
3Normal Contact with Adhesion

3.1 Introduction

Between any two electrically neutral bodies there exist relatively weak interaction
forces which rapidly decline with increasing distance between the bodies. These
forces are known as adhesive forces and, in most cases, cause a mutual attraction.
Adhesive forces play an essential role in many technical applications. It is the
adhesive forces that are responsible for the behavior of glue, for instance. Adhesive
tape, self-adhesive envelopes, etc., are further examples of adhesive forces. They
are of particular importance for applications where one of the following conditions
is met:

� The surfaces of the bodies are very smooth (e.g., the magnetic disc of a hard
drive).

� One of the contact partners is made of a soft material (rubber or biological struc-
tures).

� We are dealing with a microscopic system, in which adhesive forces generally
have a larger influence than body forces, because the body and surface forces are
scaled differently (micro-mechanical devices, atomic force microscope, biologi-
cal structures, etc.).

At a microscopic scale, the adhesive forces are determined by the type of the in-
teraction potential. It is possible to define a characteristic “range” of adhesive
forces based on the specific type of the potential. However, as Griffith already
demonstrated in his famous work on the theory of cracks (Griffith 1921), the most
important parameter is not solely the magnitude of the interactions or their range,
but instead the product of both; i.e., the work required separation of the surfaces.
This work per unit surface area is referred to as the work of adhesion or effective
relative surface energy, �� , of the contacting bodies.
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Griffith’s theory is based on the energy balance between the elastic energy re-
leased due to an advancement of the crack boundary and the required work of
adhesion. It is assumed that there are no interaction forces beyond the contact area,
which corresponds to the assumption of a vanishingly low range of the adhesive
forces. This assumption is valid for real adhesive interactions if the range of the
adhesive forces is much smaller than any characteristic length of the contact. The
theory of adhesive contact published in 1971 by Johnson, Kendall, and Roberts is
valid under the same conditions as Griffith’s theory: for the vanishingly low range
of the interactions. In this chapter, when we refer to the theory of adhesive contacts
in the “JKR approximation”, it is understood to mean the vanishingly low range of
the adhesive forces. In JKR theory, the work of adhesion is also the sole parame-
ter of the adhesive interaction. Among other results, the adhesive force between a
sphere of radius R and an elastic half-space is given by the equation:

FA D 3

2
���R; (3.1)

In micro-systems, situations can arise where the range of the adhesive forces is of
the same length as the smallest characteristic length of the contact (usually the in-
dentation depth), or even greater than the characteristic contact length. The simplest
of such cases is the contact of hard spheres with weak interaction forces, where the
elastic deformation is negligible. This case was examined and published by Bradley
(1932). Bradley calculated the adhesive force between a rigid plane and a rigid
sphere of radius R. He assumed the existence of van derWaals forces acting between
the molecules of both bodies, decreasing proportionally to 1=r7 with increasing dis-
tance between the molecules (which corresponds to the attractive component of the
Lennard-Jones potential). For the contact of a rigid plane and a rigid sphere, the
adhesive force equals:

FA D 2���R: (3.2)

This equation also only features the separation energy and does not account for
the coordinate dependency of the interaction. It can be easily shown that the re-
sult from Bradley’s approximation is invariant with regards to the exact coordinate
dependency of the interaction potential, as long as the half-space approximation is
valid.

The logical extension of Bradley’s model lies in the consideration of the elastic
deformations caused by long-range adhesive interactions. An approximate solution
for this problem was only discovered about 40 years after Bradley’s publication by
Derjaguin, Muller, and Toporov (1975) (DMT theory). While the approximation
does take into account the adhesive forces, the elastic deformation of the surfaces
is, nonetheless, calculated with the solution by Hertz (1882) for non-adhesive con-
tacts. Under these assumptions, Derjaguin, Muller, and Toporov arrived at the same
equation for the adhesive force as Bradley, stating:
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The van der Waals’ forces are capable of increasing the area of elastic contact of the ball
with the plane, yet it has been shown that the force, as required for overcoming the van der
Waals’ forces and breaking up the contact, does not increase thereby and may be calculated,
if one considers the point contact of a non-deformed ball with a plane.

To judge whether the adhesive interactions are short or long-ranged (thus deter-
mining whether the adhesive contact is of the “JKR type” or “DMT type”), the
characteristic displacement of the bodies until the separation of the adhesive contact
(the characteristic value for the height of the adhesive “neck”) .R.��/2=.E�/2/1=3
(see (3.45)) should be compared to the characteristic range of the adhesive interac-
tions, z0. This leads to the parameter:

� WD R.��/2

.E�/2z30
; (3.3)

which was initially introduced by Tabor (1977) and is known as the “Tabor param-
eter”. For neck heights much greater than the range of the interactions (large Tabor
parameter), the range can be considered vanishingly low. This limiting case leads
to the JKR theory. The other limiting case is the DMT theory.

Maugis’s (1992) theory of a contact with Dugdale’s (1960) simple model for the
interaction potential was of great methodological interest for the theory of adhesive
contacts. Maugis assumed that the adhesive stress between surfaces remains con-
stant up to a certain distance h and then drops abruptly. For this case the specific
work of adhesion equals:

�� D �0h: (3.4)

While the coordinate dependency of the Dugdale potential is not realistic, this bears
little importance for most adhesive problems since both limiting cases—JKR and
DMT—are independent of the exact type of the interaction potential. Under these
conditions, even the simplest model of interaction is valid and informative. The
great advantage of the Dugdale potential lies in the fact that it allows a mostly ana-
lytical solution of the problem. Maugis’s theory not only provided a representation
of the two limiting cases but also an explanation of the transition between the JKR
and DMT theories.

Since the exact form of the interaction potentials is insignificant for the adhesion
(as long as the work of adhesion is defined and remains constant), Greenwood and
Johnson (1998) developed a theory which represented the stress distribution in the
adhesive contact as the superposition of two Hertzian stress distributions of differ-
ent radii. Compared to Maugis’s theory, this represented a vast “trivialization” of
the involved contact mechanics. It should be noted that the “double Hertz” solu-
tion corresponds to a rather strange interaction potential. But since the exact form
of the interaction potential is insignificant, the theory of Greenwood and Johnson
represents an interesting alternative to Maugis’s theory. It too features the JKR and
DMT models as its limiting cases.
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The two most well-known theories of adhesion by JKR and DMT both lead to
an adhesive force which is independent of the elastic properties of the contacting
media. To avoid any misunderstanding, it should be expressly noted that this simple
property only applies to parabolic contacts. In no way can this lack of dependency
on the elastic moduli be generalized to arbitrary adhesive contacts.

The consideration of the tangential stresses in the adhesive contact requires an-
other general remark. Both JKR and DMT theory are based on the Hertzian theory
of frictionless contact. It is surely a valid and self-consistent model assumption.
From the physical point of view, on the contrary, this assumption is rather ques-
tionable. Physically, the JKR limiting case implies an infinitely strong yet infinitely
short-ranged interaction. This means that the surfaces of the adhesive JKR contact
are pressed together under infinitely low ranged but infinitely strong stress, which
undermines the notion of a “frictionless” contact. However, for practical applica-
tions, the difference between frictional or frictionless adhesive contact is relatively
limited and can be considered negligible in most cases.

The following two sections will present two alternative approaches to the solu-
tion of the adhesive normal contact problem. The first approach is the reduction
of the adhesive normal contact problem to the non-adhesive one, and the second
approach is the direct solution utilizing the MDR.

3.2 Solution of the Adhesive Normal Contact Problem
by Reducing to the Non-Adhesive Normal Contact Problem

The basic idea of the theory of adhesive contact by Johnson, Kendall, and Roberts
(1971) is the same as the one of Griffith’s theory of cracks. In their frequently cited
paper they write:

. . . the approach followed in this analysis, is similar to that used by Griffith in his criterion
for the propagation of a brittle crack.

The idea is based on the consideration of energy balance between the elastic energy
and the surface energy during the propagation of the crack or the boundary of the
adhesive contact. Since the surface energy of an axisymmetric contact is trivially
determined from the contact area, the only remaining non-trivial problem lies in
calculating the elastic energy of the adhesive contact. This can always be done if
the solution of the respective non-adhesive normal contact problem is known. The
JKR method to calculate the energy is the second important point of the classic
paper. It is also ingeniously simple and based on the assertion that the adhesive
contact can be represented as a superposition of a non-adhesive contact and a rigid
body translation. Perhaps the easiest way to imagine this is to consider the contact
between a rigid indenter with the profile Qz D f .r/ and an elastic half-space. We
obtain the configuration of the adhesive contact by initially indenting the elastic
half-space (without regard for adhesion), causing it to form a contact area of radius
a, and raising the entire contact area after that, without change in contact radius.



3.2 Solution of the Adhesive Normal Contact Problem 71

Furthermore, we will assume the solution of the non-adhesive contact problem,
particularly the relationships between the indentation depth, the contact radius, and
the normal force. Any quantity of the triple fFN ; a; dg uniquely defines the others.
It will prove advantageous to describe the normal force and the indentation depth
as functions of the contact radius:

FN D FN;n.a..a/; d D dn.a..a/: (3.5)

The indices “n.a.” indicate that these are the solutions of the non-adhesive con-
tact problem. These equations also imply that the dependency of the force on the
indentation depth is known. We obtain the incremental contact stiffness kn.a. by
differentiating the force with respect to d and the elastic energy Un.a. by integrating
with respect to d. These quantities can also be rewritten as functions of the contact
radius:

kn.a. D kn.a..a/; Un.a. D Un.a..a/: (3.6)

In the following all functions for (3.5) and (3.6) are considered to be known.
Let us now indent the profile to a contact radius a. The elastic energy of this state

isUn.a..a/, the indentation depth dn.a..a/, and the forceFN;n.a..a/. In the second step,
we lift the profile by �l without changing the contact radius. The stiffness (only
dependent on the radius) remains constant for this process and equals kn.a..a/. The
force is then given by:

FN .a/ D FN;n.a..a/ � kn.a..a/�l; (3.7)

and the potential energy is:

U.a/ D Un.a..a/ � FN;n.a..a/�l C kn.a..a/
�l2

2
: (3.8)

The new indentation depth at the end of the process equals:

d D dn.a..a/ � �l: (3.9)

Obtaining �l from (3.9) and by substituting it into (3.8), we obtain the potential
energy:

U.a/ D Un.a..a/ � FN;n.a..a/.dn.a..a/ � d/ C kn.a..a/
.dn.a..a/ � d/2

2
: (3.10)

The total energy (under consideration of the surface energy) now equals:

Utot.a/ D Un.a..a/ � FN;n.a..a/.dn.a..a/ � d/

C kn.a..a/
.dn.a..a/ � d/2

2
� �a2��: (3.11)
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The equilibrium value of the contact radius follows from the total energy minimum
condition (for constant indentation depth d):

@Utot.a/

@a
D @Un.a..a/

@a
� @FN;n.a..a/

@a
�l � FN;n.a..a/

@dn.a..a/

@a

C @kn.a..a/

@a

�l2

2
C kn.a..a/�l

@dn.a..a/

@a
� 2�a��

D
�
@Un.a..a/

@a
� FN;n.a..a/

@dn.a..a/

@a

�

�
�
@FN;n.a..a/

@a
�l � kn.a..a/�l

@dn.a..a/

@a

�

C @kn.a..a/

@a

�l2

2
� 2�a��

D 0: (3.12)

The terms in parentheses disappear and the equation takes the form:

@kn.a..a/

@a

�l2

2
D 2�a��: (3.13)

It follows that:

�l D
s

4�a��
@kn.a..a/

@a

.for the general axially symmetric case/: (3.14)

Substituting this quantity into (3.9) and (3.7) yields an equation for determining the
relationship between the indentation depth, the contact radius, and the normal force:

d D dn.a..a/ �
s

4�a��
@kn.a..a/

@a

.for an arbitrary medium/; (3.15)

FN .a/ D FN;n.a..a/ � kn.a..a/

s
4�a��
@kn.a..a/

@a

.for an arbitrary medium/: (3.16)

It becomes apparent that the three functions which directly (and in its entirety) de-
termine the solution of the adhesive contact problem are the three dependencies of
the non-adhesive contact: indentation depth as a function of the contact radius, nor-
mal force as a function of the contact radius, and therefore the incremental stiffness
as a function of the contact radius. The latter quantity equals the stiffness for the
indentation by a circular cylindrical indenter of radius a. It should be noted that
these are general equations and not subject to the homogeneity of the medium (nei-
ther in-depth nor in the radial direction). As such, they also apply to layered or
functionally graded media. The sole condition for the validity of (3.15) and (3.16)
is the conservation of rotational symmetry during indentation.
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For a homogeneous medium, the equations can be simplified even further. Here,
the stiffness is given by kn.a. D 2E�a, and we obtain:

�l.a/ D
r

2�a��

E� .for a homogeneous medium/: (3.17)

The determining equations (3.15) and (3.16) take on the form:

d D dn.a..a/ �
r

2�a��

E� .for a homogeneous medium/;

FN .a/ D FN;n.a..a/ �
p
8�E���a3 .for a homogeneous medium/: (3.18)

Naturally, the pressure distribution in an adhesive contact and the displacement field
outside the contact area are also composed of the two solutions of the non-adhesive
contact problem: the solutions for the non-adhesive indentation by dn.a..a/ and the
subsequent rigid retraction by �l . Let us denote the stress distribution and the dis-
placement field for the non-adhesive contact problem by �.r I a/n.a. and w.r I a/n.a.,
respectively. With the stress and the displacement field for a rigid translation given
by (2.22), the stress distribution and the displacement for the adhesive contact prob-
lem are then represented by the following equations:

�.r I a/ D �.r I a/n.a. C E��l

�
p
a2 � r2

; r < a;

w.r I a/ D w.r I a/n.a. � 2�l

�
arcsin

�a
r

�
; r > a; (3.19)

or after inserting (3.17):

�.r I a/ D �.r I a/n.a. C
r

2E�a��

�

1p
a2 � r2

;

r < a .for a homogeneous medium/;

w.r I a/ D w.r I a/n.a. �
r

8�a��

�E� arcsin
�a
r

�
;

r > a .for a homogeneous medium/: (3.20)

Equations (3.18) and (3.20) completely solve the adhesive normal contact problem.
The magnitude of the force of adhesion is of particular interest. We will de-

fine it as the maximum pull-off force required to separate bodies. In mathematical

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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terms, this means the maximum pull-off force for which there still exists a stable
equilibrium solution of the normal contact problem.

Another important quantity to consider is the force in the last possible state of
stable equilibrium, after which the contact dissolves entirely. This force depends
on the character of the loading conditions. We commonly distinguish between the
limiting cases of force-controlled and displacement-controlled trials. The stability
condition for force-control is given by:

dFN

da

ˇ̌
ˇ̌
aDac

D 0; (3.21)

and for displacement-control case by:

dd

da

ˇ̌
ˇ̌
aDac

D 0: (3.22)

The conditions (3.21) and (3.22) can be consolidated into the condition

ddn.a..a/

da

ˇ̌
ˇ̌
aDac

D �

s
���

2E�ac
; � D

(
3; force-control;

1; displacement-control;
(3.23)

from which we can determine the critical contact radius, where the contact detaches
(see Sect. 3.3 for a full derivation). The respective critical values of the indentation
depth and normal force are obtained by substituting this critical radius into (3.18).

3.3 Direct Solution of the Adhesive Normal Contact Problem
in the Framework of theMDR

An alternative to the reduction to the non-adhesive contact problem described in the
previous section is provided by the MDR (see Popov and Heß 2015, for example),
which presents an immediate solution to the adhesive normal contact problem. This
alternative approach can, for example, be of interest for complex dynamic loading
conditions requiring a numerical implementation.

The calculation method via the MDR consists of the following steps:

� In the first step the given three-dimensional profile Qz D f .r/ is transformed to
an equivalent plane profile g.x/ via (2.6):

g.x/ D jxj
jxjZ

0

f 0.r/p
x2 � r2

dr: (3.24)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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∆

Fn.a.

a dn.a.

l0

F

a
d l(a)

Fig. 3.1 Qualitative representation of the indentation and lifting process of a spherical 1D-indenter
with an elastic foundation, which exactly models the properties of the adhesive contact between a
rigid spherical indenter and an elastic half-space

� The profile g.x/ is now pushed into the one-dimensional elastic foundation de-
fined, according to (2.5):

�kz D E��x; (3.25)

until a contact radius a is reached. Until this point, the adhesion will not be
considered. This process is depicted in Fig. 3.1.

� In the third step, the indenter is lifted up. It is assumed that all springs involved in
the contact adhere to the indenter—the contact radius thus remains constant. In
this process, the springs at the edge experience the maximum increase in tension.
Upon reaching the maximum possible elongation (3.17) of the outer springs

�l.a/ D
r

2�a��

E� (3.26)

they detach. This criterion (3.17) was discovered by Heß (2010), and is known
as the rule of Heß. A derivation of this criterion can be found in the appendix
(see (11.31)).

The corresponding equilibrium described by the three quantities fFN ; d; ag coin-
cides exactly with the one of the three-dimensional adhesive contact.

The only difference to the algorithm for the non-adhesive contact (described in
Chap. 2) lies in the modification of the indentation depth formula. The displacement
of the outer springs is no longer zero but instead negative, with the absolute value
equal to the critical value: w1D.a/ D ��l.a/. It follows that:

d D g.a/ � �l.a/: (3.27)

The normal force is once again given by the equation:

FN D 2E�
aZ

0

Œd � g.x/�dx: (3.28)

The only difference to the non-adhesive problem lies in the differing contact radius.

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_11
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Equation (3.27) determines the equilibrium configuration. The stability of this
equilibrium is governed by the sign of the derivative d.�l.a/ C d � g.a//=da:

d

da
.�l.a/ C d � g.a// > 0; stable equilibrium;

d

da
.�l.a/ C d � g.a// < 0; unstable equilibrium;

d

da
.�l.a/ C d � g.a// D 0; critical state: (3.29)

In general, the stability depends on the type of boundary condition employed for the
indenter. The two limiting cases are force-controlled trials (which correspond to an
infinitely soft test system) and displacement-controlled trials (which correspond to
a rigid test system).

Stability Condition for Displacement-Controlled Trials
In this case, the indentation depth is constant and (3.29) for the critical state is:

dg.a/

da

ˇ̌
ˇ̌
aDac

D d�l.a/

da

ˇ̌
ˇ̌
aDac

D
s

���

2E�ac
: (3.30)

Stability Condition for Force-Controlled Trials
When the force is kept constant we must consider the varying indentation depth.
The relationship between the indentation depth and the normal force is given by
(3.28). Differentiating (3.28) under the condition FN D const yields:

d

aZ

0

Œd � g.x/�dx D da � @

@a

aZ

0

Œd � g.x/�dx C dd � d

dd

aZ

0

Œd � g.x/�dx

D da � Œd.a/ � g.a/� C dd � a
D �da � �l.a/ C dd � a D 0: (3.31)

It follows that:
dd

da

ˇ̌
ˇ̌
FN Dconst

D �l.a/

a
: (3.32)

The condition for the critical state (3.29) takes on the form of:

d�l.a/

da
C dd

da
� dg.a/

da
D d�l.a/

da
C �l.a/

a
� dg.a/

da
D 0; (3.33)

or
dg.a/

da

ˇ̌
ˇ̌
aDac

D
�
�l.a/

a
C d�l.a/

da

	
aDac

D 3

s
���

2E�ac
: (3.34)
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The stability conditions can now be combined into a single equation:

dg.a/

da

ˇ̌
ˇ̌
aDac

D �

s
���

2E�ac
; � D

(
3; force-control;

1; displacement-control:
(3.35)

The transformation rules of the MDR for the pressure distribution and the displace-
ments—see (2.13) and (2.14)—remain valid for the adhesive contact.

3.4 Areas of Application

Adhesion can be desirable (such as in bonded connections, in adhesive medical ban-
dages, as well as in many biological systems) or equally undesirable. The systems
in the first group, where adhesion is desirable, are often inspired by biological sys-
tems and especially concern contacts with concave profiles (see Sect. 3.5.6). The
study of the tiny hairs optimized for their adhesive functions on the limbs of (for
example) geckos or insects has inspired technical solutions for achieving extreme
adhesive effects.

Adhesion is also a major consideration in the design of micro-systems. One
example is the contact between a measuring tip and the sample surface in atomic
force microscopy. The indenting measuring tip often has a conical (see Sect. 3.5.2)
or spherical (see Sects. 3.5.3 and 3.5.4) shape, or imperfect variations of these (see
Sects. 3.5.5, 3.5.8, 3.5.9, 3.5.11, or 3.5.12). For assembly of nano- or microscopic
systems the smallest flat indenters are utilized, which we will explore in their perfect
(see Sect. 3.5.1) or imperfect form (see Sects. 3.5.10 and 3.5.13).

Any given sufficiently differentiable indenter profile can be represented as a Tay-
lor series. Thus, we will provide the solution of the contact problem involving the
power-law profile as a basic building block of the solution for such an arbitrary
profile (see Sect. 3.5.7).

In addition, real surfaces are unavoidably rough. In Sect. 3.5.14 we will present a
simple model of periodic roughness, which quite clearly illustrates the effect rough-
ness has on the adhesive interaction.

3.5 Explicit Solutions for Axially Symmetric Profiles in JKR
Approximation

3.5.1 The Cylindrical Flat Punch

The solution for the adhesive normal contact with a cylindrical flat punch was dicov-
ered by Kendall (1971). In the JKR theory, adhesion is interpreted as an indentation
by a flat cylindrical punch with a contact radius a, with the superposition of two in-
denter solutions of identical radius yielding a new indenter solution. Therefore, the
solutions of the contact problem concerning the flat cylindrical punch are identical

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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with and without adhesion. The results for the normal force FN , the normal stresses
�zz, and the displacements of the half-space surface w, are then given by:

FN .d/ D 2E�da;

�zz.r Id/ D � E�d
�

p
a2 � r2

; r � a;

w.r Id/ D 2d

�
arcsin

�a
r

�
; r > a: (3.36)

The only difference compared to the non-adhesive contact is that the adhesive case
also permits negative indentation depths. The critical radius is predetermined by
the indenter radius a. The critical indentation depth dc and critical normal force Fc ,
where stability of the contact is lost, are calculated from (3.18), independently of
whether a force-controlled or displacement-controlled trial is being considered:

dc D �
r

2�a��

E� ;

Fc D �
p
8�a3E���: (3.37)

3.5.2 The Cone

The solution to the contact problem depicted in Fig. 3.2 was first found by Maugis
and Barquins (1981). They used the general solution of the non-adhesive problem
and the concept of energy release rate from linear fracture mechanics. The contact
problem is completely solved by specifying the indentation depth d, the normal
force FN , the stress distribution �zz, and the displacements w; each as functions of
the contact radius a. With the results from the previous Chapter (Sect. 2.5.2) and
(3.18) and (3.20) we get:

d.a/ D �

2
a tan � �

r
2�a��

E� ;

FN .a/ D �a2

2
E� tan � �

p
8�a3E���;

�zz.r I a/ D �E� tan �
2

arcosh
�a
r

�
C
r

2E���

�a

ap
a2 � r2

; r � a;

w.r I a/ D tan �
�p

r2 � a2 � r
�

C
 
a tan � �

r
8a��

�E�

!
arcsin

�a
r

�
;

r > a: (3.38)

Here, � denotes the slope angle of the cone. The relationship between contact radius
and indentation depth in the case without adhesion is given by:

dn.a..a/ D �

2
a tan �: (3.39)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.2 Adhesive normal
contact between a rigid con-
ical indenter and an elastic
half-space

FN

~z

d
r

a

θ

Therefore, for the critical contact radius, (3.23) results in:

ac D 2�2��

�E� tan2 �
: (3.40)

The critical values for the indentation depth and normal force are then:

dc D dn.a..ac/ �
r

2�ac��

E� D
�
�2 � 2�

�
��

E� tan �
;

Fc D 2��2
�
�4 � 4�3

�
�E� tan3 �

: (3.41)

Here it must be specified whether the experiment is carried out under force-
controlled or displacement-controlled conditions. For force-controlled experiments
it is � D 3, and in the case of displacement-control, � D 1. The relationships
between the global contact quantities can also be formulated in a normalized form.
For this purpose all quantities are normalized to their critical values:

Oa WD a

ac
; Od WD d

jdcj ;
OF WD FN

jFc j : (3.42)

If we choose the critical values under force-controlled conditions, the normalized
relationships are:

Od. Oa/ D 3 Oa � 2
p

Oa;
OF . Oa/ D 3 Oa2 � 4

p
Oa3: (3.43)

These functions, Od D Od. Oa/ and OF D OF . Oa/, are shown in Fig. 3.3. The resulting,
implicitly defined, dependency OF D OF . Od/ is given in Fig. 3.4.

3.5.3 The Paraboloid

The adhesive contact problem for a parabolic body Qz D r2=.2R/ (see Fig. 3.5) was
solved in the aforementioned classic JKR paper (Johnson et al. 1971). With the
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Fig. 3.3 The normalized
normal force and indenta-
tion depth as functions of the
normalized contact radius
for adhesive indentation by a
cone. All values are normal-
ized to the critical state in the
case of force-control
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Fig. 3.4 Relationship be-
tween the normalized normal
force and the normalized
indentation depth for the
adhesive indentation by a
cone. All normalizations re-
fer to the critical state in the
case of force-control. The
dashed part describes the
states that are stable only for
displacement-control
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results from Chap. 2 (Sect. 2.5.3) and (3.18) and (3.20), we obtain:

d.a/ D a2
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2�a��

E� ;

FN .a/ D 4
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R
�
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8�a3E���;

�zz.r I a/ D �2E�
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a2 � r2 C

r
2E���

�a

ap
a2 � r2
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w.r I a/ D a2
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�
arcsin
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a

#
�
r

8a��

�E� arcsin
�a
r

�
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(3.44)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.5 Adhesive normal
contact between a parabolic
indenter and an elastic half-
space

d

r
a

~z

FN

R

The critical contact radius and the corresponding values for the indentation depth
and the normal force are given by (3.23):

ac D
�
��2R2��

8E�

�1=3

;

dc D
 
�2� .��/2 R

.E�/2

!1=3 �
�

4
� 1

�
;

Fc D ����R

�
�

6
� 1

�
; (3.45)

where � D 3 for force-controlled trials and � D 1 for displacement-controlled trials.
In their explicit forms:

ac D
�
9�R2��

8E�

�1=3

;

dc D �1

4

�
3�2.��/2R

.E�/2

�1=3

; under force-control;

Fc D �3

2
���R (3.46)

and

ac D
�
�R2��

8E�

�1=3

;

dc D �3

4

 
�2 .��/2 R

.E�/2

!1=3

; under displacement-control:

Fc D �5

6
���R: (3.47)

In this case, the critical force does not depend on E�; i.e., it does not depend on
the elastic properties of the half-space. In Sect. 3.5.7 it is demonstrated that the
paraboloid is the only mnemonic indenter for which this is valid. After normalizing
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Fig. 3.6 The normalized
normal force and indentation
depth as functions of the con-
tact radius for the adhesive
indentation by a paraboloid.
All values are normalized
to the critical state under
force-controlled boundary
conditions
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Fig. 3.7 Relationship be-
tween the normalized normal
force and the normalized
indentation depth for the
adhesive indentation by a
paraboloid. All normaliza-
tions are done with respect to
the critical state under force-
control. The dotted section
represents the states that are
only stable for displacement-
controlled trials
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the quantities to the critical values of the force-controlled trial

Oa WD a

ac
; Od WD d

jdcj ;
OF WD FN

jFcj ; (3.48)

the relationships (3.441), and (3.442), can be rewritten in a universal, dimensionless
form: Od D 3 Oa2 � 4

p
Oa;

OF D Oa3 � 2
p

Oa3: (3.49)

These relationships, Od D Od. Oa/ and OF D OF . Oa/, are illustrated in Fig. 3.6. The
implicitly defined function OF D OF . Od/ is given in Fig. 3.7.

The Adhesive Impact Problem for the Parabolic Indenter
The adhesive normal impact of a parabolic body has been heavily investigated due
to its various technical applications. Thornton and Ning (1998) were able to analyt-
ically determine the coefficient of restitution for the JKR adhesive normal impact.
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Let the body have the mass m and the initial velocity v0. For the rebound velocity
ve and the corresponding coefficient of restitution e, we obtain the expression:

e WD ve

v0
D
p
1 � ˇ; ˇ � 1; (3.50)

with

ˇ WD 1

5mv20

�
R4.���/5

E�2

	1=3 h
1 C 3

p
864

i
: (3.51)

For ˇ > 1 the coefficient of restitution is zero, i.e., low initial velocities will cause
the body to stick to the elastic half-space without rebounding.

3.5.4 The Sphere

It has already been discussed in Chap. 2 that this contact problem is very similar
to the one described in the previous section. With the non-adhesive solution (see
Sect. 2.5.4), and (3.18) and (3.20), we obtain the following solution to the adhesive
contact problem:
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2E���
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r

8a��

�E� arcsin
�a
r

�
; r > a;

(3.52)
with the sphere radius R. Here, wn.a. denotes the displacements without adhesion:

wn.a..r I a/ D 2
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(
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� a
R

� h
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r

�
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r2 � a2
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� R arcsin
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R2 � r2

R
p
r2 � a2

!)
:

(3.53)
The critical contact radius ac , at which the contact loses its stability and detaches,
is given by the numerical solution of the transcendental equation

artanh˛ C ˛

1 � ˛2
� ˇp

˛
D 0; (3.54)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.8 Plots of the normalized critical contact radius ac=R, the corresponding normalized in-
dentation depth dc=R, and normal forceFc=

�
E�R2

�
as functions of the normalized surface energy

ˇ (see (3.55)), according to (3.54) and (3.56); (a) force-control, (b) displacement-control

with ˛ WD ac=R and

ˇ WD �

r
���

2E�R
: (3.55)

The last parameter describes a normalized surface energy and depends on the type of
boundary condition (� D 3 for force-control, � D 1 for displacement-control). For
the relationships between the critical indentation depth, the critical contact radius,
and the critical normal force, one then obtains the equations:

dc.˛/ D R˛

�
ˇp
a

�
1 � 2

�

�
� ˛

1 � ˛2

	
;

Fc.˛/ D E�R2

�
ˇp
a

�
1 C ˛2 � 4˛2

�

�
� 2˛

1 � ˛2

	
: (3.56)

These results for the critical values of contact radius, indentation depth, and normal
force—in normalized form—are shown in Fig. 3.8. The lengths are normalized to
the sphere radius and the “adhesion force” toE�R2. Since the half-space hypothesis
is too severely violated for a > 0:3R, it can be seen from the diagram that these
results are valid only for ˇ < 0:35. For example, it means that the effective surface
energy in the case of force-control must not exceed�� D 9 � 104 J=m2 for a sphere
with R D 10�2 m and E� D 109 Pa. That is an extremely great value though. In
the case of displacement-control, this limit is even greater by a factor of 9.

3.5.5 The Ellipsoid

It has been demonstrated in Chap. 2 (Sect. 2.5.5) that there is only a slight difference
between the contact problems of an indenting sphere and an ellipsoid of rotation.

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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The solution to the contact problem is, considering (3.18) and (3.20), given by:
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�E� arcsin
�a
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�
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(3.57)
Here, k and R denote the geometric parameters of the indenter profile which can be
written as:

f .r/ D R
�
1 �

p
1 � k2r2

�
: (3.58)

wK;n.a..r I aIR/ is the displacement without adhesion for a spherical indenter of
radius R, given in (3.53) of the previous section. The determining equation for
the critical contact radius is again given by (3.54), wherein ˛ WD kac and ˇ WD
�

q
���

2E�kR2 . The expressions (3.56) for the critical values of indentation depth and
normal force remain the same, except that the factor in front of the parenthesis in the
normal force must be replaced by E�R=k. It is therefore also possible to directly
apply the curves in Fig. 3.8 since normalized curves are shown there.

3.5.6 The IndenterWhich Generates a Constant Adhesive Tensile
Stress

During their research on biological systems, in which adhesion played a central
role (e.g., with a focus on geckos and certain insects), Gao and Yao (2004) came
across the problem of the optimal (from a contact mechanical point of view) profile
at the hair tips found on, for example, the gecko’s feet, which is responsible for
the strong adhesive forces in these systems. In this context, optimal means achiev-
ing the greatest possible pull-off force with the smallest possible contact area. To
determine this optimal profile shape, Gao and Yao set out with a few preliminary
considerations. Firstly, the critical state should correspond to a contact of the entire
available contact domain. Secondly, the stress at the edges of the adhesive contact
usually appears as a singularity since, at least according to the JKR theory, the ad-
hesion itself can be interpreted as an indentation by a cylindrical flat punch. And
since, ultimately, the maximum adhesive tension between two surfaces is solely de-
termined by the potential of the van der Waals interaction between said surfaces,
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i.e., their material properties, the authors concluded that the optimal profile is the
one which generates a constant adhesive tensile stress �0 in the contact area. The
theoretical maximum pull-off force for a given contact area is then attributed to the
profile where this stress �0 corresponds to the maximum adhesive stress �th.

The problem of the elastic half-space displacement resulting from the constant
circular pressure or tension distribution of radius a was previously considered in
Chap. 2 (see Sect. 2.5.6). For a stress distribution

�zz.r I a/ D �0; r � a; (3.59)

the resulting displacement of the half-space is:

w.r I a; �0/ D �4�0a

�E� E
� r
a

�
; r � a: (3.60)

This means that the optimal profile takes on the form:

f .r I a; �0/ D �0a

E�

�
4

�
E
� r
a

�
� 2

	
; r � a: (3.61)

Here, E.�/ denotes the complete elliptical integral of the second kind:

E.k/ WD
�=2Z

0

q
1 � k2 sin2 ' d': (3.62)

The pull-off force Fc necessary to separate such an indenter profile from complete
contact is trivially

Fc D ��0a
2: (3.63)

The displacements of the half-space beyond the contact area were also previously
calculated and equal

w.r I a; p0/ D 4�0r

�E�

��
1 � a2

r2

�
K
�a
r

�
� E

�a
r

�	
; r > a; (3.64)

with the complete elliptical integral of the first kind:

K.k/ WD
�=2Z

0

d'p
1 � k2 sin2 '

: (3.65)

The maximum pull-off force of this profile can be compared to the flat punch of
identical radius a:

F Kendall
max D

p
8�a3E��� D

p
8�a3E��0h: (3.66)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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For the optimal profile, the maximum force is:

F opt
max D ��0a

2: (3.67)

Analogous to the theory of Maugis described in Sect. 3.8, the surface energy ��

is calculated from the adhesive stresses �th and the maximum range of the van der
Waals interaction:

�� D �0h: (3.68)

The force ratio then equals:
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D
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8

�
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�0

h

a
: (3.69)

3.5.7 The Profile in the Form of a Power-Law

We now consider a general indenter with the profile:

f .r/ D crn; n 2 RC; (3.70)

with an arbitrary constant c and a positive real exponent n. In contrast to the results
for non-adhesive contact detailed in the previous chapter, for the adhesive contact,
we obtain qualitatively different behavior for n > 0:5 and n < 0:5. We first turn
our attention to the case of n > 0:5. The contact problem was first investigated by
Borodich and Galanov (2004), Spolenak et al. (2005), and Yao and Gao (2006).
The solution of the contact problem shown in Fig. 3.9 is, as before, given by the
solution of the non-adhesive contact (see Sect. 2.5.8) and (3.18) and (3.20):
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(3.71)
Similarly to Chap. 2, we introduce the scaling factor:

	.n/ WD p
�


.n=2 C 1/


 Œ.n C 1/=2�
; (3.72)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.9 Adhesive normal
contact between a rigid in-
denter with a profile in the
form of a power-law and an
elastic half-space
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with the gamma function 
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tz�1 exp.�t/ dt: (3.73)

With regard to the different possibilities of the resolution of the integrals occurring
in the stresses and displacements see Sect. 2.5.8, which details the consideration of
power profiles. For the critical contact radius, we obtain this with (3.23):
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2E�n2c2	2.n/

� 1
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: (3.74)

The critical indentation depth is:
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n
� 2

	
: (3.75)

It is positive in the force-controlled case (� D 3) if n < 1:5. Under displacement-
control it is � D 1. The “adhesion force” is given by:

Fc D .E�/
n�2
2n�1

�
���

2

� nC1
2n�1

�
�
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� 3
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�
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It can be seen that the Hertzian contact for n D 2 is the only case in which this force
does not depend on E�. By introducing the quantities

Oa WD a

ac
; Od WD d

jdcj ;
OF WD FN

jFcj ; (3.77)

normalized to the critical values, the relations between the macroscopic quantities
can be written as:

Od D �

j� � 2nj Oan � 2n

j� � 2nj
p

Oa;

OF D �

j� � 2n � 2j OanC1 � 2n C 2

j� � 2n � 2j
p

Oa3: (3.78)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.10 Normalized inden-
tation depth as a function of
the normalized contact radius
for an indenter with a profile
in the shape of a power-
law with exponent n. All
quantities are normalized
by the critical values in the
force-controlled experiment.
Shown are different values
of n
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Fig. 3.11 Normalized normal
force as a function of the nor-
malized contact radius for an
indenter with a profile in the
shape of a power-law with
exponent n. All quantities
are normalized by the critical
values in the force-controlled
experiment. Shown are dif-
ferent values of n
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It is interesting to note that the relations (3.78), except for the type of boundary
condition (force- or displacement-control), only depend on the exponent n. The
relationships (3.78) are shown for the force-controlled experiment in Figs. 3.10
and 3.11 for three different values of n.

All of the aforementioned results also apply to indenters with n < 1=2 (Popov
2017). What changes is just the interpretation of the corresponding quantities. In
the case of n > 1=2 the critical quantities separate the state of stable adhesive
contact with a finite contact radius from the process of unstable shrinkage of the
contact area and complete detachment. A stable condition exists with larger forces
and an unstable condition with smaller forces. On the other hand, in the case of
n < 1=2 the critical quantities separate the stable state from the unstable, unlimited
propagation of the contact area. The stable state exists for smaller forces and the
instability occurs when increasing the force (or indentation). A detailed analysis
was given by Popov (2017).
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A special case is n D 0:5. We want to discuss this case under the condition of a
displacement-controlled loading. It is, in this case:

g.a/ D 	.1=2/ca1=2; with 	.1=2/ D 1
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�3=2
p
2


.3=4/2
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a1=2: (3.79)

At the moment of the first contact, d D 0, it applies to all a:

I: g.a/ > �l.a/; if c > 1:9120
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;

II: g.a/ < �l.a/; if c < 1:9120

�
��

E�

�1=2

: (3.80)

In the first case, the radius of the contact will decrease until it disappears. In the
second case, it will enlarge until complete contact is established. Furthermore, in
the second case, complete contact is formed immediately, as soon as the indenter
tip touches the half-space.

The Adhesive Impact Problem for the Indenter with Power-Law Profile
The normal adhesive impact problem, as in the case of the parabolic body, can be
solved in general form. The body has the mass m and the initial velocity v0. For the
rebound speed ve , and thus the coefficient of restitution e, we obtain:

e WD ve

v0
D
p
1 � ˇ; ˇ � 1; (3.81)

with
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i
: (3.82)

For ˇ > 1 it is e D 0; that is, the body will stick to the elastic half-space and not
rebound for impact velocities below a critical value. For n D 2, the known solution
from Sect. 3.5.3 is recovered.

3.5.8 The Truncated Cone

The adhesive normal contact problem for a truncated cone (see Fig. 3.12) was first
solved by Maugis and Barquins (1983). With the help of the solutions from Chap. 2

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.12 Adhesive normal
contact between a rigid trun-
cated cone and an elastic
half-space
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(see Sect. 2.5.9) and (3.18) and (3.20), the solution of the adhesive normal contact
problem can be determined without difficulty:
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Here, b denotes the radius at the blunt end and � the conical slope angle. The solu-
tions of the stresses and displacements in the case of non-adhesive contact indicated
by the index “n.a.” can be looked up in Sect. 2.5.9:
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The relationship between indentation depth and contact radius in the case without
adhesion is described by:

dn.a..a/ D '0a tan �; (3.85)

with:

'0 WD arccos
�
b

a

�
: (3.86)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.13 Stability bifur-
cation for the angle '0 as a
function of the normalized
surface energy ˇ (see (3.88))
for the adhesive indenta-
tion by a truncated cone.
All points between the two
curves indicate unstable con-
figurations
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This results in the critical contact radius as a solution to the transcendental equation:

'0;c C cot'0;c � ˇ
p
cos'0:c D 0; (3.87)

with:

ˇ WD �

tan �

r
���

2E�b
: (3.88)

For the critical values of the indentation depth and the normal force, one obtains:

dc D ac tan �

�
'0;c

�
1 � 2

�

�
� 2

�
cot'0;c

	
;

Fc D E� tan �a2
c

�
'0;c

�
1 � 4

�

�
C cot'0;c

�
sin2 '0;c � 4

�

�	
: (3.89)

In (3.88) and (3.89), the type of boundary condition must yet be determined.
Displacement-controlled trials are characterized by � D 1, and force-controlled
ones by � D 3. One can easily convince oneself that for b D 0, and thus '0 � �=2,
the solutions of the complete cone from Sect. 3.5.2 are recovered.

However, a closer look at (3.87) reveals a bifurcation of the solution. This is
shown in Fig. 3.13. The equation only has solutions for ˇ > 2:125. For smaller
values of ˇ the critical radius ac is given by the radius b and the critical values of
the indentation depth and normal force correspond to those of the flat punch:

dc D �
r

2�b��

E� ;

Fc D �
p
8�b3E���: (3.90)
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Fig. 3.14 Solution for the
normalized critical val-
ues for the contact radius
ac=b, indentation depth
dc=.b tan �/, and the normal
force Fc=.2E

�b2 tan �/ as a
function of ˇ for the adhesive
indentation by a truncated
cone for the critical angle
'1 under force-controlled
conditions
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For ˇ > 2:125 there are always two roots of the equation and one can show that
all configurations between these two roots (that is, all values '0;c1 < '0 < '0;c2)
are unstable. For example, for b D 10�2 m, � D 0:1, E� D 109 Pa, ˇ > 2:125

means that the effective surface energy must (in the force-controlled case) be�� >

3 � 104 J=m2. This is a very big value. In this case, the two solutions for the angle
'0 are shown in Fig. 3.13. Figure 3.14 shows the curves of the contact radius,
the indentation depth, and the normal force in normalized form for the first critical
solution under force-control as a function of the normalized surface energy ˇ.

3.5.9 The Truncated Paraboloid

With the results of Sect. 2.5.10 and (3.18) and (3.20), we come to the following
solution first found by Maugis and Barquins (1983) regarding the adhesive normal
contact problem for the truncated paraboloid (see Fig. 3.15):

d.a/ D a

R

p
a2 � b2 �

r
2�a��

E� ;

FN .a/ D 2E�

3R
.2a2 C b2/

p
a2 � b2 �

p
8�a3E���;

�zz.r I a/ D �zz;n.a. .r I a/ C
r

2E���

�a

ap
a2 � r2

; r � a;

w.r I a/ D wn.a..r I a/ �
r

8a��

�E� arcsin
�a
r

�
; r > a: (3.91)

Here, b denotes the radius at the flat tip. The base paraboloid has the radius of
curvature R. The solutions for the stresses and displacements in the non-adhesive

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.15 Adhesive nor-
mal contact between a rigid
truncated paraboloid and an
elastic half-space
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case, characterized by the index “n.a.”, are:

�zz;n.a..r I a/ D �E�

�R

8̂
ˆ̂<
ˆ̂̂:

Z a

b

.2x2 � b2/dxp
x2 � b2

p
x2 � r2

; r � b;

Z a

r

.2x2 � b2/dxp
x2 � b2

p
x2 � r2

; b < r � a;

wn.a..r I a/ D 2a

�R

p
a2 � b2 arcsin

�a
r

�

� 1

�R

"�
r2 � b2

�
arcsin

 p
a2 � b2p
r2 � b2

!
�

p
a2 � b2

p
r2 � a2

#
;

r > a: (3.92)

Between indentation depth and contact radius in the case of non-adhesive contact,
the following relationship applies:

dn.a..a/ D a

R

p
a2 � b2 D a2

R
sin '0; (3.93)

with

'0 WD arccos
�
b

a

�
: (3.94)

Equation (3.23) then provides the transcendental equation that determines the criti-
cal contact radius:

1 C sin2 '0;c

sin '0;c cos'0;c

� ˇ
p
cos'0;c D 0; (3.95)

with

ˇ WD �R

b

r
���

2E�b
: (3.96)
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Fig. 3.16 Stability bifur-
cation for the angle '0 as a
function of the normalized
surface energy ˇ (see (3.96))
for the adhesive indentation
by a truncated paraboloid.
All points between the two
curves indicate unstable con-
figurations
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For the critical indentation depth and normal force, we obtain:

dc D a2
c

R
sin '0;c

�
1 � 2

�
� 2

� sin2 '0;c

�
;

Fc D 2E�a3
c

3R
sin '0;c

�
3 � sin2 '0;c � 6

�

�
1 C 1

sin2 '0;c

�	
; (3.97)

which can be reduced to the results in Sect. 3.5.3 without great difficulty for b D 0.
In (3.95) and (3.97) , the type of boundary condition has to be defined (� D 1 for
displacement-control, � D 3 for force-control).

Examining (3.95), one encounters a similar bifurcation as in the previous sec-
tion. The equation only has solutions for ˇ > 3:095. For smaller values of ˇ the
critical contact radius is given by b and the associated values of indentation depth
and normal force are the same as those of the flat punch. For a sufficiently large
surface energy and, correspondingly, ˇ > 3:095, there are always two solutions to
(3.95), and one finds that all states between these two solutions are unstable. These
solutions as a function of ˇ are shown in Fig. 3.16. For b D 10�3 m, R D 10�2 m,
E� D 109 Pa, ˇ > 3:095 means (as an example) that the effective surface energy
in the force-controlled case must be �� > 7 � 103 J=m2. Figure 3.17 shows the
curves of the contact radius, the indentation depth, and the normal force in nor-
malized form for the first critical solution under force-control as a function of the
normalized surface energy ˇ.

3.5.10 The Cylindrical Flat Punch with Parabolic Cap

Consider now the adhesive normal contact between an elastic half-space and a flat
punch with a parabolic cap. The punch has the radius b and the cap has the radius
of curvature R.
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Fig. 3.17 Dependencies of
the normalized critical val-
ues for the contact radius
ac=b, the indentation depth
dcR=b2, and the normal
force FcR=.2E�b3/ as func-
tion of ˇ for the adhesive
indentation by a truncated
paraboloid at force-control
for the critical angle '1
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There may be two outcomes based on these examples. If the contact radius a is
smaller than b, the contact assembles simply the one with a parabolic indenter, for
which the solution can be looked up in Sect. 3.5.3. With a sufficiently large inden-
tation depth, or normal force, the contact radius is a D b. In this case, however,
analogous to the problem of the flat punch, there is no difference between the equa-
tions of the non-adhesive and the adhesive solution. In Chap. 2 (Sect. 2.5.11), this
distinction was not considered further because it had no appreciable consequences.
In adhesive contact, however, this results in peculiarities regarding the stability of
the contact. We therefore once again repeat the two aforementioned solutions. If
a < b is the solution of the contact problem, according to (3.18) and (3.20), it is as
follows:

d.a/ D a2

R
�
r

2�a��

E� ;

FN .a/ D 4

3

E�a3

R
�
p
8�a3E���;

�zz.r I a/ D �2E�

�R

p
a2 � r2 C

r
2E���

�a

ap
a2 � r2

; r � a;

w.r I a/ D a2

�R

"�
2 � r2

a2

�
arcsin

�a
r

�
C

p
r2 � a2

a

#

�
r

8a��

�E� arcsin
�a
r

�
; r > a: (3.98)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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In contrast, if a D b the solution is described by:

FN .d/ D 2E�
�
db � b3

3R

�
;

�zz.r Id/ D �E�

�R

b2 � 2r2 C dRp
b2 � r2

; r � b;

w.r Id/ D 1

�R

�
.2dR � r2/ arcsin

�
b

r

�
C b

p
r2 � b2



; r > b: (3.99)

Depending on the value of the surface energy, different variants of the critical state
are possible. If we denote the critical contact radius under force-controlled con-
ditions with ac and those with displacement-control with ac;d , these cases can be
structured as follows:

� �� < ��1: ac D aJKR
c , ac;d D aJKR

c:d� ��1 � �� < ��2: ac D b, ac;d D aJKR
c:d� �� > ��2: ac D ac;d D b

Here, the superscripts “JKR” denote the respective results for the parabolic indenter.
��1 and ��2 indicate the values of the surface energy at which the critical radii of
the parabolic solution just coincide with the radius of the punch:

aJKR
c .�� D ��1/ D b;

aJKR
c;d .�� D ��2/ D b: (3.100)

From (3.100) one obtains (with (3.45)):

��2 D 9��1 D 8E�b3

�R2
: (3.101)

By introducing the normalized quantities

Od WD d

jd JKR
c j ; Oa WD a

aJKR
c

; Ob WD b

aJKR
c

; OF WD FN

jF JKR
c j ; (3.102)

with the known results for the parabolic indenter (see Sect. 3.5.3),

aJKR
c D

�
9�R2��

8E�

�1=3

; d JKR
c D �1

4

 
3�2 .��/2 R

.E�/2

!1=3

;

F JKR
c D �3

2
���R; (3.103)

the relationships between the global contact quantities can be written as follows:

Od D 3 Oa2 � 4
p

Oa;

OF D
(

Oa3 � 2
pOa3; Oa < Ob;

1
2
. Od Ob � Ob3/; Oa D Ob: (3.104)



98 3 Normal Contact with Adhesion

−2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

d / |dc
JKR|

F N
/ |

F cJK
R
|

b/ac
JKR

= 1.4

b/ac
JKR

= 1

b/ac
JKR

= 0.48

Fig. 3.18 Normalized relationship between normal force and indentation depth for a flat punch
with parabolic cap at different normalized punch radii. The thin solid line corresponds to the
parabolic JKR-solution

Thus the defined relationship OF D OF . Od/ is shown in Fig. 3.18 for three different
values of Ob. Here, Ob D 1 corresponds to a surface energy of �� D ��1 and
Ob D 0:48 of a surface energy of �� D ��2. It is easy to see the corresponding
detachment points from the JKR solution for the paraboloid.

3.5.11 The Conewith Parabolic Cap

In Chap. 2 (see Sect. 2.5.12), the solution to the contact problem of a non-adhesive,
frictionless, normal contact between an elastic half-space and a rigid cone with a
rounded tip was shown. Thus, the solution of the adhesive, frictionless normal
contact (see Fig. 3.19) is already known. The solution was first published byMaugis
and Barquins (1983). With (3.18) and (3.20), one obtains:

d.a/ D a tan �

�
1 � sin '0

cos'0

C '0

�
�
r

2�a��

E� ;

FN .a/ D E�a2 tan �
�
'0 C 4

3

1 � sin '0

cos'0

C 1

3
sin '0 cos'0

�
�
p
8�a3E���;

�zz.r I a/ D �zz;n.a..r I a/ C
r

2E���

�a

ap
a2 � r2

; r � a;

w.r I a/ D wn.a..r I a/ �
r

8a��

�E� arcsin
�a
r

�
; r > a;

(3.105)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.19 Adhesive normal
contact between a rigid cone
with parabolic cap and an
elastic half-space
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r
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FN

z~

θ

with

'0 WD arccos
�
b

a

�
; (3.106)

where b denotes the radius at which the parabolic tip, which is continuously dif-
ferentiable, passes into the conical body. � describes the slope angle of the conical
body. The stresses and displacements in the non-adhesive case, denoted by the
index “n.a.”, are given by:

�zz;n.a..r I a/ D

� E� tan �
�b

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
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2
p
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Z '0

0

.' � 2 tan'/ tan' d'p
1 � k2 cos2 '

; r � b;

2
p
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C b

Z arcosh. a
r /

0

"
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�
b

r cosh '

�

� 2

q
k2 cosh2 ' � 1

#
d'; b < r � a;

wn.a..r I a/ D 2dn.a..a/

�
arcsin

�a
r

�

� tan �

�b

"
r2 arcsin

�a
r

�

� a
p
r2 � a2 C 2b2

'0Z

0

.' � tan '/ tan'd'

cos'
p
k2 cos2 ' � 1

#
; r > a;

(3.107)
with

dn.a..a/ D a tan �
�
1 � sin '0

cos'0

C '0

�
: (3.108)

The relationships (3.105) to (3.108) are all valid only for a 	 b. If a < b, the
contact resembles the one with a paraboloid, for which results can be looked up in
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Sect. 3.5.3. In the previous chapter, this distinction was ignored because of its trivi-
ality. For the adhesive contact, however, it does not have quite trivial consequences
for the stability of the contact. The non-adhesive indentation depth is completely
described by:

dn.a..a/ D

8̂
<
:̂
a2 tan �

b
; a � b;

a tan �
�
1 � sin '0

cos'0

C '0

�
; a > b:

(3.109)

According to (3.23), the contact radius at which the contact loses its stability results
as a solution of the equation:

2
1 � sin '0:c

cos'0;c

C '0;c � ˇ
p
cos'0;c D 0; (3.110)

with

ˇ WD �

tan �

r
���

2E�b
; (3.111)

if that equation has solutions. The corresponding indentation depth is given by:

dc D a tan �
�
1 � sin '0;c

cos'0;c

�
1 � 4

�

�
C '0;c

�
1 � 2

�

�	
; (3.112)

and the corresponding normal force by:

Fc D E�a2 tan �

"
'0;c

�
1 � 4

�

�
C 1 � sin '0;c

cos'0; c

�
4

3
� 8

�

�

C 1

3
sin '0;c cos'0;c

#
: (3.113)

As expected, the solutions of the cone and the paraboloid from Sects. 3.5.2 and 3.5.3
are obtained by setting b D 0 or b D a correspondingly (in this case it is
R WD b= tan �). � is a parameter which determines the type of boundary con-
dition (force or displacement-control; see (3.23)).

It turns out that, when solving (3.110), there are three different regimes: For
ˇ < 1:795 there is no solution and the critical contact radius is smaller than b.
This means that the relationships for the critical state match those of the parabolic
indenter that can be looked up in Sect. 3.5.3. If 1:795 � ˇ � 2, there are two
solutions for the equation which are both shown in Fig. 3.20 and, correspondingly,
two critical states. For values ˇ > 2 only the larger of the two solutions remains.
The smaller one becomes negative and thus unphysical. In this case, the curves of
the normalized critical values of contact radius, indentation depth, and normal force
in the case of force-control are given in Fig. 3.21. For formatting reasons, a sign
change was made during the normalization of the “adhesion force” Fc .
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Fig. 3.20 Stability bifur-
cation of the angle '0 as
a function of the normal-
ized surface energy ˇ (see
(3.111)) for the adhesive in-
dentation by a cone with a
rounded tip
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Fig. 3.21 Curves of the
normalized critical val-
ues for the contact radius
ac=b, the indentation depth
dc= .b tan �/, and the normal
force �Fc=

�
4E�b2 tan �

�
as a function of ˇ for the
indentation by a cone with
a rounded tip during force-
control. Note the negative
sign of the normalized force
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3.5.12 The Paraboloid with Parabolic Cap

Also, for the paraboloid with a spherical cap whose radius is greater than the radius
of curvature of the parabolic base body, Chap. 2 presented the complete solution
of the non-adhesive, frictionless, normal contact problem (see Sect. 2.5.13). Thus,
from (3.18) and (3.20), the following solution which was first found by Maugis and
Barquins (1983) results in the adhesive, frictionless, normal contact:

d.a/ D a2

R1

C a

R�
p
a2 � b2 �

r
2�a��

E� ;

FN .a/ D 2E�

3

�
2a3
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C 1

R�
�
2a2 C b2

�p
a2 � b2

	
�
p
8�a3E���;

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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�zz.r I a/ D �zz;n.a..r I a/ C
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2E���
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a2 � r2

; r � a;

w.r I a/ D wn.a..r I a/ �
r

8a��

�E� arcsin
�a
r

�
; r > a: (3.114)

Here, b denotes the radius at which the cap goes over into the base body; R� is an
effective radius that can be determined from R1 and R2 (see Fig. 3.22):

R� WD R1R2

R1 � R2

: (3.115)

The stresses and displacements indicated by the index “n.a.” correspond to the
solutions of the non-adhesive problem (see Sect. 2.5.13):
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with the corresponding solutions for the paraboloid and the truncated paraboloid:
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Fig. 3.22 Adhesive nor-
mal contact between a rigid
paraboloid with parabolic cap
and an elastic half-space
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All relations in (3.114) to (3.117) are valid only for a 	 b. If a < b contact is
made only with a parabolic indenter of radiusR1. The indentation depth in the case
without adhesion is thus completely given by:

dn.a..a/ D

8̂
<̂
ˆ̂:

a2

R1

; a � b;

a2
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C a
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<̂
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a2

R1

; a � b;

a2

R1

�
1 C R1

R� sin '0

�
; a > b;

(3.118)
where we introduced the angle:

'0 WD arccos

�
b

a

�
: (3.119)

The critical configuration in which the adhesive normal contact loses its stability
results from the solution to the transcendental equation:

1

cos'0;c

 
2 C R1

R�
1 C sin2 '0;c

sin '0;c

!
� ˇ

p
cos'0;c D 0; (3.120)

with

ˇ WD �R1

b

r
���

2E�b
: (3.121)

The corresponding values of the indentation depth and the normal force are deter-
mined by:

dc D a2
c

R1

�
1 � 4

�
C R1

R� sin '0;c

�
1 � 2

�
� 2

� sin2 '0;c
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;

Fc D 4E�a3
c

3R1

(
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�
C R1

2R� sin '0;c

"
3 � sin2 '0;c

� 6

�

�
1 C 1

sin2 '0;c

�#)
; (3.122)

and one easily convinces oneself that the following limiting cases emerge from these
solutions:

� For R1 ! 1, the truncated paraboloid from Sect. 3.5.9
� For R� ! 1, the paraboloid with curvature radius R1 from Sect. 3.5.3
� For b D 0 the paraboloid with radius of curvature R2

In (3.120) and (3.122), � (i.e., the boundary condition) has to be defined: displace-
ment-controlled trials corresponds to the value � D 1, and force-controlled ones to
� D 3.
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Fig. 3.23 First solution for
the critical angle '0;c , in
which the contact becomes
unstable, depending on the
parameters R1=R1 and ˇ

(see (3.121)), for adhesive
indentation by a paraboloid
with parabolic cap
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Fig. 3.24 Second solution
for the critical angle '0;c in
which the contact becomes
unstable, depending on the
parameters R1=R1 and ˇ,
for adhesive indentation by a
paraboloid with parabolic cap
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In (3.120), two dimensionless parameters occur; R1=R
� and ˇ. The equation

has, with one exception, either no solution or two solutions. These two solutions
are shown in Figs. 3.23 and 3.24. It can be seen that there are only solutions below
the line:

ˇ > ˇ0

�
R1

R�

�
� 2:2 C 3:2

R1

R� : (3.123)

For smaller values of the surface energy, and thus smaller values of ˇ, the critical
contact radius is smaller than b and the critical state corresponds to that of the
complete paraboloid with the radius of curvature R1, for which the results can be
found in Sect. 3.5.3. From Sect. 3.5.9 it can be deduced that:

ˇ0

�
R1

R� ! 1
�

� 3:1
R1

R� : (3.124)
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This agrees relatively well with the estimate (3.123). For R1=R
� D 0, the first

solution '0;c1 becomes an unphysical artifact, leaving the one critical state for the
indentation by a purely parabolic indenter.

3.5.13 The Cylindrical Flat Punch with a Rounded Edge

For the flat cylindrical punch with a round edge, the solution of the non-adhesive
Boussinesq problem was derived in Chap. 2 (Sect. 2.5.14). From (3.18) and (3.20),
we obtain the following solution for the adhesive problem (see Fig. 3.25):

d.a/ D a

R

�p
a2 � b2 � b arccos

�
b

a

�	
�
r

2�a��

E� ;

FN .a/ D E�

3R

�p
a2 � b2

�
4a2 � b2

� � 3ba2 arccos
�
b

a

�	

�
p
8�a3E���;

�zz.r I a/ D �zz;n.a..r I a/ C
r

2E���

�a

ap
a2 � r2

; r � a;

w.r I a/ D wn.a..r I a/ �
r

8a��

�E� arcsin
�a
r

�
; r > a: (3.125)

Here, b denotes the radius of the flat base of the punch and R the radius of curvature
of the rounded corners. The stresses and displacements are indicated by the index

d

a

b

FN

r

z~

R

Fig. 3.25 Adhesive normal contact between a rigid cylindrical punch with round corners and an
elastic half-space

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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“n.a.” for the problem without adhesion are (see Sect. 2.5.14):

�zz;n.a..r I a/ D

� E�

�R

8̂
<̂
ˆ̂:

Z a

b

�
2
p
x2 � b2 � b arccos

�
b

x

��
dxp

x2 � r2
; r � b;Z a

r

�
2
p
x2 � b2 � b arccos

�
b

x

��
dxp

x2 � r2
; b < r � a;

wn.a..r I a/ D
2dn.a..a/

�
arcsin

�a
r

�
� 2

�

2
4

aZ

b

x

R

�p
x2 � b2 � b arccos

�
b

x

��
dxp

r2 � x2

3
5 ;

r > a; (3.126)

with the non-adhesive relationship between indentation depth and contact radius
being:

dn.a..a/ D a

R

�p
a2 � b2 � b arccos

�
b

a

�

D a2

R
.sin '0 � '0 cos'0/ ; (3.127)

with the angle:

'0 WD arccos

�
b

a

�
: (3.128)

In contrast to Sects. 3.5.11 and 3.5.12, here a can never be smaller than b. The
critical contact radius is given as a solution of:

2 tan'0;c � '0;c � ˇ
p
cos'0;c D 0; (3.129)

with:

ˇ WD �R

b

r
���

2E�b
: (3.130)

The corresponding values of the indentation depth and the normal force are deter-
mined by:

dc D a2
c

R

�
sin '0;c

�
1 � 4

�

�
� '0;c cos'0;c

�
1 � 2

�

�	
;

Fc D 4E�a3
c

3R

"
sin '0;c

�
1 � 6

�
� 1

4
cos2 '0;c

�

� 3

4
'0;c cos'0;c

�
1 � 4

�

�#
: (3.131)

For b D 0 the solution for the parabolic indenter from Sect. 3.5.3 is reproduced.
� is a parameter that, depending on the nature of the boundary condition, can take
the values one (displacement-control) and three (force-control).

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.26 Normalized criti-
cal values of the angle '0 the
contact radius, the indenta-
tion depth, and normal force
as a function of the parameter
ˇ (see (3.130)) for adhesive
indentation by a cylindri-
cal flat punch with rounded
corners
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Interestingly, (3.129) has only one solution for each positive ˇ. This and the as-
sociated normalized values of ac , dc , and Fc are shown in Fig. 3.26. For ˇ ! 0 the
critical values of the indentation depth and the “adhesion force” disappear, whereas
the critical contact radius does not disappear but strives towards its smallest possi-
ble value, b. This is due to the fact that the rounded corners, which are continuously
differentiable (in contrast to the truncated paraboloid), pass into the flat base parallel
to the half-space.

3.5.14 The Paraboloid with Small Periodic Roughness (Complete
Contact)

It is established that the adhesive properties of a surface are greatly affected by the
surface roughness. In general, increasing roughness sees a reduction in the effective
surface energy and, therefore, the adhesive forces. However, there exists much
proof in existing literature, such as that by Briggs and Briscoe (1977) demonstrating
that the opposite can also be the case. A theoretical yet experimentally validated
approach explaining this phenomenon stems from Guduru (2007). With the aid
of both the classical approach of minimizing the potential energy by Johnson et al.
(1971) as well as the idea of elastic energy release rates borrowed from linear-elastic
fracture mechanics, he examined the adhesive normal indentation of a parabolic
indenter with periodic roughness. It can be represented by the profile:

f .r/ D r2

2R
C h

�
1 � cos

�
2�

�
r

��
; (3.132)

with the amplitude h and wavelength � of the roughness, and the radius R of the
paraboloid. For his solution, Guduru assumed a simply connected contact area
requiring a monotonically increasing indenter profile. This poses a limitation for
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the roughness parameters:

f 0.r/ 	 0 ) 1

Oh WD �2

hR
	 4�2 sup

�
�sin.x/

x

	
� 8:576: (3.133)

Here, sup Œ�� denotes the global maximum of a function. However, a sufficiently
great normal force can overcome this to generate a connected contact area, even
for profiles that violate this condition. Taking into account the solution of the non-
adhesive contact problem from Chap. 2 (Sect. 2.5.17) and (3.18) and (3.20), the
solution for the adhesive problem is then as follows:

d.a/ D a2

R
C �2ha

�
H0

�
2�

�
a

�
�
r

2�a��

E� ;

FN .a/ D 4E�a3

3R
C E��ah

�
2�

�
aH0

�
2�

�
a

�
� H1

�
2�

�
a

�	

�
p
8�a3E���;

�zz.r I a/ D �zz;n.a..r; a/ C
r

2E���

�a

ap
a2 � r2

; r � a;

w.r I a/ D wn.a..r; a/ �
r

8a��

�E� arcsin
�a
r

�
; r > a: (3.134)

Here, Hn.�/ denotes the n-th order Struve function. For a short explanation of its
properties, the reader can be referred to the solution of the non-adhesive problem
detailed in Sect. 2.5.17. The stresses and displacements for the non-adhesive case
can also be referenced in Sect. 2.5.17 and are repeated below:

�zz;n.a..r I a/ D

� E�

�

8<
:
2
p
a2 � r2

R
C �2h

�

aZ

r

�
H0

�
2�

�
x

�
C 2�

�
xH�1

�
2�

�
x

�	
dxp

x2 � r2

9=
; ;

r � a;

wn.a..r I a/ D 2dn.a..a/

�
arcsin

�a
r

�
� 1

�R

h
r2 arcsin

�a
r

�
� a

p
r2 � a2

i

� 2�

�
h

aZ

0

xH0

�
2�

�
x

�
dxp

r2 � x2
; r > a;

(3.135)
with

dn.a..a/ D a2

R
C �2ha

�
H0

�
2�

�
a

�
: (3.136)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 3.27 Relationship be-
tween the normalized normal
force and the normalized
indentation depth for the
adhesive contact with a
paraboloid with periodic
roughness for different nor-
malized values of roughness
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By introducing the dimensionless quantities

Od WD dR

�2
; Oa WD a

�
; Oh WD hR

�2
; OF WD 2FN

3�R��
; �� WD 2���R2

E��3
;

(3.137)
the relationships (3.1341), and (3.1342), can be rewritten as:

Od D Oa2 C �2 Oh OaH0 .2� Oa/ �
q
�� Oa;

OF D 16

9��
Oa3 C 4�

3

Oh Oa
��

Œ2� OaH0 .2� Oa/ � H1 .2� Oa/� � 8

3

s
Oa3

��
: (3.138)

The implicitly defined relationship OF D OF . Od/ is partially graphically represented
in Fig. 3.27.

The wavelength is kept constant for the three depicted cases: the JKR case
without roughness h D 0, one curve with medium roughness, and one with very
pronounced roughness. We discover that the force oscillates with increasing mag-
nitude. On the one hand, we see significantly greater extremes for the adhesive
forces (during force-control) and indentation depth (during displacement-control)
being achieved than without roughness (lowest point of the curve with Oh D 0:5 lies
at OF D �1:3, roughly 30% lower than the minimum of the JKR curve). On the
other hand, constantly switching between the stable and unstable regime causes the
indenter to bounce, which is a process that dissipates energy.
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3.6 Adhesion According to Bradley

Let us consider a rigid paraboloid Qz D r2=.2R/ in contact with a rigid plane. Fur-
ther, we assume that the adhesive stress only depends on the distance between the
surface: � D �.s/. The separation energy is then:

�� D
1Z

0

�.s/ds: (3.139)

For the adhesive force between the spheres we obtain:

FA D
1Z

0

2�r�Œs.r/�dr D
1Z

0

2�r�

�
r2

2R

�
dr: (3.140)

By substituting s D r2=.2R/, rdr D Rds the equation is transformed into the
following form:

FA D 2�R

1Z

0

�.s/ds D 2�R��: (3.141)

This result was derived by Bradley (1932), specifically for the van der Waals inter-
action, while in reality it is independent of the type of interaction potential.

3.7 Adhesion According to Derjaguin, Muller, and Toporov

Derjaguin, Muller, and Toporov (1975) examined the adhesive normal contact
between a paraboloid of radius R and an elastic half-space. They assumed that
the stresses within the contact area and the deformation outside the contact area
matched those found in the non-adhesive Hertzian solution. Of course, this implied
that the body forms an ideal sphere in the last moment of the contact. As a result,
the pull-off force in this state is identical to the force calculated by Bradley:

FA D 2�R��: (3.142)

3.8 Adhesion According toMaugis

As explained in the introduction to this chapter, the adhesive forces between two
electrically neutral bodies decrease rapidly with increasing distance. Therefore,
integrating with respect to distance (i.e., the work of adhesion) returns a definite
value. Adhesive forces that are of much shorter range than any other character-
istic length of the problem have a negligible impact and are assumed to be zero.
In this case—corresponding to the JKR approximation—the work of adhesion is
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the sole determinant of the adhesive behavior. The adhesive forces attain distinct
significance once the range of the adhesive forces is of the order of the smallest char-
acteristic length of the contact problem. The adhesive behavior is now determined
not only by the work of adhesion but also independently by both the intensity and
range of the adhesive forces. In examining these influences in a qualitative fashion,
it is sensible to begin with the easiest model of finitely ranged adhesive forces: by
assuming that the adhesive stresses (adhesive force divided by area) are constant up
to a certain distance and zero past that point. This approximation was introduced by
Dugdale (1960) to analyze crack problems and has since seen heavy usage due to
its simplicity. The theory of adhesion based on the aforementioned adhesive force
was developed by Maugis (1992). In the following section, the theory of Maugis
will be derived via the MDR.

3.8.1 General Solution for the Adhesive Contact of Axisymmetric
Bodies in Dugdale Approximation

Wewill consider the adhesive contact between a rigid rotationally symmetric profile
with the shape f .r/ and an elastic half-space. The solution is found via MDR
and (except for the interpretation of the MDR model) it is identical to the original
solution by Maugis. Executing the MDR algorithm, we define an effective profile
g.x/ (see (2.6)):

g.x/ D jxj
jxjZ

0

f 0.r/p
x2 � r2

dr: (3.143)

This will play a central role in the following solution steps. This profile is brought
into contact with a one-dimensional Winkler foundation, defined by (2.5). In con-
trast to the non-adhesive contact, there now exists effective adhesive forces acting
between the indenter and the Winkler foundation.

While pressure is the relevant quantity of load in three-dimensional space, the
one-dimensional MDR representation only allows the definition of the linear force
density (distributed load):

qz.x/ D �FN .x/

�x
D E�w1D.x/: (3.144)

Between these two quantities, the following transformations are valid:

p.r/ D � 1

�

1Z

r

qz
0
.x/p

x2 � r2
dx;

qz.x/ D 2

1Z

x

rp.r/p
r2 � x2

dr: (3.145)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
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These are described in detail in Chap. 2 (Sect. 2.3) and in the appendix (Chap. 11).
The displacements of the surface points in the original three-dimensional problem
w.r/ and in the one-dimensional MDR representation w1D.x/ are linked via the
usual MDR transformation:

w.r/ D 2

�

rZ

0

w1D.x/p
r2 � x2

dx: (3.146)

Following Maugis’s (1992) lead, we will examine the case of a constant adhesive
stress with finite range, i.e., we assume that the adhesive pressure in the original
three-dimensional system remains constant and equal to the magnitude of �0 up to
the distance h, and vanishing thereafter:

padh.r/ D
(

��0; for f .r/ � d C w.r/ � h;

0; for f .r/ � d C w.r/ > h:
(3.147)

Using the transformations (3.145) we can determine the corresponding “adhesive
distributed load” in the one-dimensional MDR model:

qadh;z .x/ D

8̂
<
:̂

�2

Z b

x

r�0p
r2 � x2

dr D �2�0
p
b2 � x2; for jxj � b;

0; for jxj > b;

(3.148)

where b denotes the outer radius of the area upon which the adhesive pressure acts
(i.e., where the distance between the surfaces does not exceed h). The radius b
depends on the deformation of the surfaces and is calculated as part of the solution
of the contact problem. The geometry of the contact and the notation is graphically
represented in Fig. 3.28.

Within the contact area, the displacementw1D.x/ of the 1D model is determined
by the shape of the indenter and outside the contact area (but still within the adhesive
zone) by the adhesive forces:

w1D.x/ D

8̂
<̂
ˆ̂:

d � g.x/; x � a;

�2�0

E�
p
b2 � x2; a < x � b;

0; x > b:

(3.149)

The radius of the adhesive zone derives from the condition that the gap
w.b/ � d C f .b/ between the indenter and the elastic body must correspond
to the range h of the adhesive stresses:

w.b/ � d C f .b/ D h: (3.150)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_2
http://dx.doi.org/10.1007/978-3-662-58709-6_11
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Fig. 3.28 Adhesive contact according to the Dugdale–Maugis model: subfigure (a) represents
the real contact with the three-dimensional half-space, and subfigure (b) the contact with the
one-dimensional Winkler foundation. In three dimensions the constant attractive stress �0 acts
wherever the distance between the surfaces is less than h. At greater distances the interactions
cease. The radius of the adhesive zone exceeds the contact radius a. In the MDR representation
the “adhesive distributed load” qadh.x/ (3.148) takes the place of the adhesive stress

Accounting for the transformation (3.146) and (2.149), we get the displacement
w.b/ (3.149):

w.b/ D 2

�

bZ

0

w1D.x/p
b2 � x2

dx

D d � f .b/ � 2

�

bZ

a

Œd � g.x/�p
b2 � x2

dx � 4�0

�E� .b � a/: (3.151)

Inserting this into (3.150) then yields the equation for the radius b:

2

�

bZ

a

Œg.x/ � d�p
b2 � x2

dx � 4�0

�E� .b � a/ D h: (3.152)

The force �Fcont;z .x/ pressing the spring at coordinate x onto the effective profile
g.x/ consists of the elastic spring force and the adhesive force:

�Fcont;z.x/ D �x Œqz.x/ � qadh;z.x/�

D �x fE� Œd � g.x/� � qadh;z .x/g : (3.153)

The contact radius a is obtained from the condition that this contact force disap-
pears:

E�Œd � g.a/� C 2�0
p
b2 � a2 D 0: (3.154)

Furthermore, the total normal force is calculated as the integral over all springs:

FN D 2E�
bZ

0

w1D.x/dx: (3.155)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Substituting (3.149) gives:

FN D 2E�
bZ

0

w1D.x/dx D 2E�
aZ

0

Œd � g.x/� dx � 4�0

bZ

a

p
b2 � x2dx

D 2E�
aZ

0

Œd � g.x/� dx � �0

h
�2a

p
b2 � a2 C 2b2 arccos

�a
b

�i
: (3.156)

Equations (3.152), (3.154), and (3.156) completely solve the normal contact prob-
lem. Here, we will summarize them once more:

h D 2

�

bZ

a

Œg.x/ � d�p
b2 � x2

dx � 4�0

�E� .b � a/;

0 D E�Œd � g.a/� C 2�0
p
b2 � a2;

FN D 2E�
aZ

0

Œd � g.x/�dx

� �0

h
�2a

p
b2 � a2 C 2b2 arccos

�a
b

�i
: (3.157)

3.8.2 The JKR Limiting Case for Arbitrary Axisymmetric Indenter
Shapes

In this case �0 ! 1 and h ! 0, where �0h D �� remains finite. The radii a and
b are nearly identical: " D b � a � a; b. By writing b D a C ", then substituting

g.x/ � g.a/ C g0.a/ .x � a/ ; (3.158)

and with subsequent integration and expansion to terms of the order "1=2 and ",
(3.157) can be represented in the following way:

h � 2

�
Œg.a/ � d�

r
2"

a
� 4�0

�E� ";

d � g.a/ � 2�0a

E�

r
2"

a
;

FN � 2E�
aZ

0

Œd � g.x/�dx: (3.159)
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From the first two equations, we obtain the indenter shape independent relationship:

4�0"

�E� D h: (3.160)

Substituting (3.160) into (3.159) gives the previously established general equations
of the JKR approximation for arbitrary rotationally symmetric profiles (compare to
(3.27) and (3.28)):

d � g.a/ �
r

2�a��

E� ;

FN � 2E�
aZ

0

Œd � g.x/�dx: (3.161)

3.8.3 The DMT Limiting Case for an Arbitrary Rotationally
Symmetric Body

Setting a D 0 in (3.157) yields:

h D 2

�

bZ

0

g.x/p
b2 � x2

dx � d � 4�0

�E� b;

0 D E�d C 2�0b;

FN D ��b2�0: (3.162)

Applying the familiar MDR inverse transformation (see (2.7))

f .b/ D 2

�

bZ

0

g.x/p
b2 � x2

dx (3.163)

to the first two equations provides the relationship:

f .b/ C 2�0b

E�

�
1 � 2

�

�
D h: (3.164)

The classic “DMT limiting case” stands for:

f .b/ � 2�0b

E�

�
1 � 2

�

�
: (3.165)

It is assumed but not proven that the state a D 0 corresponds to a loss of stability.
In the following we will provide solutions for specific indenter shapes.

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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3.8.4 The Paraboloid

In this case, the shape of the indenter is defined by the equation

f .r/ D r2

2R
; (3.166)

with the paraboloid radius R. The MDR transformed profile is:

g.x/ D x2

R
; (3.167)

and (3.157) determining the radii a and b, the normal force FN , and the indentation
depth d, with range h and magnitude of the adhesive stress �0, take on the following
form:

�

2
h D

�
b2

2R
� d

�
arccos

�a
b

�
C a

2R

p
b2 � a2 � 2�0

E� .b � a/ ;

d D a2

R
� 2�0

E�
p
b2 � a2;

FN D 2E�
�
ad � a3

3R

�
� �0

h
�2a

p
b2 � a2 C 2b2 arccos

�a
b

�i
: (3.168)

We introduce the following dimensionless variables:

Qa WD a

aJKR
c

; Qd WD d

jd JKR
c j ;

QFN WD FN

F JKR
A

; 	 WD b

a
(3.169)

where the quantities aJKR
c , d JKR

c , F JKR
A can be referenced in Sect. 3.5.3:

aJKR
c D

�
9�R2��

8E�

�1=3

; d JKR
c D �

�
3�2R��2

64E�2

�1=3

;

F JKR
A D 3

2
�R��: (3.170)

Equations (3.168) then take on the following form:

2

3

1

ƒ
D Qa2

�
	2

2
arccos

�
1

	

�
� arccos

�
1

	

�
C 1

2

p
	2 � 1

	

C 4

3
Qaƒ

�
1 � 	 C

p
	2 � 1 arccos

�
1

	

�	
;

Qd D 3 Qa2 � 4 Qaƒ
p
	2 � 1;

QFN D Qa3 � Qa2ƒ

�
	2 arccos

�
1

	

�
C

p
	2 � 1

�
; (3.171)
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Fig. 3.29 Normalized nor-
mal force as a function of the
normalized contact radius for
the Maugis-adhesive contact
of elastic spheres for different
values of the Tabor parameter
ƒ. Thin solid lines denote the
JKR and DMT limits
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�hE�2

�1=3

: (3.172)

In Figs. 3.29 and 3.30 the dimensionless normal force as a function of the dimen-
sionless contact radius or indentation depth (both relations are implicitly defined
by (3.171)) is shown for different values of the Tabor parameter. It is apparent
that the curves for small and large values of the Tabor parameter tend to be the
respective DMT or JKR limit, denoted in the figures by thin solid lines. Inter-
estingly the convergence towards the JKR limit seems to be more prone in the
force-indentation depth-diagram, whereas the convergence towards the DMT limit
appears to be “faster” (i.e., achieved for less extreme values of the Tabor parame-
ter) in the force-contact radius-diagram. Also note that, whereas in the compressive
branch of the force-indentation-curve there is no significant difference to the JKR
limit already for ƒ D 1; the respective tensile branch still exhibits significant de-
viations from the JKR limit. Hence the adhesion range plays an important role for
the stability (and, therefore, the hysteresis) of the contact even for large values of
the Tabor parameter (for which most of the force-indentation-curve is practically
the same as in the JKR limit), as was pointed out by Wu (2010) and Ciavarella et al.
(2017).

For the limiting case of disappearing adhesion, (3.168) resolves to the Hertzian
solution:

d D a2

R
;

FN D 2E�
�
ad � a3

3R

�
D 4

3
E� a

3

R
: (3.173)
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Fig. 3.30 Normalized nor-
mal force as a function of the
normalized indentation depth
for the Maugis-adhesive con-
tact of elastic spheres for
different values of the Tabor
parameter ƒ. Thin solid lines
denote the JKR and DMT
limits
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The JKR Limiting Case
With the aforementioned transition for �0 ! 1 and h ! 0, where �0h D �� ,
(3.168) yield:

h � 2

�

�
a2

R
� d

�r
2"

a
� 4�0"

�E� ;

d � a2

R
� 2�0a

E�

r
2"

a
;

FN � 4

3
E� a

3

R
� 4�0a

2

r
2"

a
: (3.174)

With (3.160), and taking into account �� D �0h, we obtain from (3.174) the JKR
solution previously detailed in Sect. 3.5.3:

d � a2

R
�
r

2�a��

E� ;

FN � 4

3
E� a

3

R
�
p
8�E�a3��: (3.175)

The DMT Limiting Case
For the case a D 0, (3.168) yield:

h D b2

2R
� d � 4�0

�E� b;

d D �2�0b

E� ;

FN D ��b2�0: (3.176)
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The first two equations provide the relationship:

b2

2R
C 2�0b

E�

�
1 � 2

�

�
� h D 0; (3.177)

which can be solved for b:

b D �2R�0

E�

�
1 � 2

�

�
C
s�

2R�0

E�

�
1 � 2

�

�	2
C 2Rh: (3.178)

If the condition

2Rh � 4R2�2
0

E�2

�
1 � 2

�

�2

(3.179)

is valid then b � p
2Rh. Substituting into the third of the set of (3.176) then

delivers the DMT result:

FA;DMT D �FN D 2�Rh�0 D 2�R��: (3.180)

It is easy to see that the condition (3.179)

2R��2

E�2h3

�
1 � 2

�

�2

� 1 (3.181)

is identical to Tabor’s criterion (3.3).

Asymptotic Corrections for the JKR Solution
We introduce the notation

"1 D 	 � 1 (3.182)

and expand (3.171) to powers of "1:

2

3ƒ
D 4

3
Qaƒ"1 C 4

3

p
2 Qa2"1

3=2 C : : : ;

Qd D 3 Qa2 � Qaƒp
2

�
4"1

1=2 C "1
3=2 � 1

8
"1

5=2 C : : :

�
;

QFN D Qa3 � p
2 Qa2ƒ

�
2"1

1=2 C 23

6
"1

3=2 C 457

240
"1

5=2 C : : :

�
: (3.183)

Utilizing second-order perturbation theory, solving the first equation for "1 yields:

"
.1/
1 �

�
1

2 Qaƒ2
� 1

2 Qa1=2ƒ4
C : : :

�
(3.184)
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Substituting into the second and third equations of (3.183) then gives:

Qd D 3 Qa2 � 4 Qa1=2 C 1

ƒ2

�
2 Qa � 5

6
Qa�1=2

�
;

QFN D Qa3 � 2 Qa3=2 � 1

ƒ2

�
�Qa2 C 23

12
Qa1=2

�
: (3.185)

Replacing 23 by 24 achieves a precision of approximately 5% for the perturbation
term, providing the supremely simple approximation:

QFN � � Qa3 � 2 Qa3=2
� �

1 C 1

Qaƒ2

�
; ƒ � 1: (3.186)

In proximity to the critical radius Qa D 1, we can write Qa D 1 C � Qa and expand to
powers of �a:

Qd � �1 C 7

6ƒ2
C
�
4 C 29

12ƒ2

�
� Qa;

QFN � �1 � 11

12ƒ2
C 25

24ƒ2
� Qa C

�
9

4
C 119

96ƒ2

�
� Qa2: (3.187)

The force reaches a minimum for

d QFN

d .� Qa/ D � 9

8ƒ2
�
�
9

2
C 39

16ƒ2

�
� Qa D 0 , � Qa D � 50

216ƒ2 C 119
: (3.188)

Substituting this result into the second equation in (3.187), and subsequently ex-
panding to 1=ƒ yields:

QFA D � QFN � 1 C 11

12ƒ2
; (3.189)

or (alternatively) in dimensional variables:

FA D 3

2
�R�0h C 11

24

�
3�5E�4Rh5

�0

�1=3

D 3

2
�R�� C 11

24

�
3�5E�4Rh6

��

�1=3

: (3.190)

3.8.5 The Profile in the Form of a Power-Law

For an indenting, rotationally symmetric body with the general profile

f .r/ D crn; n 2 RC; (3.191)



3.9 Adhesion According to Greenwood and Johnson 121

and positive numbers n and a constant c, (3.157) take on the form:

h D cbn
�
1 � 2	.n/

� .n C 1/

�a
b

�nC1

2F1

�
1

2
;
n C 1

2
I n C 3

2
I a

2

b2

�	

� 2d

�
arccos

�a
b

�
� 4�0

�E� .b � a/;

0 D E� Œd � c	.n/an� C 2�0
p
b2 � a2;

FN D 2E�
�
da � c	.n/

n C 1
anC1

	

� �0

h
�2a

p
b2 � a2 C 2b2 arccos

�a
b

�i
: (3.192)

Consistent with the notation of this subsection, we denote the radius of the contact
area by a and the zone radius of the adhesive interaction by b > a, the indentation
depth by d, the normal force with FN , the range by h, and the value of the adhesive
stress by �0. We introduce:

	.n/ WD p
�


.n=2 C 1/


 Œ.n C 1/=2�
(3.193)

and utilize the hypergeometric function:

2F1.a; bI cI z/ WD
1X
nD0


.a C n/
.b C n/
.c/


.a/
.b/
.c C n/

zn

nŠ
: (3.194)

Naturally, setting n D 2 returns (3.168) of the preceding section.
The JKR limiting case of the above (3.192) was already discussed in detail in

Sect. 3.5.7. As a final note, the adhesive force for this indenter shape in the DMT
limiting case (h D f .b/, a D 0) is given by:

F DMT
A D ���

c2=n
h

2�n
n ; (3.195)

with an effective surface energy of�� D �0h. It is apparent that the parabolic body
with n D 2 represents the sole case where this force is not explicitly dependent on
the range of the adhesion.

3.9 Adhesion According to Greenwood and Johnson

We now consider the adhesive contact between a parabolic indenter Qz D r2=.2R/

and an elastic half-space. The surface displacement must correspond exactly to
the indenter shape within the contact area, regardless of the type of adhesive inter-
action. Therefore, it is a quadratic function of radius r. Greenwood and Johnson
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(1998) rightly noted that this kinematic condition is met when the Hertzian pressure
distribution is accompanied by an additional stress distribution. This additional dis-
tribution is, in turn, the difference of two Hertzian stress distributions with two
varying indentation depths, and thus with the actual contact radius a and another
arbitrary fictional contact radius c > a, so that:

�ad
zz .r/ D 2E�

�R

8̂
<̂
ˆ̂:

p
c2 � r2 �

p
a2 � r2; r < a;p

c2 � r2; a < r < c;

0; r > c:

(3.196)

A similar stress distribution was used far earlier already in the solution of the non-
adhesive tangential contact of spheres to generate a constant displacement of a
spherical domain (there will be more on this in the next chapter). Within the contact
area, i.e., for r � a, this stress distribution (3.196) causes the constant displacement

w.r/ D 1

R
.a2 � c2/: (3.197)

The additional stress (3.196) and the corresponding displacement (3.197) can be
modified with an arbitrary factor k for control of the indentation depth without
changing the shape of the indenter. The entire stress distribution consisting of the
original Hertzian distribution of radius a and also the distribution (3.196) multiplied
by the factor k is given by:

�zz.r/ D �.1 C k/
2E�

�R

p
a2 � r2 C k

2E�

�R

p
c2 � r2; r � a: (3.198)

Hertzian theory provides the distance�w between the two surfaces within the ring
a < r < c:

�w.r/ D .1 C k/
a2

�R

"�
r2

a2
� 2

�
arccos

�a
r

�
C

p
r2 � a2

a

#
;

a < r < c: (3.199)

The stresses within the ring a < r < c

�zz.r/ D k
2E�

�R

p
c2 � r2; a < r < c (3.200)

then describe the adhesive interactions between the surfaces. Combined with
(3.199), they define the separation energy

�� D
Z

�d .�w/ D
aZ

c

�zz.r/
d .�w/

dr
dr

D k .k C 1/
2E�

3�R2
.c � a/2.c C 2a/: (3.201)

Minimizing the total energy provides equilibrium configuration.
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While the purely contact mechanical aspect of Greenwood’s and Johnson’s the-
ory is far simpler than that of Maugis’s theory, their model is based on certain
assumptions with effects that are not immediately obvious. As an example, the im-
plicitly introduced interaction not only depends on the distance between the surfaces
but also on the entire configuration of the contact.

References

Borodich, F.M., Galanov, B.A.: Molecular adhesive contact for indenters of non-ideal shapes. In:
ICTAM04, Abstracts book and CD-Rom Proceedings. IPPT PAN, Warsaw (2004)

Bradley, A.I.: The cohesive force between solid surfaces and the surface energy of solids. Philos.
Mag. 13, 853–862 (1932)

Briggs, G.A.D., Briscoe, B.J.: The effect of surface topography on the adhesion of elastic solids.
J. Phys. D Appl. Phys. 10(18), 2453–2466 (1977)

Ciavarella, M., Greenwood, J.A., Barber, J.R.: Effect of Tabor parameter on hysteresis losses
during adhesive contact. J. Mech. Phys. Solids 98, 236–244 (2017)

Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of
particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)

Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104
(1960)

Gao, H., Yao, H.: Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl.
Acad. Sci. U.S.A. 101(21), 7851–7856 (2004)

Greenwood, J.A., Johnson, K.L.: An alternative to the Maugis model of adhesion between elastic
spheres. J. Phys. D Appl. Phys. 31(22), 3279–3290 (1998)

Griffith, A.A.: The Phenomena of Rupture and Flow in Solids. Philos. Trans. R. Soc. London
Ser. A 221, 163–198 (1921)

Guduru, P.R.: Detachment of a rigid solid from an elastic wavy surface: theory. J. Mech. Phys.
Solids 55(3), 445–472 (2007)

Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171
(1882)

Heß, M.: Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systeme mit
niedrigerer räumlicher Dimension (2010). Dissertation, Technische Universität Berlin

Johnson, K.L., Kendall, K., Roberts, A.D.: Surface Energy and the Contact of Elastic Solids. Proc.
R. Soc. London Ser. A 324, 301–313 (1971)

Kendall, K.: The adhesion and surface energy of elastic solids. J. Phys. D Appl. Phys. 4(8),
1186–1195 (1971)

Maugis, D.: Adhesion of spheres: the JKR-DMT-transition using a Dugdale model. J. Colloid
Interface Sci. 150(1), 243–269 (1992)

Maugis, D., Barquins, M.: Adhesive contact of a conical punch on an elastic half-space. J. Phys.
Lett. 42(5), 95–97 (1981)

Maugis, D., Barquins, M.: Adhesive contact of sectionally smooth-ended punches on elastic half-
spaces: theory and experiment. J. Phys. D Appl. Phys. 16(10), 1843–1874 (1983)

Popov, V.L.: Surface profiles with zero and finite adhesion force and adhesion instabilities (2017).
https://arXiv.org/abs/1707.07867. [cond-mat.soft]

Popov, V.L., Heß, M.: Method of dimensionality reduction in contact mechanics and friction.
Springer, Heidelberg (2015). ISBN 978-3-642-53875-9

Spolenak, R., Gorb, S., Gao, H., Arzt, E.: Effects of contact shape on the scaling of biological
attachments. Proc. R. Soc. London Ser. A 461, 305–319 (2005)

Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58(1), 2–13 (1977)
Thornton, C., Ning, Z.: A theoretical model for the stick/bounce behavior of adhesive, elastic-

plastic spheres. Powder Technol. 99(2), 154–162 (1998)

https://arXiv.org/abs/1707.07867


124 3 Normal Contact with Adhesion

Wu, J.J.: The jump-to-contact distance in atomic force microscopy measurement. J. Adhes.
86(11), 1071–1085 (2010)

Yao, H., Gao, H.: Optimal shapes for adhesive binding between two elastic bodies. J. Colloid
Interface Sci. 298(2), 564–572 (2006)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	3 Normal Contact with Adhesion
	3.1 Introduction
	3.2 Solution of the Adhesive Normal Contact Problem by Reducing to the Non-Adhesive Normal Contact Problem
	3.3 Direct Solution of the Adhesive Normal Contact Problem in the Framework of the MDR
	3.4 Areas of Application
	3.5 Explicit Solutions for Axially Symmetric Profiles in JKR Approximation
	3.6 Adhesion According to Bradley
	3.7 Adhesion According to Derjaguin, Muller, and Toporov
	3.8 Adhesion According to Maugis
	3.9 Adhesion According to Greenwood and Johnson
	References


