
2Normal Contact Without Adhesion

2.1 Introduction

We begin our consideration of contact phenomenawith the normal contact problem.
Consider two bodies pressed together by forces perpendicular to their surfaces.
A prominent example is the wheel of a train on a rail. The two most important
relationships that the theory of normal contact should deliver are:

1. The relationship between the normal force and the normal displacement of the
body, which determines the stiffness of the contact and, therefore, the dynamic
properties of the entire system.

2. The stresses occurring in the contact area, which (for example) are required for
component strength analysis.

Without physical contact, there are no other contact phenomena, no friction, and
no wear. Therefore, normal contact can be regarded as a basic prerequisite for all
other tribological phenomena. The solution to the adhesive contact problem, the
tangential contact problem, and contact between elastomers can also be reduced to
the non-adhesive normal contact problem. In this sense, the non-adhesive contact
problem forms a fundamental basis of contact mechanics. It should be noted that
even during normal contact, a relative tangentialmovement between contacting sur-
faces can occur due to different transverse contraction of contacting bodies. As a
result, friction forces between the surfaces can play a role, even for normal contact
problems, and it must be specified how these tangential stresses are to be treated.
The two most well-known and sudied limiting cases are, firstly, the frictionless nor-
mal contact problem and, secondly, the contact problem with complete stick. All
frictionless contact problems will be referred to as “Boussinesq problems” since
the famous Boussinesq solution for a cylindrical flat punch belongs to this cate-
gory. The other limiting case of complete stick will be referred to as “Mossakovskii
problems”.
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2.2 Boussinesq Problems (Frictionless)

We consider the frictionless normal contact between two elastic bodies with the
elasticity moduli E1 and E2, and Poisson’s ratios �1 and �2, as well as shear moduli
G1 and G2. The axisymmetric difference between the profiles will be written as
Qz D f .r/, where r is the polar radius in the contact plane. This contact problem is
equivalent to the contact of a rigid indenter with the profile Qz D f .r/ and an elastic
half-space with the effective elasticity modulus E� (Hertz 1882):

1

E� D 1 � �21
E1

C 1 � �22
E2

: (2.1)

The positive direction of Qz is defined by the outward-surface normal of the elastic
half-space. The normal component of the displacement of the medium w, under the
influence of a concentrated normal force Fz in the coordinate origin, is given by the
fundamental solution (Boussinesq 1885):

w.r/ D 1

�E�
Fz

r
: (2.2)

Applying the superposition principle to an arbitrary pressure distribution
p.x; y/ D ��zz.x; y/ yields the displacement field:

w.x; y/ D 1

�E�

“
p.x0; y0/

dx0dy0

r
; r D

p
.x � x0/2 C .y � y0/2: (2.3)

The positive direction of the normal force and normal displacement are defined by
the inward-surface normal of the elastic half-space. If we call the indentation depth
of the contact d and the contact radius a, the mixed boundary conditions for the
displacement w and the stresses � at the half-space surface (i.e., z D 0) are as
follows:

w.r/ D d � f .r/; r � a;

�zz.r/ D 0; r > a;

�zr.r/ D 0: (2.4)

Usually, a is not known a priori, but has to be determined in the solution process.
The solution of the contact problem is found by determining the pressure distribu-
tion, which satisfies (2.3) and the boundary conditions (2.4). It should be noted
that the application of both the superposition principle and the boundary conditions
in the form (2.4) require linearity of the material behavior as well as the half-space
approximation to be met; i.e., the surface gradient must be small in the relevant area
of the given contact problem in the non-deformed and deformed state. If we call
the gradient � then the condition is � � 1. The relative error resulting from the
application of the half-space approximation is of the order of �2.

For ordinarily connected contacts the non-adhesive normal contact problem was
solved in its general form by Schubert (1942) (based on the paper by Föppl (1941)),
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Galin (1946), Shtaerman (1949), and Sneddon (1965). In Sect. 2.3 we will de-
scribe these solutions using the interpretation given by the method of dimensionality
reduction (MDR) (Popov and Heß 2013). Naturally, it is fully equivalent to the clas-
sical solutions.

2.3 Solution Algorithm Using MDR

The contact of any given axially symmetric bodies can be solved very easily and
elegantly with the so-called MDR. The MDR maps three-dimensional contacts to
contacts with a one-dimensional array of independent springs (Winkler foundation).
Despite its simplicity, all results are exact for axially symmetrical contacts. The
MDR allows the study of non-adhesive and adhesive contacts, tangential contacts
with friction, as well as contacts with viscoelastic media. In this section we will
describe the application of the MDR for non-adhesive normal contact problems.
Generalizations for other problems will be presented where appropriate in later
chapters. Complete derivations can be found in works by Popov and Heß (2013,
2015), as well as in Chap. 11 in this book (Appendix).

2.3.1 Preparatory Steps

Solving the contact problem by way of the MDR requires two preparatory steps.
1. First, the three-dimensional elastic (or viscoelastic) bodies are replaced by

a Winkler foundation. This is a linear arrangement of elements with independent
degrees of freedom, with a sufficiently small distance �x between the elements.

In the case of elastic bodies, the foundation consists of linear-elastic springs with
a normal stiffness (Fig. 2.1):

�kz D E��x; (2.5)

whereby E� is given by (2.1).
2. Next, the three-dimensional profile Qz D f .r/ (left in Fig. 2.2) is transformed

to a plane profile g.x/ (right in Fig. 2.2) according to:

g.x/ D jxj
jxjZ

0

f 0.r/p
x2 � r2

dr: (2.6)

Fig. 2.1 One-dimensional
elastic foundation

Δx
x
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Fig. 2.2 Within the MDR the
three-dimensional profile is
transformed to a plane profile

r0

f r( ) g x( )

x0

~z~z

The inverse transform is:

f .r/ D 2

�

rZ

0

g.x/p
r2 � x2

dx: (2.7)

2.3.2 Calculation Procedure of theMDR

The plane profile g.x/ of (2.6) is now pressed into the elastic foundation with the
normal force FN (see Fig. 2.3).

The normal surface displacement at position x within the contact area is equal to
the difference of the indentation depth d and the profile shape g:

w1D.x/ D d � g.x/: (2.8)

At the boundary of the non-adhesive contact, x D ˙a, the surface displacement
must be zero:

w1D.˙a/ D 0 ) d D g.a/: (2.9)

This equation determines the relationship between the indentation depth and the
contact radius a. Note that this relationship does not depend upon the elastic prop-
erties of the medium.

The force of a spring at position x is proportional to the displacement at this
position:

�FN .x/ D �kzw1D.x/ D E�w1D.x/�x: (2.10)

Fig. 2.3 MDR substitute
model for the normal contact
problem

FN

a
g x( )

d
x
w1D(x)
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The sum of all spring forces must balance out the external normal force. In the
limiting case of very small spring spacing,�x ! dx, the sum turns into an integral:

FN D E�
aZ

�a

w1D.x/dx D 2E�
aZ

0

Œd � g.x/�dx: (2.11)

Equation (2.11) provides the normal force as a function of the contact radius and,
under consideration of (2.9), of the indentation depth. Let us now define the linear
force density qz.x/:

qz.x/ D �FN .x/

�x
D E�w1D.x/ D E�

(
d � g.x/; jxj < a

0; jxj > a
: (2.12)

As shown in the appendix to this book, the stress distribution of the original three-
dimensional system can be determined from the one-dimensional linear force den-
sity via the integral transform:

�zz.r/ D �p.r/ D 1

�

1Z

r

q0
z.x/p
x2 � r2

dx: (2.13)

The normal surface displacement w.r/ (inside as well as outside the contact area)
is given by the transform:

w.r/ D 2

�

rZ

0

w1D.x/p
r2 � x2

dx: (2.14)

For the sake of completeness, we will provide the inverse transform to (2.13):

qz.x/ D 2

1Z

x

rp.r/p
r2 � x2

dr: (2.15)

With the MDR it is also possible to determine the displacements for a prescribed
stress distribution at the surface of the half-space. First, the displacement of the
Winkler foundation w1D must be calculated from the stresses according to:

w1D.x/ D qz.x/

E� D 2

E�

1Z

x

rp.r/p
r2 � x2

dr: (2.16)

Substituting this result into (2.14) allows the calculation of the three-dimensional
displacements.

Equations (2.6), (2.9), (2.11), (2.13), and (2.14) completely solve the non-
adhesive frictionless normal contact problem, so we state them once again in a
more compact and slightly modified form:
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g.x/ D jxj
jxjZ

0

f 0.r/drp
x2 � r2

d D g.a/; if g continous at x D a;

FN D 2E�
aZ

0

Œd � g.x/�dx;

�zz.r/ D �E�

�

2
4

aZ

r

g0.x/dxp
x2 � r2

C d � g.a/p
a2 � r2

3
5 ; for r � a;

w.r/ D 2

�

8̂
ˆ̂<
ˆ̂̂:

Z r

0

Œd � g.x/�dxp
r2 � x2

; for r < a;

Z a

0

Œd � g.x/�dxp
r2 � x2

; for r > a:

(2.17)

In the following we will present the relationships between the normal force FN ,
indentation depth d, and contact radius a, as well as the stresses and displacements
outside the contact area for various technically relevant profiles f .r/.

2.4 Areas of Application

The most well-known normal contact problem is likely the Hertzian contact (see
Sects. 2.5.3 and 2.5.4). While Hertz (1882) examined the contact of two parabolic
bodies with different radii of curvature around the x-axis and y-axis in his work,
we will consider the more specific axisymmetric case of the contact of two elastic
spheres or, equivalently, of a rigid sphere and an elastic half-space. This problem
occurs ubiquitously in technical applications; for example, in roller bearings, joints,
or the contact between wheel and rail. Hertz also proposed using this contact for
measuring material hardness in Hertzian contact, however, the stress maximum lies
underneath the surface of the half-space. Therefore cones (see Sect. 2.5.2) are more
suitable for this task. For punching, flat indenters (see Sect. 2.5.1) or even flat rings
(see Sect. 2.5.7) are very commonly used because of the stress singularity at the
edge of the contact.

These three shapes—flat, cone-shaped, and spherical indenters—essentially
form the three ideal base shapes for most contacts in technical applications. Ad-
ditionally, it is also of great value to examine the effects of imperfections on these
base shapes, for example through manufacturing or wear. Such imperfect inden-
ters may be truncated cones or spheres (see Sects. 2.5.9 and 2.5.10), bodies with
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rounded tips (see Sects. 2.5.11 to 2.5.13) or rounded edges (see Sect. 2.5.14), as
well as ellipsoid profiles (see Sect. 2.5.5).

Furthermore, any infinitely often continuously differentiable profile can be ex-
panded in a Taylor series. By utilizing a profile defined by a power-law (see
Sect. 2.5.8), the solution for a more complex profile—assuming it satisfies the
aforementioned differentiability criterion—can be constructed to arbitrary preci-
sion with the Taylor series.

Furthermore, this chapter contains profiles relevant for applications where ad-
hesive normal contact comes into play. This includes a profile which generates a
constant pressure distribution (see Sect. 2.5.5), concave bodies (see Sects. 2.5.15
and 2.5.16), or bodies with a periodic roughness (see Sect. 2.5.17). Since the next
chapter dealing with adhesive normal contact reveals that the frictionless normal
contact problem with adhesion can, under certain circumstances, be reduced to
the non-adhesive one, we will provide the corresponding non-adhesive solutions
already in this chapter, even though the practical significance of the respective prob-
lems will only become apparent later.

The contact problem is fully defined by the profile f .r/ and one of the global
contact quantities FN , d or a. Generally, we will assume that, of these three, the
contact radius is given, consequentially yielding the solution as a function of this
contact radius. Should, instead of the contact radius, the normal force or the inden-
tation depth be given, the given equations must be substituted as necessary.

2.5 Explicit Solutions for Axially Symmetric Profiles

2.5.1 The Cylindrical Flat Punch

The solution of the normal contact problem for the flat cylindrical punch of radius
a, which can be described by the profile:

f .r/ D
(
0; r � a;

1; r > a;
(2.18)

goes back to Boussinesq (1885). The utilized notation is illustrated in Fig. 2.4. The
original solution by Boussinesq is based on the methods of potential theory. The
solution using the MDR is significantly simpler. The equivalent flat profile for the
purposes of the MDR, g.x/, is given by:

g.x/ D
(
0; jxj � a;

1; jxj > a:
(2.19)

The contact radius corresponds to the radius of the indenter. The only remain-
ing global contact quantities to be determined are the indentation depth d and the
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Fig. 2.4 Normal indentation
by a cylindrical flat punch

normal force FN . For the latter we obtain:

FN .d/ D 2E�da: (2.20)

Hence, the contact stiffness equals:

kz WD dFN

dd
D 2E�a: (2.21)

The stress distribution in the contact area and the displacements of the half-space
outside the contact are, due to (2.17):

�zz.r Id/ D � E�d

�
p
a2 � r2

; r � a;

w.r Id/ D 2d

�
arcsin

�a
r

�
; r > a: (2.22)

The average pressure in the contact is:

p0 D FN

�a2
D 2E�d

�a
: (2.23)

The stress distribution and displacements within and outside the contact area are
shown in Figs. 2.5 and 2.6.

Finally, it should be noted that, although the notation E� is used for the cylin-
drical indenter, implying a possible elasticity of both contact bodies, the aforemen-
tioned solution described previously is solely valid for rigid cylindrical indenters.
While the deformation of the half-space can satisfy the conditions of the half-space
approximation, this is generally not the case for the cylindrical indenter. The dis-
crepancies which occur for elastic indenters are discussed in Sect. 2.5.19.
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Fig. 2.5 Normal pressure
p D ��zz , normalized to the
average pressure in the con-
tact p0, for the indentation by
a flat cylindrical punch
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Fig. 2.6 Displacement of
the half-space, normalized
to the indentation depth d,
for the indentation by a flat
cylindrical punch
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2.5.2 The Cone

The case of the conical indenter (see Fig. 2.7),

f .r/ D r tan �; (2.24)

with a small inclination angle � , was first solved by Love (1939). He also made use
of potential theory and used several tricky series expansions to obtain the solution.
Again, we describe the easier way of using the MDR. The equivalent profile is given
by:

g.x/ D jxj tan �
jxjZ

0

drp
x2 � r2

D �

2
jxj tan �: (2.25)

For the relationships between contact radius a, indentation depth d , normal force
FN , average pressure p0, and for the stresses �zz and displacements w, according
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Fig. 2.7 Normal indentation
by a conical indenter

FN

~z

d
r

a

θ

to (2.17) we obtain:

d.a/ D �

2
a tan �;

FN .a/ D �E� tan �
aZ

0

.a � x/ dx D �a2

2
E� tan �;

p0 D 1

2
E� tan �;

�zz.r I a/ D �E� tan �
2

aZ

r

dxp
x2 � r2

D �p0 arcosh
�a
r

�
; r � a;

w.r I a/ D tan �

aZ

0

.a � x/dxp
r2 � x2

D a tan �

"
arcsin

�a
r

�
C

p
r2 � a2 � r

a

#
; r > a: (2.26)

Here arcosh.�/ denotes the area hyperbolic cosine function, which can also be rep-
resented explicitly by the natural logarithm:

arcosh
�a
r

�
D ln

 
a C p

a2 � r2

r

!
: (2.27)

The stress distribution, normalized to the average pressure in the contact, is shown
in Fig. 2.8. One recognizes the logarithmic singularity at the apex of the cone. In
Fig. 2.9, the displacement of the half-space normalized to the indentation depth d is
shown.

Finally, it should be noted—in analogy to the previous section—that although
the notation E� is used for the conical punch as well (implying that both contact-
ing bodies are allowed to be elastic), the previously described solution is correct
without restrictions only for rigid conical indenters. While for the half-space the
requirements of the half-space approximation can still be fulfilled, for the conical
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Fig. 2.8 Course of normal
pressure p D ��zz , normal-
ized to the average pressure,
for indentation by a cone
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Fig. 2.9 Displacement of
the half-space, normalized to
the indentation depth d, for
indentation by a cone
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punch this is the case only for small angles � . The deviations that occur in the case
of elastic indenters are addressed in Sect. 2.5.19.

2.5.3 The Paraboloid

The solution to the problem illustrated in Fig. 2.10 goes back to the classical work
of Hertz (1882), although he studied the generalized problem of an elliptic contact
area. Hertz made use of potential theory too. For a small contact radius a compared
to the radius of the sphere R, the profile shape in the contact is characterized by the
parabola:

f .r/ D r2

2R
: (2.28)
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Fig. 2.10 Normal indentation
by a parabolic indenter

d

r
a

~z

FN

R

The solution of the contact problem as per (2.17) is given by:

g.x/ D jxj
R

jxjZ

0

r drp
x2 � r2

D x2

R
;

d.a/ D a2

R
;

FN .a/ D 2E�

R

aZ

0

�
a2 � x2

�
dx D 4

3

E�a3

R
: (2.29)

And by:

�zz.r I a/ D �2E�

�R

aZ

r

x dxp
x2 � r2

D �2E�

�R

p
a2 � r2; r � a;

w.r I a/ D 2

�R

aZ

0

�
a2 � x2

�
dxp

r2 � x2

D a2

�R

"�
2 � r2

a2

�
arcsin

�a
r

�
C

p
r2 � a2

a

#
; r > a: (2.30)

The average pressure in the contact is equal to:

p0 D 4E�a
3�R

: (2.31)

The stress curve normalized to this pressure and the displacement curve normalized
to the indentation depth d are shown in Figs. 2.11 and 2.12, respectively. In this
normalized representation, the curves of the contact quantities are independent of
the curvature radius R.

Stresses within the Half-Space
As Huber (1904) demonstrated, the stresses inside the half-space can also be cal-
culated for this contact problem. After a lengthy calculation, he provided the
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Fig. 2.11 Normal pressure
curve p D ��zz , normalized
to the average pressure in the
contact, for the indentation
by a paraboloid
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Fig. 2.12 Displacement
of the half-space, normal-
ized to the indentation depth
d, for the indentation by a
paraboloid
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following solution:

�rr.r; zI a/
p0

D 3

2

(
1 � 2�

3

a2

r2

"
1 �

�
zp
u

�3
#

C
�

zp
u

�3
a2u

u2 C a2z2

C zp
u

�
.1 � �/u

a2 C u
C .1 C �/

p
u

a
arctan

�
ap
u

�
� 2

	

;

�''.r; zI a/
p0

D � 3

2

(
1 � 2�

3

a2

r2

"
1 �

�
zp
u

�3
#

C zp
u

�
2� C .1 � �/u

a2 C u
� .1 C �/

p
u

a
arctan

�
ap
u

�	

;
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�zz.r; zI a/
p0

D � 3

2

�
zp
u

�3
a2u

u2 C a2z2
;

�rz.r; zI a/
p0

D � 3

2

rz2

u2 C a2z2
a2

p
u

u C a2
; (2.32)

with the Poisson’s ratio � and the expression:

u.r; zI a/ D 1

2

�
r2 C z2 � a2 C

p
.r2 C z2 � a2/2 C 4a2z2

�
: (2.33)

The stresses �r' and �'z vanish due to rotational symmetry. Figure 2.13 displays the
von-Mises equivalent stress—normalized to the average pressure in the contact—
resulting from this stress tensor. It is apparent that the equivalent stress reaches
its greatest value in the middle of contact, yet underneath the half-space surface.
Therefore, the parabolic indenter is not suitable for measuring hardness as Hertz
(1882) had originally assumed. Figure 2.14 displays the greatest resulting principle
stresses in the half-space.

An alternative, yet naturally fully equivalent formulation of the stresses in the
half-space given by (2.32), can be referenced within work by Hamilton and Good-
man (1966).

The Hertzian Impact Problem
Hertz (1882) studied the impact problem for this contact also. Consider the
parabolic indenter of mass m normally impacting the initially non-deformed half-
space with the initial speed v0. Let the impact be quasi-static, i.e., v0 � c, where
c represents the characteristic propagation speed of elastic waves in the half-space.
The energy radiation in the form of elastic waves in the half-space can then be
neglected, as demonstrated by Hunter (1957). In (2.29) the relationship between

Fig. 2.13 Von-Mises equiva-
lent stress curve, normalized
to the average pressure in the
half-space for the indentation
by a paraboloid assuming
� D 0:3
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Fig. 2.14 Greatest principle
stress curve, normalized to
the average pressure in the
half-space for the indentation
by a paraboloid assuming
� D 0:3
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normal force FN and indentation depth d is implicitly given:

FN .d/ D 4

3
E�p

Rd3: (2.34)

Therefore, the potential energy stored in the elastic deformation of the elastic half-
space, U, is given by:

U.d/ D
dZ

0

F
� Qd
�
d Qd D 8

15
E�p

Rd5: (2.35)

The indentation depth during the impact is a function of time, d D d.t/, and for
the quasi-static case the energy conservation during impact takes on the following
simple form:

m
v20
2

D m
Pd2

2
C 8

15
E�p

Rd5: (2.36)

This equation yields the maximum indentation depth dmax, the function t D t.d/,
i.e., the inverse of the time dependence of the indentation depth d D d.t/, and the
impact duration tS :

dmax D
�

15mv20

16E�p
R

�2=5

;

t D 2
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B
�
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5
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1

2

�
� 2:94

dmax

v0
: (2.37)
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Here, B.�I �; �/ is the incomplete beta function

B .zI a; b/ WD
zZ

0

ta�1 .1 � t/b�1 dt: (2.38)

2.5.4 The Sphere

The problem of the spherical indenter is very closely related to the problem of the
parabolic indenter described in the previous section. The profile of a sphere of
radius R is:

f .r/ D R �
p
R2 � r2: (2.39)

For the case of r � R this can be approximated as:

f .r/ � r2

2R
; (2.40)

which obviously coincides with (2.28) from Sect. 2.5.3. It may now be necessary
to use the exact spherical shape instead of the parabolic approximation. However,
the assumption of small deformations that underlies the whole theory used in this
book requires the validity of the half-space hypothesis, which in our case can be
written as a � R. If the latter is fulfilled, one can still work with the parabolic
approximation. Nevertheless, we want to present the solution of the contact problem
with a spherical indenter, which was first published by Segedin (1957). Applying
(2.17) to (2.39) yields:

g.x/jxj
jxjZ

0

r drp
R2 � r2

p
x2 � r2

D jxj artanh
� jxj
R

�
;

d.a/ D a artanh
� a
R

�
;

FN .a/ D 2E�
aZ

0

h
a artanh

� a
R

�
� x artanh

� x
R

�i
dx

D E�R2

��
1 C a2

R2

�
artanh

� a
R

�
� a

R

	
: (2.41)

Here artanh.�/ refers to the area hyperbolic tangent function, which can also be
represented explicitly by the natural logarithm:

artanh
� a
R

�
D 1

2
ln

�
R C a

R � a

�
: (2.42)
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The average pressure in the contact is:

p0 D E�R2

�a2

��
1 C a2

R2

�
artanh

� a
R

�
� a

R

	
: (2.43)

The stresses and displacements were not determined by Segedin (1957), and can
only be partially expressed by elementary functions. With the help of (2.17) we
obtain the relationships:
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!)
: (2.44)

These functions are shown in normalized form in Figs. 2.15 and 2.16 for different
values of R=a. It can be seen that, even for small values of this ratio such as 1.5
(which already strongly violates the half-space approximation), the stresses are only
slightly different and the displacements almost indistinguishable from the parabolic
approximation in Sect. 2.5.3.

2.5.5 The Ellipsoid

The solution for an indenter in the form of an ellipsoid of rotation also originated
from Segedin (1957). The profile is given by:

f .r/ D R
�
1 �

p
1 � k2r2

�
; (2.45)
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Fig. 2.15 Normal pressure
p D ��zz , normalized to
the average pressure in the
contact, p0, for indentation
by a sphere for different ra-
tios R=a. The thin solid line
indicates the parabolic ap-
proximation from (2.30)
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Fig. 2.16 Displacement of
the half-space, normalized to
the indentation depth d for
indentation by a sphere for
different ratios R=a. Since
the curves are approximately
on top of each other, the line
of the parabolic approxima-
tion, according to (2.30), has
been omitted
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with the two parameters, R and k. kR D 1, resulting in the spherical indenter of the
previous section. In general cases, the equivalent profile is as follows:

g.x/ D jxjR
jxjZ

0

k2r drp
1 � k2r2

p
x2 � r2

D jxjkR artanh.kjxj/

D kRgsphere

�
xIR D 1

k

�
: (2.46)

Here, gsphere.xIR/ denotes the solution:

gsphere.xIR/ WD jxj artanh
� jxj
R

�
(2.47)

derived in the previous section for a sphere with the radius R. Because of the
superposition principle, all expressions for the stresses and displacements—and,
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correspondingly of course, also for the macroscopic quantities—are linear in g.
Therefore, it is clear without calculation that the solution of the contact problem is
given by:

d.a/ D kRdsphere

�
aIR D 1

k

�
;

FN .a/ D kRFN;sphere

�
aIR D 1

k

�
;

�zz.r I a/ D kR�zz;sphere

�
r I aIR D 1

k

�
; r � a;

w.r I a/ D kRwsphere

�
r I aIR D 1

k

�
; r > a: (2.48)

The index “sphere” denotes the respective solution from Sect. 2.5.4.

2.5.6 The Profile Which Generates Constant Pressure

It is possible to design an indenter in such a way that the generated pressure in the
contact is constant. This contact problem was initially solved by Lamb (1902) in
the form of hypergeometric functions and by utilizing the potentials of Boussinesq.
We will present a slightly simplified solution based on elliptical integrals, which
goes back to Föppl (1941).

Applying a constant pressure p0 to a circular region with the radius a yields the
following vertical displacementsw1D.x/ in a one-dimensional MDR model accord-
ing to (2.16):

w1D.x/ D 2

E�

aZ

x

rp0p
r2 � x2

dr D 2p0

E�
p
a2 � x2: (2.49)

The displacement in the real three-dimensional space is given by:

w.r/ D 2

�

rZ

0

w1D.x/p
r2 � x2

dx D 4p0

�E�

rZ

0

p
a2 � x2

p
r2 � x2

dx

D 4p0a

�E� E
� r
a

�
; r � a:

(2.50)

Here, E.�/ denotes the complete elliptical integral of the second kind:

E.k/ WD
�=2Z

0

q
1 � k2 sin2 ' d': (2.51)
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The indentation depth d is therefore:

d D w.0/ D 2p0a

E� ; (2.52)

and the shape of the profile is given by:

f .r/ D d � w.r/ D 2p0a

E�

�
1 � 2

�
E
� r
a

�	
: (2.53)

It is apparent that this is not a classical indenter with a constant shape: varying p0

causes the profile to be scaled. In other words, different pairings fa; p0g require dif-
ferent indenter profiles f .r/. Concrete applications, usually in biological systems,
are discovered upon considering the adhesive normal contact. We will examine
them at a later point. For completeness, we will calculate the displacement outside
the contact area:

w.r I a; p0/ D 4p0

�E�

aZ

0

p
a2 � x2dxp
r2 � x2

; r > a;

D 4p0r

�E�

�
E
�a
r

�
�
�
1 � a2

r2

�
K
�a
r

�	
; (2.54)

with the complete elliptical integral of the first kind:

K.k/ WD
�=2Z

0

d'p
1 � k2 sin2 '

: (2.55)

The displacement w of the half-space is shown in Fig. 2.17.

Fig. 2.17 Displacements
within and outside the contact
area, normalized to the inden-
tation depth, for an indenter
generating constant pressure
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Fig. 2.18 Thin circular ring.
Visualized derivation of the
integral (2.58) φ

s

r

a

2.5.7 Displacement from Indentation by a Thin Circular Ring

We now examine the indentation of the elastic half-space by a thin circular ring of
radius a. Let the ring be sufficiently thin so that the pressure distribution can be
regarded as a Dirac distribution:

�zz.r I a/ D � FN

2�a
ı.r � a/; (2.56)

where FN denotes the normal force loading the ring. The resulting displacement of
the half-space can be determined from the superposition of fundamental solutions
of elasticity theory. The half-space normal displacement resulting from the point
force acting on the origin in the z-direction is, according to (2.2), given by:

w.s/ D Fz

�E�s
; (2.57)

with the distance s to the acting point of the force.
The displacements (see notations used in the diagram in Fig. 2.18) produced by

this pressure distribution (2.56) are given by:

w.r I a/ D 1

�E�

2�Z

0

FN

2�

d'p
a2 C r2 � 2ar cos'

D FN

2E�
4

�2.r C a/
K

�
2
p
ra

r C a

�
: (2.58)

These displacements are represented in Fig. 2.19. A superposition of the dis-
placements enables the direct calculation of the displacements from any given axi-
ally symmetric pressure distribution.

2.5.8 The Profile in the Form of a Power-Law

For a general indenter with the profile in the form of a power-law (see Fig. 2.20),

f .r/ D crn; n 2 RC; (2.59)
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Fig. 2.19 Normalized surface
displacement from indenta-
tion by a thin circular ring
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Fig. 2.20 Normal indenta-
tion by a mnemonic indenter
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the solution of the contact problem can also be given in explicit form. Here, c is
a constant and n is a positive real number. For example, for n D 1 and n D 2

arise the already considered cases of a conical or parabolic indenter. The general
solution was first found by Galin (1946). Shtaerman (1939) gave a solution in
faculty expressions for even integers n.

The equivalent plane profile g(x) is, in this case, also a power function with the
exponent n:

g.x/ D jxjnc
jxjZ

0

rn�1drp
x2 � r2

D 	.n/cjxjn; (2.60)

with the scaling factor

	.n/ WD p
�


.n=2 C 1/


 Œ.n C 1/=2�
: (2.61)

Here, 
.�/ denotes the gamma function


.z/ WD
1Z

0

tz�1 exp.�t/ dt: (2.62)
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Fig. 2.21 Dependence of the
stretch factor 	 in (2.61) on
the exponent n of the power
profile
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Table 2.1 Scaling factor 	.n/ for selected exponents of the shape function

n 0.5 1 2 3 4 5 6 7 8 9 10
	.n/ 1.311 1.571 2 2.356 2.667 2.945 3.2 3.436 3.657 3.866 4.063
n 0.5 1 2 3 4 5 6 7 8 9 10
	.n/ 1.311 1.571 2 2.356 2.667 2.945 3.2 3.436 3.657 3.866 4.063

The dependence of the scaling factor on the exponent n is shown in Fig. 2.21 and in
Table 2.1. For the relationships between the normal force FN , indentation depth d,
and contact radius a we get:

d.a/ D 	.n/can;

FN .a/ D E� 2n

n C 1
	.n/canC1: (2.63)

The mean pressure in contact is:

p0 D E�

�

2n

n C 1
	.n/can�1: (2.64)

For the stress and displacement distributions, the expressions given in (2.17) will
result in:
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(2.65)
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Here, B.�I �; �/ denotes the incomplete beta function

B.zI a; b/ WD za

a
2F1 .a; 1 � bI a C 1I z/ (2.66)

and 2F1.�; �I �I �/ the hypergeometric function

2F1.a; bI cI z/ WD
1X
nD0


.a C n/
.b C n/
.c/


.a/
.b/
.c C n/

zn

nŠ
: (2.67)

However, the evaluation of these functions is somewhat cumbersome, which is
why we give two recursion formulas with which all stresses and displacements for
natural values of n can be recursively determined from the known solutions for a
cylindrical flat punch and a cone:

aZ

r

xn�1dxp
x2 � r2

D an�2
p
a2 � r2

n � 1
C r2

n � 2

n � 1

aZ
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xn�3dxp
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�
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0

xndxp
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D an�1
p
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n
� r2

n � 1

n

aZ

0

xn�2dxp
r2 � x2

; r > a: (2.68)

In the case of the cone (n D 1), the normal stress has a logarithmic singularity
at the apex of the cone. For all n > 1 the pressure distribution is not singular;
the pressure maximum remains at the center of the contact until n D 2 and then
begins to shift to the edge of the contact at higher n. In the limiting case n ! 1
corresponding to a cylindrical flat punch, the pressure distribution is singular at the
contact edge.

The Impact Problem for the Indenter with Power-Law Profile
Since the relationships between normal force, contact radius, and indentation depth
are known to be power functions, the normal impact problem can also be solved
easily for this indenter profile. Consider a rotationally symmetric rigid body of
mass m with the power-law profile just described, which impacts on the elastic
half-space with the initial velocity v0. The collision should be quasi-static, i.e., this
impact velocity would be much smaller than the propagation speed of elastic waves.

The potential energy as a function of the current indentation depth can be derived
from (2.63) and is given by:

U.d/ D
dZ

0

F. Qd/ d Qd D E�

Œc	.n/�1=n
2n2

.2n C 1/.n C 1/
d

2nC1
n : (2.69)
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Due to energy conservation, the following expressions for the maximum indentation
depth dmax, the function t D t.d/, and the impact duration tS are valid:

dmax D
(
Œc	.n/�1=n .2n C 1/ .n C 1/mv20

4n2E�

) n
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t D n
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� 2nC1
n

;

tS D 2n

2n C 1
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v0
B

�
1I n

2n C 1
;
1

2

�
; (2.70)

which, for n D 2, coincides with the solution of the Hertzian impact problem de-
scribed in Sect. 2.5.3.

2.5.9 The Truncated Cone

For certain technical applications it can be of interest to consider an indenter with
a flattened tip, perhaps worn down by wear. The solution for the indentation by a
truncated cone was first published by Ejike (1969). This solution—as well as the
general solution by Sneddon (1965)—is based on appropriate integral transforms.
A simple solution in the framework of MDR has been provided in this section.

The axisymmetric profile (see Fig. 2.22) can be written as:

f .r/ D
(
0; r � b;

.r � b/ tan �; r > b:
(2.71)

Here, � denotes the slope angle of the cone and b the radius of the blunt end. As
in previous cases, the problem can be dealt with elementarily by utilizing (2.17),

Fig. 2.22 Normal indentation
by a truncated cone
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which provide the solution:

g.x/ D
8<
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0; jxj � b;

jxj tan � arccos
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�
; jxj > b;
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#

D E� tan �a2 .'0 C cos'0 sin '0/ ; (2.72)

where we introduced the angle

'0 WD arccos
�
b

a

�
: (2.73)

The average pressure in the contact is:

p0 D E�

�
tan �.'0 C cos'0 sin '0/: (2.74)

Setting b D 0, i.e., '0 D �=2, yields the solution of the ideal conical indenter from
Sect. 2.5.2. For the stresses in the contact area we obtain:
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(2.75)

The stresses are shown in Fig. 2.23. The singularity at the sharp edge of the blunt
end, r D b, is clearly visible. For small values of b=a, the curves approach the
solution for the complete cone, and for b=a ! 1 the limiting case of the flat cylin-
drical punch. Both limiting cases are represented as thin solid lines in Figs. 2.23
and 2.24. The displacements outside of the contact area are:
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:'0a arcsin
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aZ

b
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r > a: (2.76)
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Fig. 2.23 Stress distribution,
normalized to the average
pressure in the contact, for
the indentation by a truncated
cone with different values
b=a. The thin solid lines
represent the solutions for the
complete cone and the flat
cylindrical punch
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Fig. 2.24 Displacements of
the half-space, normalized
to the indentation depth, for
the indentation by a truncated
cone with different values
b=a. The thin solid lines
represent the solutions for the
complete cone and the flat
cylindrical punch
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Theoretically, this integral can be solved analytically using tabulated functions,
but due to its complexity, a numerical solution seems more feasible. These dis-
placements are displayed in Fig. 2.24.

2.5.10 The Truncated Paraboloid

The indentation problem for a truncated paraboloid (see Fig. 2.25) was also first
solved by Ejike (1981). The profile is described by:

f .r/ D
8<
:
0; r � b;

r2 � b2

2R
; r > b;

(2.77)
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Fig. 2.25 Normal indentation
by a truncated paraboloid
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with the radius of the blunt end, b, and the radius of curvature of the paraboloid R.
The solution within the MDR (see (2.17)) gives:

g.x/ D
8<
:
0; jxj � b;
jxj
R

p
x2 � b2; jxj > b;

d.a/ D a

R

p
a2 � b2;

FN .a/ D 2E�

3R
.2a2 C b2/

p
a2 � b2: (2.78)

For the stresses within the contact area, we obtain:
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These can theoretically be expressed in closed form via elliptic integrals. However,
the resulting expressions are very extensive and cumbersome to evaluate, which is
why a numerical evaluation will be preferable. The stresses are shown in Fig. 2.26.
One recognizes the singularities at the sharp edge of the blunt end at r = b, which are
increasingly localized for small values of b, and the limiting cases of the paraboloid
and the cylindrical flat punch (indicated by thin solid lines). The displacements
outside the contact area are as follows:

w.r I a/ D 2a

�R

p
a2 � b2 arcsin

�a
r

�

� 1

�R

"
.r2 � b2/ arcsin

 p
a2 � b2p
r2 � b2

!
�

p
a2 � b2

p
r2 � a2

#
;

r > a: (2.80)

These are shown in Fig. 2.27. For b D 0 we obtain the Hertzian solutions for the
parabolic indenter given in Sect. 2.5.3.
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Fig. 2.26 Stress distribu-
tion, normalized to the mean
pressure in contact, for in-
dentation by a flattened
paraboloid at different val-
ues b=a. The thin solid lines
indicate the solutions for the
complete paraboloid and the
flat punch
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Fig. 2.27 Displacements of
the half-space, normalized
to the indentation depth, for
indentation by a flattened
paraboloid at different values
b=a. The thin solid lines
indicate the solutions for the
complete paraboloid and the
flat punch
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2.5.11 The Cylindrical Flat Punch with Parabolic Cap

For mechanical microscopy and other metrological applications, indenters with a
parabolic cap are important. In the following, we examine such indenters, assum-
ing that the indentation depth is large enough to ensure that the face comes into
complete contact (otherwise we would deal with the simple parabolic contact stud-
ied in Sect. 2.5.3).

The solution for a flat cylindrical punch (as a base body) stems from Abramian
et al. (1964). In their solution the authors used series expansions to fulfill the field
equations. We again show the easier solution within the framework of MDR. The
indenter has the profile (see Fig. 2.28)

f .r/ D
8<
:

r2

2R
; r � a;

1; r > a;

(2.81)
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Fig. 2.28 Normal indenta-
tion by a cylindrical punch
with parabolic cap
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with the radius of curvature of the cap R, and the radius of the base punch a; the
solution of the contact problem is, according to (2.17), given by:

g.x/ D
8<
:
x2

R
; jxj � a

1; jxj > a

;

FN .d/ D 2E�
�
da � a3

3R

�
; dR 	 a2;

�zz.r Id/ D �E�

�R

a2 � 2r2 C dRp
a2 � r2

; r � a; dR 	 a2;

w.r Id/ D 1

�R

h�
2dR � r2

�
arcsin

�a
r

�
C a

p
r2 � a2

i
;

r > a; dR 	 a2: (2.82)

For dR D a2 (of course), we obtain the Hertzian solution from Sect. 2.5.3, and
for R ! 1 that for the cylindrical flat punch from Sect. 2.5.1. The stresses and

Fig. 2.29 Stress distribu-
tion, normalized to the mean
pressure in contact, for in-
dentation by a flat punch with
parabolic cap at different val-
ues dR=a2. The thin solid
lines indicate the solutions
for the paraboloid and the flat
punch
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Fig. 2.30 Displacements
normalized to the indentation
depth, for indentation by a
flat punch with parabolic cap
at different values dR=a2.
The thin solid lines indi-
cate the solutions for the
paraboloid and the flat punch
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displacements for various values of dR=a2 are shown in Figs. 2.29 and 2.30. One
recognizes the limiting cases of the paraboloid and the flat punch marked by solid
lines. The intersection of all normalized pressure curves is at r=a D p

2=3 and
p=p0 D p

3=2.

2.5.12 The Conewith Parabolic Cap

The solution for a cone with a rounded tip, despite its metrological significance, was
found first by Ciavarella (1999). However, Maugis and Barquins (1983) already
knew the relations between the global contact quantities—normal force, contact
radius, and indentation depth—by solving the respective problem with adhesion.
Ciavarella’s solution is based on the general solution by Shtaerman (1949).

The profile (see Fig. 2.31) is described by:

f .r/ D

8̂
<
:̂
r2 tan �

2b
; r � b;

r tan � � b

2
tan �; r > b;

(2.83)

Fig. 2.31 Normal indentation
by a cone with a rounded tip
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with the radius b at the base of the parabolic cap and the slope angle � of the cone.
Note that the radius of curvature of the cap is given by R WD b= tan � to guarantee
continuous differentiability. For the solution to the contact problem, according to
(2.17) one obtains:

g.x/ D

8̂
ˆ̂<
ˆ̂̂:

x2 tan �

b
; jxj � b;

jxj tan �
b

�
jxj �

p
x2 � b2 C b arccos

�
b

jxj
�


; jxj > b;

d.a/ D a

b
tan �

�
a �

p
a2 � b2 C b arccos

�
b

a

��

D a tan �

�
1 � sin '0

cos'0

C '0

�
;

FN .a/ D E�a2 tan �

b

"
b arccos

�
b

a

�
C 4

3

�
a �

p
a2 � b2

�
C 1

3

b2
p
a2 � b2

a2

#

D E�a2 tan �

�
'0 C 4

3

1 � sin '0

cos'0

C 1

3
sin '0 cos'0

�
;

(2.84)
where we introduced the angle:

'0 WD arccos

�
b

a

�
: (2.85)

In the limit b ! 0 we obtain the expressions for the conical indenter from
Sect. 2.5.2, because

lim
'0!�=2

1 � sin '0

cos'0

D 0: (2.86)

For b ! a, i.e., '0 D 0, we obtain solutions of the Hertzian contact problem from
Sect. 2.5.3. For the stresses in the contact area the following expressions result:

�zz.r I a/ D � E� tan �
�b

�

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

2
p
a2 � r2 C b

'0Z

0

.' � 2 tan '/ tan' d'p
1 � k2 cos2 '

; r � b;

2
p
a2 � r2 C b

arcosh.a=r/Z

0

�
arccos

�
b

r cosh '

�
� 2

q
k2 cosh2 ' � 1

	
d';

b < r � a;
(2.87)



2.5 Explicit Solutions for Axially Symmetric Profiles 37

Fig. 2.32 Stress distribu-
tion, normalized to the mean
pressure in contact, for the
indentation by a cone with a
rounded tip at different val-
ues b=a. The thin solid lines
indicate the solutions for the
paraboloid and the cone
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Fig. 2.33 Displacements of
the half-space, normalized
to the indentation depth, for
indentation by a cone with a
rounded tip at different values
b=a. The thin solid lines
indicate the solutions for the
paraboloid and the cone
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with the parameter k WD r=b. For the displacement outside the contact area we get:

w.r I a/ D 2d.a/

�
arcsin

�a
r

�

� tan �

�b

2
4r2 arcsin �a

r

�
� a

p
r2 � a2 C 2b2

'0Z

0

.' � tan'/ tan 'd'

cos'
p
k2 cos2 ' � 1

3
5 ;

r > a: (2.88)

In Figs. 2.32 and 2.33, the normalized stresses and displacements are shown for
some values of the ratio b=a. It is easy to see the limiting cases of the conical and
parabolic indenters marked by the thin lines. The stress distribution is not singular
in the origin due to the rounded tip; this is in contrast to the indentation by an ideal
cone.
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From the equivalent plane profile g.x/ in (2.84) it can be seen that this contact
problem is actually a superposition of three previously solved problems, and the
solution can therefore be obtained from the sum of the corresponding solutions
given in this section. It is indeed

g.x/ D gP

�
xIR D b

tan �

�
C gKS.x/ � gPS

�
xIR D b

tan �

�
: (2.89)

Here, gP denotes the equivalent profile of a paraboloid of radius R (see Sect. 2.5.3),
gKS.x/ the equivalent profile of a truncated cone with the inclination angle � and
the radius b of the flat “tip” (see Sect. 2.5.8), and gPS the equivalent profile of a trun-
cated paraboloid with the radius R and the radius b of the flat “tip” (see Sect. 2.5.10).

2.5.13 The Paraboloid with Parabolic Cap

The contact problem of a paraboloid with parabolic cap indenting an elastic half-
space was first solved by Maugis and Barquins (1983) for the adhesive contact.
However, the case without adhesion is of course included in this solution. As will
be seen, the problem can be considered as a superposition of the indentations by a
paraboloid (see Sect. 2.5.3) and a truncated paraboloid (see Sect. 2.5.10), where the
weighting factors depend on the two radii of the cap and the paraboloid R1 and R2.
The profile has the shape (see Fig. 2.34)

f .r/ D

8̂
<̂
ˆ̂:

r2

2R1

; r � b;

r2 � h2

2R2

; r > b:

(2.90)

The radius of curvature of the cap, R1, must be greater than that of the base
paraboloid, R2, to ensure a compact contact area. The continuity of the profile also
requires

h2 D b2
�
1 � R2

R1

�
; (2.91)

Fig. 2.34 Normal inden-
tation by a sphere with
spherical cap
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for the length h. The equivalent profile within the MDR, seen in (2.17), is given by:

g.x/ D

8̂
ˆ̂<
ˆ̂̂:

x2

R1

; jxj � b;

x2

R1

C jxj
R�

p
x2 � b2; jxj > b;

(2.92)

with the effective radius of curvature

R� WD R1R2

R1 � R2

: (2.93)

It is easy to see that (2.92) can be thought of as a sum:

g.x/ D gP .xIR D R1/ C gPS.xIR D R�/: (2.94)

Here, gP and gPS denote the equivalent profiles of the paraboloid (see (2.29)) and
the truncated paraboloid (see (2.78)). The solution of the contact problem is, there-
fore, given by:

d.a/ D a2

R1

C a

R�
p
a2 � b2;

FN .a/ D 2E�

3

�
2a3

R1

C 1

R� .2a
2 C b2/

p
a2 � b2



;

�zz.r I a/ D �E�

�

8̂
ˆ̂<
ˆ̂̂:

2
p
a2 � r2

R1

C
Z a

b

.2x2 � b2/dx

R�p
x2 � b2

p
x2 � r2

; r � b;

2
p
a2 � r2

R1

C
Z a

r

.2x2 � b2/dx

R�p
x2 � b2

p
x2 � r2

; b < r � a;

w.r I a/ D wP .r I aIR D R1/ C wPS.r I aIR D R�/; r > a: (2.95)

Here, wP and wPS denote the displacements in the indentation by a complete and
cut-off paraboloid:

wP .r I aIR1/ D a2

�R1

"�
2 � r2

a2

�
arcsin

�a
r

�
C

p
r2 � a2

a

#
;

wPS.r I aIR�/ D 2a

�R�
p
a2 � b2 arcsin

�a
r

�

� 1

�R�

" �
r2 � b2

�
arcsin

 p
a2 � b2p
r2 � b2

!

�
p
a2 � b2

p
r2 � a2

#
: (2.96)
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Fig. 2.35 Stress distribu-
tion, normalized to the mean
pressure in contact, for inden-
tation by a paraboloid with
round cap for b=a D 0:5 at
different values R1=R

�. The
thin solid lines indicate the
solutions for the complete
paraboloid and the truncated
paraboloid
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Fig. 2.36 Displacements
of the half-space, normal-
ized to the indentation
depth, for indentation by a
paraboloid with a round cap
for b=a D 0:5 at different
values R1=R

�. The thin solid
lines indicate the solutions
for the complete paraboloid
and the truncated paraboloid
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For R1 D R2, respectively R� ! 1, we obtain the Hertzian solution from
Sect. 2.5.3, and for R1 ! 1 the solution of the truncated paraboloid from
Sect. 2.5.10.

Since the solution is determined by two parameters, b=a and R1=R
�, it would

be very ponderous to try to show all solutions for the stresses and displacements in
a single diagram. Moreover, the superposition (2.94) already clarifies the structure
of the solution. Therefore, the dependencies are shown only for b=a D 0:5 in
Figs. 2.35 and 2.36. One recognizes the limiting cases given by the thin solid lines
and the stress singularity at the sharp edge at r D b, which is more localized when
approaching the parabolic solution.
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2.5.14 The Cylindrical Flat Punch with a Rounded Edge

A real flat cylindrical punch will never have a perfectly sharp edge but will always
be rounded. The influence of this curvature on the normal contact problem was
investigated for both plain and axisymmetric contacts by Schubert (1942) (see also
later papers by Ciavarella et al. (1998) and Ciavarella (1999), who presented a
solution to the rotationally symmetric problem based on Shtaerman’s (1949) general
solution). The indenter has the profile (see Fig. 2.37):

f .r/ D
8<
:
0; r � b;

.r � b/2

2R
; r > b;

(2.97)

with the radius of curvature of the rounded corner, R, and the radius of the blunt
end, b. The contact problem is solved according to (2.17) by the relations:

g.x/ D
8<
:
0; jxj � b;

jxj
R

�p
x2 � b2 � b arccos

�
b

jxj
�	

; jxj > b;

d.a/ D a

R

�p
a2 � b2 � b arccos

�
b

a

�	
D a2

R
.sin '0 � '0 cos'0/ ;

FN .a/ D E�

3R

�p
a2 � b2.4a2 � b2/ � 3ba2 arccos

�
b

a

�	

D E�a3

3R

�
sin '0.4 � cos2 '0/ � 3'0 cos'0


; (2.98)

with the angle:

'0 WD arccos
�
b

a

�
: (2.99)

For b D 0, the Hertzian solution from Sect. 2.5.3 is recovered, and for R D 0

and b D a, i.e., '0 D 0, the solution for the cylindrical flat punch from Sect. 2.5.1.

Fig. 2.37 Normal indentation
by a flat cylindrical punch
with a rounded edge
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Fig. 2.38 Stress distribu-
tion, normalized to the mean
pressure in contact, for in-
dentation by a flat punch with
rounded corners at different
values b=a. The thin solid
lines indicate the solutions
for the paraboloid and the flat
punch
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It can be seen from the form of the function g.x/ that this contact problem ac-
tually represents a sum of two already solved problems and, therefore, the solution
can be obtained via an appropriate superposition. It is:

g.x/ D gPS.x/ � gKS

�
xI tan � D b

R

�
: (2.100)

Here gPS.x/ denotes the equivalent profile of a truncated paraboloid (see (2.78))
and gKS that of a truncated cone (see (2.72)) whose conical angle of inclination �

is determined by the relationship tan � D b=R. For the stresses and displacements
we get:

�zz.r I a/ D �E�

�R

8̂
ˆ̂<
ˆ̂̂:

Z a

b

�
2
p
x2 � b2 � b arccos
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x

��
dxp

x2 � r2
; r � b;

Z a

r

�
2
p
x2 � b2 � b arccos

�
b

x

��
dxp

x2 � r2
; b < r � a;

w.r I a/ D 2d.a/

�
arcsin

�a
r

�

� 2

�

2
4

aZ

b

x

R

�p
x2 � b2 � b arccos

�
b

x

��
dxp

r2 � x2

3
5 ; r > a:

(2.101)
These are shown in Figs. 2.38 and 2.39. Due to the rounded edge, the stress at the
edge of the contact—in contrast to the indentation by a flat cylindrical punch—is
not singular.
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Fig. 2.39 Displacements,
normalized to the indentation
depth, for the indentation by
a flat punch with rounded
corners at different values
b=a. The thin solid lines
indicate the solutions for the
paraboloid and the flat punch
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2.5.15 The Concave Paraboloid (Complete Contact)

For concave indenters of certain profile geometries, the contact problem can be
solved analytically and in closed form using the previously applied methods, as-
suming the contact area remains compact. Sharp concave corners or edges—such as
the cases of a cylinder with a central recess or a concave cone—render this impossi-
ble. For these cases of annular contact areas, there sometimes exist semi-analytical
solutions in the form of series expansions, which will be detailed in Chap. 10 of this
book. The interested reader can also refer to the respective publications of Collins
(1963) and Barber (1976, 1983). Complete contact of the concave paraboloid can
be ensured if the normal force is large enough. The solution to this problem was
discovered by Schubert (1942) (see also Barber 1976). The profile can be charac-
terized by:

f .r/ D
8<
:

�hr2

a2
; r � a;

1; r > a:

(2.102)

For the notation, see Fig. 2.40.

Fig. 2.40 Normal indenta-
tion by a parabolic concave
indenter
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Fig. 2.41 Stress distribution,
normalized to the average
pressure, for the indentation
by concave paraboloid with
different values h=d0. The
thin solid line represents the
solution for the flat cylindri-
cal punch
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The contact problem is solved according to (2.17) by the relationships:

g.x/ D

8̂
ˆ̂<
ˆ̂̂:

�2hjxj
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jxjZ
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r drp
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1; jxj > a;
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d0 C 2h

3

�
;

�zz.r Id0/ D �E� �d0a2 � 2h.a2 � 2r2/


�a2
p
a2 � r2
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w.r Id0/ D 2

�

aZ
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�
d0 C 2hx2
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�
dxp

r2 � x2

D 2d0

�
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�a
r

�
C 2h

�a2

�
r2 arcsin

�a
r

�
� a

p
r2 � a2

�
; r > a:

(2.103)
Setting h D 0 yields the solution for the flat cylindrical punch. For complete

contact, condition �zz.r D 0/ < 0 must be satisfied, which leads to the condi-
tions d0 > 2h, or equivalently, FN > 16E�ah=3. The normalized stresses and
displacements are shown in Figs. 2.41 and 2.42.

2.5.16 The Concave Profile in the Form of a Power-Law (Complete
Contact)

We will briefly focus on the indentation through a concave power profile in the form
of:

f .r/ D
8<
:

�hrn

an
; r � a;

1; r > a
n 2 RC: (2.104)
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Fig. 2.42 Displacements of
the half-space, normalized
to the indentation depth, for
the indentation by a concave
paraboloid with different
values h=d0. The thin solid
line represents the solution
for the flat cylindrical punch
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The notations can again be taken from Fig. 2.40. If the normal force is large enough
to ensure complete contact, the solution to the contact problem is, following (2.17),
given by:

g.x/ D
8<
:

�	.n/
hjxjn
an

; jxj � a;

1; jxj > a

FN .d0/ D 2E�a
�
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�
;

�zz.r Id0/ D �E�
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�	.n/nhxn�1
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dxp
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C d0 C 	.n/hp
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9=
; ; r � a;

w.r Id0/ D 2

�

aZ

0

�
d0 C 	.n/hxn

an

�
dxp

r2 � x2
; r > a; (2.105)

with the indentation depth in the middle of the contact, d0, and the scaling factor

	.n/ WD p
�


.n=2 C 1/


 Œ.n C 1/=2�
; (2.106)

with the gamma function 
.�/


.z/ WD
1Z

0

tz�1 exp.�t/ dt: (2.107)

For details relating to integrals occurring in the stresses and displacements, see
Sect. 2.5.8.



46 2 Normal Contact Without Adhesion

One can ask how large the indentation depth must be in order to ensure complete
contact. For n � 2, the minimum of the contact pressure will be in the center of the
contact (and the center point will be the last one to make contact during indentation).
In this case the condition of complete contact can be determined easily and without
evaluating the aforementioned integrals. One obtains that �zz.r D 0/ < 0 if

d0 > h
	.n/

n � 1
; 1 < n � 2: (2.108)

From this it can be seen that, for a concave cone (and hence n D 1), and in general
for all concave profiles with n � 1, no complete contact can be realized. This was
already known to Barber (1976). Therefore, for the relations occurring in (2.105),
it must be n > 1. For exponents n > 2 the minimum contact pressure in complete
contact lies away from the contact midpoint. During indentation, first the contact
annulus propagates inside. After a first critical point, contact is established in the
contact center and an additional circular contact area grows from the inside. Com-
plete contact is established if the inner contact circle and the outer contact annulus
overlap. The determination of the criterion of complete contact for n > 2 is a non-
trivial task (and usually only possible numerically by finding the minimum of the
contact pressure and setting the minimal pressure to zero), which was solved by
Popov et al. (2018). For a simple example which is possible to analyze in closed
form, we can examine the results for the case n D 4. The pressure distribution for
complete contact is given by:

p.r/ D ��zz.r Id/ D E�

�

"
3d C 5h

3
p
a2 � r2

� 32h

9a

r
1 � r2

a2

�
1 C 2r2

a2

�#
: (2.109)

Conditions p0.rc/ D 0, and simultaneously p.rc/ D 0, lead to 3d D 7h, i.e., full
contact is established for:

d0 >
4

3
h: (2.110)

2.5.17 The Paraboloid with Small Periodic Roughness (Complete
Contact)

Finally, a simple analytical model of a parabolic indenter with periodic surface
roughness is presented. The influence of roughness gains great importance in the
treatment of the adhesive normal contact (see Sect. 3.5.14 in Chap. 3). Nonetheless,
it can also be of interest for the non-adhesive contact. The contact problem was
first solved by Guduru (2007). His solution uses a superposition method, which
amounts to the same algorithm as the MDR, i.e., determining the auxiliary function
g.x/, which basically solves the contact problem.

Let the examined three-dimensional profile have the shape:

f .r/ D r2

2R
C h

�
1 � cos

�
2�

�
r

��
; (2.111)

http://dx.doi.org/10.1007/978-3-662-58709-6_3
http://dx.doi.org/10.1007/978-3-662-58709-6_3
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with the amplitude h and the wavelength � of the roughness, as well as the usual ra-
dius of the paraboloidR. Once more we assume a compact contact area. The chapter
on adhesive normal contact imposes even stricter limitations requiring f 0.r/ 	 0

(see Sect. 3.5.14). For the equivalent profile we obtain:

g.x/ D jxj
jxjZ

0

�
r

R
C 2�

�
h sin

�
2�

�
r

��
drp

x2 � r2

D x2

R
C �2h

�
jxjH0

�
2�

�
jxj
�
: (2.112)

Here, Hn.�/ denotes the n-th order Struve function, which can be expanded as a
power series:

Hn.u/ WD
1X
kD0

.�1/k



�
k C 3

2

�


�
k C n C 3

2

� �u
2

�2kCnC1

; (2.113)

with the Gamma function 
.�/:


.z/ WD
1Z

0

tz�1 exp.�t/ dt: (2.114)

From (2.113) the following differentiation property of the Struve function can be
proven:

d

du
ŒHn.u/� D Hn�1.u/ � n

u
Hn.u/: (2.115)

The relationships between the global contact quantities FN , d and a using (2.17)
are given by equations:

d.a/ D a2
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�
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FN .a/ D 4E�a3
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�	
: (2.116)

For the stresses in the contact area we obtain:

�zz.r I a/ D
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(2.117)

http://dx.doi.org/10.1007/978-3-662-58709-6_3
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Fig. 2.43 Pressure distri-
bution, normalized to the
average pressure in the
contact, for the indenta-
tion by a paraboloid with
small periodic roughness at
hR=�2 D 0:1 and different
values �=a. The thin solid
line represents the solution
for the smooth paraboloid
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and the displacements outside the contact area are given by:

w.r I a/ D 2d.a/

�
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� 1
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� 2�
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0

xH0

�
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�
x

�
dxp

r2 � x2
; r > a: (2.118)

The stresses normalized to the average pressure in the contact are displayed in
Fig. 2.43. The influence of the periodic roughness on the pressure distribution is
quite apparent. Figure 2.44 shows the three-dimensional profile and also the equiv-
alent one-dimensional profile.
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2.5.18 Displacement in the Center of an Arbitrary Axially
Symmetric Pressure Distribution

The displacement w1D.x/ of the one-dimensional MDR-model is given by (2.16):

w1D.x/ D qz.x/

E� D 2

E�

1Z

x

rp.r/p
r2 � x2

dr: (2.119)

Setting x D 0 yields the indentation depth d0, which in the context of the MDR is
defined as the vertical displacement of the coordinate origin:

d0 D w1D.x D 0/ D w.r D 0/ D 2

E�

1Z

0

p.r/dr: (2.120)

2.5.19 Contacts with Sharp-Edged Elastic Indenters

Flat cylindrical indenters, as well as all other indenters which generate singulari-
ties in the stress distribution (conical indenter and truncated cone, etc.), violate the
necessary conditions of the half-space approximation at least for one of the contact-
ing bodies. While the given solutions are accurate for rigid profiles, they must be
modified for elastic profiles. The relationship of the elastic moduli of the indenter
and the half-space, as well as the angle at the sharp edge of the indenter, determine
whether the stress concentration at the sharp edge result in different singularities or
even no singularity at all.

This problem was systematically examined by Rao (1971). Rao considered the
stress and displacement fields in the vicinity of the sharp edge for widely varying
classes of problems. Here, we will limit our consideration to the frictionless normal
contact between an axisymmetric elastic indenter and an elastic half-space. The
used notation is displayed in Fig. 2.45.

The stress state in the region of the sharp edge is approximately two-dimensional,
and the normal stress at distance s from the sharp edge is given by:

�zz 
 s��1; (2.121)

Fig. 2.45 Edge of an elastic
indenter (diagram visualizing
the notations used)

E2

E1

α
s
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where � indicates the smallest eigenvalue of the respective boundary value problem.
The eigenvalue equation of the considered problem can be written as:

tan.��/ Œ� sin.2˛/ C sin.2�˛/�

C e
�
1 � cos.2�˛/ � �2.1 � cos.2˛//

 D 0: (2.122)

Here, ˛ is the angle at the sharp edge (measurement taken within the indenting
body) and e D E2=E1 is the relationship of the elasticity moduli of the indenter
(index “2”) and the half-space (index “1”). Interestingly, the respective Poisson’s
ratios have no effect on this characteristic equation.

A singularity in the stress distribution occurs at the sharp edge if the smallest
non-trivial solution (2.122) is smaller than one. The limiting case, � D 1, arises
precisely when the relationship of the moduli is set to:

ecrit D � cos˛

sin ˛ � cos˛
: (2.123)

Greater values of e will result in singularities. However, (2.123) only has a posi-
tive solution for e if ˛ � �=2. Therefore, in principle, greater angles always result
in singularities, whose concrete shape is determined by the solution of the eigen-
value equation (2.122). As an example, for the rigid flat cylindrical punch with
˛ D �=2 and e ! 1, the result is the familiar singularity of the Boussinesq
solution, � D 1=2.

How can the stresses be expressed in the entire contact area? For this, Jordan and
Urban (1999) proposed the following expression for rectangular indenters in a plane
(which can be directly applied to rotationally symmetric problems with cylindrical
flat punches):

�zz.r I a; �/ D �FN � M.�; a/.a2 � r2/��1: (2.124)

The case of the rigid cylindrical punch coincides with the known Boussinesq so-
lution, and the stresses exhibit the required singularity property (2.121) since for
s D a � r � a:

a2 � r2 D .a � r/.a C r/ D s.a C r/ � 2as: (2.125)

The functionM.�; a/ is derived from the normalization:

FN D �2�

aZ

0

�zz.r/r dr; (2.126)

and therefore:

M.�; a/ D �

�a2�
: (2.127)
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2.6 Mossakovskii Problems (No-Slip)

In the preceding sections, we considered frictionless normal contact problems. As-
suming different elastic materials, the material points of the contacting surfaces will
experience differing radial displacements. If we set aside the unrealistic assumption
of ideally frictionless surfaces .� D 0/, this slip will always cause radial tangential
stresses. Consequently, the frictionless normal contact can only be considered the
theoretical limiting case. The contact area generally consists of an inner stick zone
and an outer slip zone. This normal contact problem with friction was examined
by Spence (1975). It is supremely complicated, and thus only permits numerical
solutions. Instead, we will just consider the other theoretical limiting case which
describes complete stick within the contact area .� ! 1/. Figure 2.46 illustrates
the indentation of an elastic half-space by a rigid curved indenter with complete
stick. Also displayed are the displacement paths of individual surface points. Sur-
face points that contact the indenter during the indentation process stick completely,
eliminating the possibility of any further radial displacement. This condition is ex-
pressed through the boundary condition:

@ur.r; a/

@a
D 0; r � a; (2.128)

and it is used instead of the boundary condition for the frictionless normal contact
according to (2.4) which assumes a frictionless contact. Here, it should be noted that
for the contact of two elastic bodies, the radial displacement from (2.128) simply
represents the relative radial displacement of the surface points.

The solution of the normal contact problem with complete stick for arbitrary
axially symmetric normal contacts goes back to Mossakovskii (1963). In 1954,
he had already developed the solution for the contact of the flat cylindrical punch.
Therefore, normal contacts with complete stick are also referred to asMossakovskii
problems. Their solutions are significantly more complex than frictionless contacts,
and the simplest approach to solving them is with theMDR. This requires redefining
the spring stiffness compared to (2.5) and deriving the equivalent one-dimensional

FN

2a

f ( )

d
Motion path of a
surface particle

r

Fig. 2.46 Illustrating the boundary condition of full stick for the indentation of an elastic half-
space by a rigid indenter (modeled after Spence 1968)
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profile from an equation significantly more complicated than (2.6). The calculation
of the global relationships between normal force, indentation depth, and contact
radius follows the exact same template as described in Sect. 2.3.2. To describe the
normal contact between two completely sticking elastic bodies, the spring stiffness
is set to:

�kz D E�

2ˇD

ln
�
1 C ˇD

1 � ˇD

�
�x: (2.129)

Here, E� denotes the effective elasticity modulus defined in (2.1):

1

E� D 1 � �21
E1

C 1 � �22
E2

; (2.130)

and ˇD Dundur’s second constant:

ˇD WD .1 � 2�1/G2 � .1 � 2�2/G1

2.1 � �1/G2 C 2.1 � �2/G1

: (2.131)

Many contact problems with complete stick featured in the literature make the sim-
plifying assumption of one body being rigid. In this case, the spring stiffness from
(2.129) is simplified to:

�kz D 2G ln.3 � 4�/

1 � 2�
�x: (2.132)

The relationship between the three-dimensional profile f .r/ and the equivalent one-
dimensional profile g.x/ is given by equation:

f .r/ D 2

�

rZ

0

1p
r2 � x2

xZ

0

g0.t/ cos
�
# ln

�
x � t

x C t

��
dtdx

with # WD 1

2�
ln
�
1 C ˇD

1 � ˇD

�
: (2.133)

For ˇD D 0, it coincides with the inverse transform of the profile for a frictionless
contact according to (2.7). While explicitly solving for g(x) is possible in princi-
ple, it leads to either a very unwieldy, extremely complicated calculation which can
be referenced in Fabrikant’s (1986) work, or a notation using the Mellin inverse
transform (Spence 1968). We will forgo providing an explicit expression since
an analytical calculation of the equivalent one-dimensional profile g(x) for a given
axially symmetric profile f (r) is generally only possible using numerical methods
anyway. The sole exception seems to be the power-law profile, which we will ex-
amine in greater detail in Sect. 2.6.2. To calculate the respective one-dimensional
equivalent profile, the implicit formulation in (2.133) will prove sufficient.

The elasticity parameter # in (2.133) illustrates a major difference to the fric-
tionless contact: the equivalent one-dimensional profile is no longer exclusively
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dependent on the geometry of the axially symmetric contact; it is also affected by
the elastic properties of the contacting bodies.

As previously mentioned, the calculation of the relationships between inden-
tation depth, contact radius, and normal force follows the same template as the
frictionless normal contact. Only the modified spring stiffness from (2.129) and the
equivalent profile determined by (2.133) must be accounted for. We will summarize
the essential equations. First, the surface displacement of the Winkler foundation is
determined to be:

w1D.x/ D d � g.x/: (2.134)

At the edge of all non-adhesive contacts, the displacement must be zero, thus for-
mulating a condition for calculating the indentation depth:

w1D.˙a/ D 0 ) d D g.a/: (2.135)

Additionally, the sum of all spring forces must balance out the applied normal force.
Consideration of the modified stiffness in accordance with (2.129) yields:

FN D E�

ˇD

ln
�
1 C ˇD

1 � ˇD

� aZ

0

w1D.x/dx: (2.136)

Naturally, the local quantities obey different calculation formulas compared to the
frictionless contact. Apart from the normal surface displacement and the pressure
distribution, the tangential stresses within the contact area are also of importance.
Said quantities can be determined solely from the known normal displacement of
the Winkler foundation. Here, we will state them for the special case of a rigid
indenter pressed into an elastic half-space:
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(2.137)
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2.6.1 The Cylindrical Flat Punch

The normal contact of a rigid flat cylindrical punch with an elastic half-space with
complete stick was initially solved by Mossakovskii (1954). Within the framework
of the MDR, the equivalent plane profile is derived from the cross-section of the flat
indenter in the x–z-plane—no change in the geometry is required. The displacement
of the Winkler foundation is then given by:

w1D.x/ D d ŒH.x C a/ � H.x � a/� ; (2.138)

where H.�/ represents the Heaviside step function. Substituting this into (2.136)
under consideration of the rigidity of the indenter yields the normal force:

FN D 4G ln.3 � 4�/

1 � 2�
da: (2.139)

The contact stiffness then takes on the form:

kM
z WD dFN

dd
D 4G ln.3 � 4�/

1 � 2�
a: (2.140)

The validity of this contact stiffness for arbitrary axially symmetric contacts fol-
lows immediately from Mossakovskii’s (1963) work. Accordingly, the incremental
difference of two-contact configurations with the contact radii a and aCda is equiv-
alent to the infinitesimal indentation of an elastic half-space by a cylindrical flat
punch with radius a. This applies regardless of whether a normal contact with com-
plete stick or a frictionless contact is being considered. Nevertheless, the works of
Borodich and Keer (2004) and also Pharr et al. (1992) are still frequently cited,
which prove the universal validity of the normal contact stiffness using a different,
more complex approach. For the frictionless normal contact, the contact stiffness
is given by (2.21). A comparison of the two values of contact stiffness reveals that
the contact stiffness for complete stick is generally greater than for frictionless con-
tact. This is a direct result of the suppressed relative displacement of the contacting
surfaces. The contact stiffness only coincides for incompressible materials since,
in this case, no tangential forces arise in the contact area due to the radial displace-
ment of the material being restricted. For the ratio between the contact stiffness for
complete stick and frictionless contact, it follows that:

kM
z

kz
D .1 � �/ ln.3 � 4�/

1 � 2�
: (2.141)

For common materials with Poisson’s ratios in the range of 0 � � � 0:5, the con-
tact stiffness for complete stick is at most 10% greater than for frictionless normal
contacts. This maximum is reached at � D 0. For synthetic materials characterized
by negative Poisson’s ratios, the relative discrepancy can reach values of up to 30%,
which is documented in Fig. 2.47. Viewed over the entire physical domain, the rela-
tive discrepancy decreases monotonically with a rising Poisson’s ratio. The relative
discrepancy reaches its maximum for the limiting case � ! �1. It should be noted
that both values of contact stiffness approach infinity for � ! �1. At this point, the
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contact compliance …, which represents the inverse of the stiffness, is zero. Arga-
tov et al. (2012) examined the impact of negative Poisson’s ratios on on the stress
distribution, thereby discovering that the location of the greatest shear stress moves
towards the surface for smaller Poisson’s ratios. This is because of the increasing
tangential stresses in the contact area for decreasing Poisson’s ratios. Figure 2.48
puts in contrast the differing contact compliances for Boussinesq and Mossakovskii
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Fig. 2.48 Comparison of the normalized normal contact compliances as functions of the Poisson’s
ratio � for Boussinesq and Mossakovkii problems
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Fig. 2.49 Pressure distribution for the indentation by a flat cylindrical indenter for different Pois-
son’s ratios �, normalized to the average pressure p

problems. It is apparent that the compliance maximum of Mossakovskii problems
are not located at � D 0 but instead at � � 0:11, as stated by Argatov et al. (2012).

The derivative of the profile (2.138) with respect to the coordinate x is required
for calculating the local quantities according to (2.137), and is:

w0
1D.x/ D d Œı.x C a/ � ı.x � a/� ; (2.142)

with the Delta function ı.�/. Taking into account its filtering properties, it follows
from (2.137) that the solutions for the local quantities are:
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They correspond exactly to the quantities calculated by Mossakovskii (1963) and
Spence (1968). Regrettably, the remaining integrals are only solvable using nu-
merical methods. The pressure distribution normalized to the average pressure p

within the contact area is visualized for different Poisson’s ratios in Fig. 2.49. For
incompressible materials, i.e., � D 1=2, the curve exactly matches the one for the
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Fig. 2.50 Tangential stresses for the indentation by a flat cylindrical indenter for different Pois-
son’s ratios �, normalized to the average pressure p

frictionless contact (compare this to Fig. 2.5). For regular positive Poisson’s ratios,
there is no distinguishable difference between the graphs. Only once the Poisson’s
ratios drop to negative values the pressure in the center notably increases. There
is characteristic behavior of the stresses solely at the edge of the contact, which is
already visible in solution (2.143). Here, stress oscillations occur, even leading to
tensile stresses. On the one hand, these fluctuations can be viewed as indicators that
the assumption of complete stick is self-contradictory for normal contact, indicating
that slip at the contact edge is unavoidable (Zhupanska 2009). On the other hand,
the oscillations are localized so close to the contact edge that this zone need not be
ascribed significant importance.1

The tangential stresses in Fig. 2.50 are zero at the center of the contact and
feature a singularity at the edge that is comparable to the one caused by the normal
stresses. For the incompressible case, no tangential stresses occur in the contact area
since the material resists radial displacements. Expanding the examination to the
contact between two elastic materials, the tangential stresses in the contact area are
zero when Dundur’s second constant, defined in (2.131), vanishes. This condition
is, indeed, satisfied for the contact between a rigid and an incompressible medium.

The curve of the normal surface displacement normalized to the respective inden-
tation depth is shown in Fig. 2.51. The curves for � D 1=2 and � D 0:3 are nearly
indistinguishable, so that their shape can be approximated by the displacements for
a frictionless normal contact described by (2.22). A more detailed analysis of the
displacements can be referenced in the publication of Fabrikant (1986).

1 In the plane case, the normal stresses initially changes signs at x D 0:9997a.
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2.6.2 The Profile in the Form of a Power-Law

The normal contact of a profile in the shape of a power-law was examined for the
case of complete stick by both Mossakovskii (1963) and Spence (1968). As shown
for the frictionless contact, a power-law profile is mapped to a power-law profile:

f .r/ D cnr
n 7! g.x/ D 	.n; �/f .jxj/ for n 2 RC: (2.144)

The scaling factor 	.n; �/ can be determined by simply substituting (2.144) in
(2.133). A complicated integration is unnecessary; a trivial normalization of the
integral variables is sufficient. This leads to:

	.n; �/ D
p
�


�
1 C n

2

�


�
1Cn
2

�
nI �.n/
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I �.n/ WD
1Z

0

tn�1 cos

�
# ln

�
1 � t

1 C t

��
dt; (2.145)

with the definition of # from (2.133). A comparison of the scaling factors to
the ones for the frictionless contact is easily performed by setting ˇD D 0, i.e.,
by assuming similar elastic materials and yielding # D 0, and consequently,
nI �.n/ D 1. From (2.145), we obtain the scaling factors for the frictionless con-
tact defined in (2.61). In the following, we will operate under the assumption of
one rigid body. In this case, the other body must be incompressible to prevent
tangential stresses from occurring in the contact surface. The limiting curve for
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� D 1=2 in Fig. 2.52 must exactly coincide with the curve from Fig. 2.21, which
displays the scaling factor as a function of the exponents of the profile function for
the frictionless contact.

In contrast, complete stick in the normal contact between a rigid power-law in-
denter and a compressible, elastic half-space results in tangential stresses in the
contact surface. The full description of such a contact requires greater scaling fac-
tors, also given in Fig. 2.52. The smaller the Poisson’s ratio, the greater the scaling
factor. The area shaded in gray represents the range of values of the scaling factors
for common materials.

Since the integral I �.n/ in formula (2.145) of the scaling factor is generally
only solvable numerically, the corresponding value for selected Poisson’s ratios and
exponents is provided in Table 2.2. These are of particular importance for axially
symmetric profiles that are either defined by a polynomial or a Taylor expansion.

The equivalent plane profile was already determined in (2.144). Applying for-
mulas (2.135) and (2.136) yields the indentation depth and the normal force as a
function of the contact radius:

d.a/ D 	.n; �/cna
n;

FN .a/ D 4G ln.3 � 4�/

1 � 2�

n

n C 1
	.n; �/cna

nC1: (2.146)

The calculation and graphical representation of surface stresses and displacements
will be omitted at this point. However, we will analyze the particular cases of the
conical (n = 1) and parabolic (n = 2) contact.
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Table 2.2 Stretch factor 	 as a function of the exponent of the power-law and Poisson’s ratio

Poisson’s ratio �
�1 �0.5 0 0.3 0.5

Exponent n
of the
power-law
profile

0.5 1.429 1.389 1.348 1.322 1.311
1 1.831 1.746 1.651 1.594 1.571
2 2.617 2.402 2.177 2.049 2
3 3.398 3.014 2.638 2.433 2.356
4 4.189 3.602 3.056 2.771 2.667
5 5.000 4.175 3.444 3.077 2.945
6 5.840 4.739 3.811 3.360 3.2
7 6.714 5.298 4.159 3.623 3.436
8 7.626 5.855 4.494 3.872 3.657
9 8.582 6.412 4.816 4.107 3.866
10 9.588 6.971 5.123 4.332 4.063

Poisson’s ratio �
�1 �0.5 0 0.3 0.5

Exponent n
of the
power-law
profile

0.5 1.429 1.389 1.348 1.322 1.311
1 1.831 1.746 1.651 1.594 1.571
2 2.617 2.402 2.177 2.049 2
3 3.398 3.014 2.638 2.433 2.356
4 4.189 3.602 3.056 2.771 2.667
5 5.000 4.175 3.444 3.077 2.945
6 5.840 4.739 3.811 3.360 3.2
7 6.714 5.298 4.159 3.623 3.436
8 7.626 5.855 4.494 3.872 3.657
9 8.582 6.412 4.816 4.107 3.866
10 9.588 6.971 5.123 4.332 4.063

2.6.3 The Cone

We will now consider the normal contact of a rigid cone and a planar elastic half-
space under the condition of complete stick. The shape of the profile function is
given by:

f .r/ D r tan � (2.147)

(see Fig. 2.7). The equivalent plane profile follows as a special case of (2.144),
where the scaling factor (2.145) must be determined. An analytical expression for
the integral I �, and consequently the stretch factor (solely in this case), is published
in literature (see Spence 1968):

	.1; �/ D �

2I �.1/
D �

2

1 � 2�

�#
p
3 � 4�

D �.1 � 2�/

ln.3 � 4�/
p
3 � 4�

: (2.148)

The equivalent profile is then:

g.x/ D �.1 � 2�/

ln.3 � 4�/
p
3 � 4�

jxj tan �: (2.149)

Substituting this last result into formulas (2.135) and (2.136), followed by a basic
calculation, leads to the indentation depth and normal force

d.a/ D �.1 � 2�/

ln.3 � 4�/
p
3 � 4�

a tan �;

FN .a/ D 2G�p
3 � 4�

a2 tan �: (2.150)

We omit explicitly providing the stresses and normal surface displacements since,
once again, the integrals in expression (2.137) can only be solved numerically.



2.6 Mossakovskii Problems (No-Slip) 61

Fig. 2.53 Pressure distri-
bution in the conical contact
for different Poisson’s ratios
�, normalized to the average
pressure p
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The results for the normal and tangential stresses via numerical integration are vi-
sualized in Figs. 2.53 and 2.54. Note again that the differences in the pressure
distribution compared to the frictionless contact are minimal. The magnitude of the
tangential stresses increases towards the center. As expected, they increase with a
decreasing Poisson’s ratio.
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Fig. 2.54 Tangential stresses in the conical contact for different Poisson’s ratios �, normalized to
the average pressure p
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2.6.4 The Paraboloid

Finally, we will cover the important parabolic contact with complete stick, which
can be considered an approximate solution for various curved surfaces, and was
solved by Mossakovskii (1963) as well as by Spence (1968). The axially symmetric
profile is given by:

f .r/ D r2

2R
; (2.151)

where R denotes the curvature radius of the paraboloid. The equivalent one-
dimensional profile follows from (2.144):

g.x/ D 	.2; �/
x2

2R
: (2.152)

In contrast to the conical contact, the stretch factor can only be calculated numeri-
cally. Selected values can be found in Table 2.2. Spence (1968) did provide a good
approximation for the scaling factor:

	.2; �/ � 2

1 � 0:6931.2#/2 C 0:2254.2#/4
with

#.�/ D 1

2�
ln.3 � 4�/: (2.153)

The indentation depth can be determined from (2.135), from which we can then
derive the condition of the vanishing displacement of the Winkler foundation at the
contact edge. Additionally, the normal force can be calculated from the balance
of forces in the z-direction in accordance with (2.136). The indentation depth and
normal force then follows as:

d.a/ D 	.2; �/
a2

2R

FN .a/ D 4G

3R

ln.3 � 4�/

1 � 2�
	.2; �/a3: (2.154)

However, analytical solutions of the surface stresses and normal displacements
do not appear possible. Although Zhupanska (2009) claimed to have analytically
calculated these quantities, her formulas contain series and integral expressions.
Taking into account the surface displacement of the Winkler foundation in for-
mulas (2.137), a numerical calculation leads to the solutions for the normal and
tangential stresses shown in Figs. 2.55 and 2.56. From the pressure distribution in
Fig. 2.55, it is apparent that the pressure maximum in the center of the contact area
increases with a decreasing Poisson’s ratio. The contact radius decreases simulta-
neously which, due to the normalization with respect to the contact radius, is not
represented in the figure. The tangential stresses are zero in the center and at the
edge. As expected, they increase with a decreasing Poisson’s ratio. The curve for
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Fig. 2.55 Pressure distribution in the contact with a paraboloid for different Poisson’s ratios �,
normalized to the average pressure
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Fig. 2.56 Normalized tangential stresses in the contact with a paraboloid for different Poisson’s
ratios �

� D 0:3 coincides exactly with Zhupanska’s (2009), who utilized torus coordinates
for the solution.

For the sake of completeness, the normal surface displacement for several Pois-
son’s ratios is given in a graphical representation in Fig. 2.57. The figure offers a
clear illustration of the fact that achieving the same contact area requires a greater
indentation depth than for the frictionless contact.
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Fig. 2.57 Normalized normal surface displacement of the half-space for indentation by a
paraboloid for different Poisson’s ratios �
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