, N.P., Jitcharoen, J.: Engineering the re-
sistance to sliding-contact damage through controlled gradients in elastic properties at contact
surfaces. Acta. Mater. 47(14), 3915–3926 (1999)

Waters, J.F., Gao, H.J., Guduru, P.R.: On adhesion enhancement due to concave surface geome-
tries. J. Adhes. 87(3), 194–213 (2011)

Willert, E.: Dugdale-Maugis adhesive normal contact of axi-symmetric power-law graded elastic
bodies. Facta Univ. Ser. Mech. Eng. 16(1), 9–18 (2018)

Willert, E., Popov, V.L.: Adhesive tangential impact without slip of a rigid sphere and a power-law
graded elastic half-space. Z. Angew. Math. Mech. 97(7), 872–878 (2017a)

Willert, E., Popov, V.L.: The oblique impact of a rigid sphere on a power-law graded elastic half-
space. Mech. Mater. 109, 82–87 (2017b)



References 293

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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