
5Torsional Contact

This chapter is dedicated to contacts between a rigid, rotationally symmetric in-
denter and an elastic half-space, which are subjected to a twisting moment along
the z-axis in the normal direction of the half-space. The fundamental equations of
elastostatics exhibit an interesting property; that purely torsional problems are gen-
erally elastically decoupled in cases of rotational symmetry. This means that the
tangential displacements u' in no way affects the radial and normal displacements.
(Note regarding the notation in this chapter: contrary to the previous chapter, the
word “tangential” refers to “circumferential direction” in this chapter. With this
in mind, all tangential displacements will be denoted by u with the corresponding
index of the tangential direction, i.e., ux , uy , u' , etc. Normal displacements will
retain the notation w.) However, in spite of the elastic decoupling, there exists the
coupling caused by friction. We initially consider contacts without slip, which ac-
cordingly are decoupled from the normal contact problem, and we subsequently
examine finite coefficients of friction.

5.1 No-Slip Contacts

5.1.1 The Cylindrical Flat Punch

Twisting a rigid flat punch of radius a that is in no-slip contact with an elastic half-
space (see Fig. 5.1) results in the tangential displacements caused by the rigid body
rotation of the punch by the torsion angle ':

u'.r/ D r'; r � a: (5.1)
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Fig. 5.1 Torsional contact
between a rigid flat punch
and an elastic half-space
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The torsional stresses �'z in the contact area and the outer displacements u' are
given by:
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where G is the shear modulus. The stresses and displacements are represented in a
normalized form in Figs. 5.2 and 5.3. The total torsional moment is:

Mz D 16

3
Ga3': (5.3)

Fig. 5.2 Normalized tor-
sional stresses as a function
of the radial coordinate for
torsion by a flat cylindrical
punch
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Fig. 5.3 Normalized tan-
gential displacements as
a function of the radial co-
ordinate for torsion by a flat
cylindrical punch

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

r/a

u φ
/ (

aφ
)

5.1.2 Displacement from Torsion by a Thin Circular Ring

We will now consider the torsion of the elastic half-space induced by a momentMz

that is distributed over a thin circular ring of radius a. Let the ring be sufficiently
thin for the stress distribution to be described by a Dirac function:

�'z.r/ D � Mz

2�a2
ı.r � a/: (5.4)

The resulting displacement of the half-space can be gained from the superposition
of the fundamental solutions of elasticity theory. A point force Fx acting in the x-
direction on the origin causes the tangential displacements at the half-space surface
(Johnson 1985) of:
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with s being the distance from the point of the force application. A force in the
y-direction results in correspondingly identical expressions for the opposite coor-
dinates. A slightly involved yet elementary calculation yields the displacements
caused by the stress distribution (5.4):
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Fig. 5.4 Tangential displace-
ment of the surface from
torsion by a thin circular ring
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with the complete elliptical integrals of the first and second kind:

K.k/ WD
�=2Z

0

d'p
1 � k2 sin2 '

;

E.k/ WD
�=2Z

0

q
1 � k2 sin2 'd': (5.7)

These displacements are displayed in Fig. 5.4 and allow the direct calculation of the
displacements from a given rotationally symmetric torsional stress distribution.

5.2 Contacts with Slip

We now consider contacts which are simultaneously loaded in the z-direction by
a normal force FN and a twisting moment Mz. Once again, the problem can be
reduced to the contact between a rigid indenter and an elastic half-space by intro-
ducing the effective modulus of elasticity:

1

E� D 1 � �1

2G1

C 1 � �2

2G2

D 1 � �

2G
; (5.8)

with the shear moduli Gi and Poisson’s-ratios �i . The index “1” denotes the inden-
ter and “2” the half-space. Many statements from Chap. 4 concerning tangential
contacts with slip also hold true for torsional contacts with slip: the contacts exhibit
hysteresis and memory, i.e., the solution of the contact problem is dependent on the
loading history. Once again, we restrict ourselves to contacts with a constant nor-
mal force and a subsequently applied, increasing twisting moment. This induces a
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slip zone of radius a, which gradually expands inwards from the boundary of the
contact. The inner stick zone is characterized by the radius c.

Contrary to tangential contacts, there exists no theorem for torsional contacts
permitting the reduction to the solution of the frictionless normal contact. Neverthe-
less, Jäger (1995) published a general solution for arbitrary rotationally symmetric
indenters with a profile shape Qz WD f .r/. The boundary conditions for the normal
and tangential stresses �zz and �'z as well as the normal and tangential displace-
ments w and u' at the surface of the half-space are:

w.r/ D d � f .r/; r � a;

u'.r/ D r'; r � c;

�'z.r/ D ��zz.r/; c < r � a;

�zz.r/ D 0; r > a;

�'z.r/ D 0; r > a; (5.9)

with the indentation depth d, the torsion angle ', and the coefficient of friction �.
We assume that the pure normal contact problem has been solved and the corre-
sponding normal stresses �zz are known (refer to Chap. 2 for details). The solution
of the torsion problem then requires just a single function Q�, which can be deter-
mined from the condition:

Q�.xI a/ D � �
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: (5.10)

The relationship between the torsion angle and the two characteristic contact radii
c and a is then given by:

' D Q�.cI a/: (5.11)

Moreover, the twisting moment can be calculated from the equation:
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and the torsional stresses in the stick zone are determined by the relationship:
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The tangential displacements in the slip zone are given by the relationship:

u'.r/ D r
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Equations (5.10) to (5.14) completely solve the described torsion problem. The
problem is fully defined by providing the indenter profile and one quantity of each
trio fd; a; FN g and f'; c;Mzg. We assume in both cases that the two radii are the
given quantities. Regrettably, these relationships very rarely permit an analytical
solution. Therefore, we will limit the scope of detail provided in this book to the
indentation by a flat cylindrical punch and by a paraboloid. The following contact
problems occur, for example, in stick-slip (purely mechanical) rotary drive systems.
There, the most commonly used indenter shape is the sphere (see Sect. 5.2.2).

5.2.1 The Cylindrical Flat Punch

In Chap. 2 (see Sect. 2.5.1) we considered the normal indentation of an elastic half-
space to the depth d by a rigid, flat cylindrical indenter of radius a. The following
stress distribution was found:
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Using (5.10) we obtain:
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with the complete elliptical integral of the first kind:
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: (5.17)

The torsion problem is solved through the following relationships between the
global torsion angle ', the radius of the stick zone c, and the torsion momentMz as
well as the tangential stresses �'z:

' D �E�d
2�Ga

K

 r
1 � c2

a2

!
;

Mz D 16G'
c3

3
C 8�E�d

�a

aZ

c

x2K

 r
1 � x2

a2

!
dx;

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2


5.2 Contacts with Slip 181

�'z.r/ D �4Gr

�

2
4

aZ

c

d Q�.x; a/
dx

dxp
x2 � r2

C
Q� .a; a/p
a2 � r2

3
5 ; r � c

D �2�E�dr
�2a

�
( aZ

c

"
xK

 r
1 � x2

a2

!
� a2

x
E

 r
1 � x2

a2

!#
dx

.a2 � x2/
p
x2 � r2

C �

2
p
a2 � r2

)
; (5.18)

with the complete elliptical integral of the second kind:
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q
1 � k2 sin2 'd': (5.19)

For the sake of brevity, the tangential displacements in their general formwill not be
repeated here as they have already been demonstrated in (5.14). Complete stick in
the contact is possible even for a non-vanishing torsion angle and a corresponding
torque. The respective limiting values are:
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The torsional moment and torsion angle, both normalized to these critical values,
are displayed in Figs. 5.5 and 5.6 as functions of the normalized radius of the stick

Fig. 5.5 Torsion angle, nor-
malized to the critical value
for complete stick, as a func-
tion of the normalized radius
of the stick zone for the tor-
sional contact with a flat
punch
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Fig. 5.6 Torsional moment,
normalized to the critical
value for complete stick, as
a function of the normalized
radius of the stick zone for
the torsional contact with a
flat punch
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Fig. 5.7 Torsional stresses
normalized to the average
pressure p0 multiplied with
the coefficient of friction
� for the torsional contact
with a flat cylindrical punch.
The thin solid line represents
the stress distribution for
complete slip
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Fig. 5.8 Normalized tan-
gential displacements for the
torsional contact with a flat
cylindrical punch. The thin
solid line represents the dis-
placement caused by the rigid
body rotation
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zone. The variation of the torsion moment during the transition from complete
stick to complete slip is less than 18%. The normalized distribution of the torsional
stresses is given in Fig. 5.7 and tangential displacements is provided in Fig. 5.8.

5.2.2 The Paraboloid

In Chap. 2 (see Sect. 2.5.3), for a paraboloid with the curvature radius R and the
corresponding profile shape

f .r/ D r2

2R
; (5.21)

the following solution of the normal contact problem was derived:
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;

FN .a/ D 4

3
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;
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�R

p
a2 � r2; r � a: (5.22)

As usual, a denotes the contact radius, d the indentation depth, FN the normal force,
and �zz the normal stress distribution in the contact.

Taking (5.10) into account gives us (for Q�):
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; (5.23)

Fig. 5.9 Torsional contact
between a rigid paraboloid
and an elastic half-space
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with the complete elliptical integrals of the first and second kind:
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The solution for the torsion problem (see Fig. 5.9), initially found by Lubkin (1951),
is then given by:
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Here, ' represents the global torsion angle of the rigid paraboloid,Mz the torsional
moment, and �'z the torsional stresses. The torsion angle and the torsional moment
as functions of the radius of the stick zone are represented in a normalized form
in Figs. 5.10 and 5.11. Furthermore, Figs. 5.12 and 5.13 display the normalized
tangential stresses and displacements as functions of the radial coordinate.

Fig. 5.10 Normalized torsion
angle as a function of the
normalized radius of the stick
zone for the torsional contact
with a parabolic indenter
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Fig. 5.11 Normalized tor-
sional moment as a function
of the normalized radius
of the stick zone for the
torsional contact with a
parabolic indenter
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Fig. 5.12 Torsional stresses
normalized to the average
pressure p0 multiplied by
the coefficient of friction
� for the torsional contact
with a flat cylindrical punch.
The thin solid line represents
the stress distribution for
complete slip
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Fig. 5.13 Normalized tan-
gential displacements for
the torsional contact with a
parabolic indenter. The thin
solid line represents the dis-
placement caused by the rigid
body rotation
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