
10Annular Contacts

In this chapter, we will turn our attention back to contact problems with an ide-
ally elastic, homogeneous, isotropic half-space. However, now the contact area
is not compact but instead ring-shaped. The simplest example of such a problem
is the contact between a flat, hollow cylindrical punch and the half-space. Even
for this simplest of examples, there exists only an extremely complicated solution.
Nonetheless, for this class of problems there exists a range of analytical approaches
which will be documented in this chapter. These approaches are for the frictionless
normal contact with and without adhesion and the non-slipping, purely torsional
contact.

10.1 Frictionless Normal Contact without Adhesion

Due to its complexity, the Boussinesq problem of ring-shaped contact areas, i.e., the
frictionless normal contact without adhesion between a rigid indenter and an elastic
half-space with the effective elasticity modulus E�, has rarely been considered in
literature. Of most practical importance is the case of indenters in the form of
hollow cylinders. Some concave rotationally symmetric indenter profiles have been
studied as well. The problem here lies in the fact that, for a small normal load and
the corresponding ring-shaped contact area, the inner contact radius is unknown and
must be determined—as is generally the case for contact problems—as part of the
solution. Barber (1974) observed that the current contact area Ac must be the one
which maximized the normal force FN . From the resulting condition
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ˇ̌
ADAc

D 0 (10.1)

one can determine the contact area if the relationship FN .A/ is known. Barber
(1983b) also examined the boundary value problem of a flat-ended cylindrical
punch and a central circular recess. Finally, Argatov and Nazarov (1996, 1999) and
Argatov et al. (2016) performed a study of toroidal indenters.
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Support structures are frequently constructed as hollow cylinders to save weight
and material. The interior of the hollow cylinder can also be filled with a very
soft matrix—similar to bones. The corresponding normal contact problem is con-
sidered in Sect. 10.1.1. Some tools feature conical (see Sect. 10.1.2) or parabolic
(see Sect. 10.1.3) concave heads, e.g., for stamping purposes. The circular, central
recess at the tip of a cylinder (see Sect. 10.1.4) is a classic engineering solution
to ensure form-fit connections. The tori examined in Sects. 10.1.5 and 10.1.6 also
see wide-spread use. As an example, direct current transformers are increasingly
constructed in a toroidal shape instead of the classic E-I design.

10.1.1 The Hollow Flat Cylindrical Punch

The simplest problem considered in this chapter is the normal contact of a flat,
hollow cylinder with an elastic half-space. The use of the word “simple” is meant in
a relative sense, since even this problem proves to be extremely complex. However,
there are a number of solutions to the problem. A schematic diagram of the problem
is displayed in Fig. 10.1. Let the cylinder have the outer radius a and the inner radius
b and be pressed by the normal force FN into the half-space to the depth d.

Shibuya et al. (1974) performed a series expansion of the stresses in the contact
area b � r � a proceeding from the singularities at r D b and r D a, thereby
reducing the problem to an infinite system of coupled linear equations. The coeffi-
cients of this system of equations are integrals of a product of four Bessel functions,
which does not make the solution particularly easy. Nonetheless, the system can of
course be solved numerically and the authors provide a great number of graphical
representations of the obtained numerical solutions for the stresses and displace-
ments.

Gladwell and Gupta (1979) made use of an especially elegant superposition of
appropriate, known potentials to find an approximate analytical solution of the prob-
lem. The potentials result from the solution of the Dirichlet–Neumann problem

Fig. 10.1 Normal contact of
a hollow flat cylinder with an
elastic half-space
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within and outside the circles r D b and r D a. For the relationship between FN

and d they obtain the expression:

FN D 2E�da�; (10.2)

with
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The approximation coincides with the ratio of the radii of the exact solution, except
for a fourth-order term which is erroneous. The authors also applied their method to
the normal contact of a concave paraboloid (see Sect. 10.1.3) and to the Reissner–
Sagoci problem for the hollow cylinder (see Sect. 10.3.1).

Using the superposition of harmonic potentials, Gubenko and Mossakovskii
(1960) and Collins (1962, 1963) managed to reduce the problem to a Fredholm
integral equation, which can be solved iteratively. For � , Collins found the expres-
sion:
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All series terms given are exactly correct.
Borodachev and Borodacheva (1966a) utilized a similar approach as Collins and

determined numerical solutions for the indentation depth d D d.FN / and the stress
�zz D �zz.r; FN / in a series expansion to the ratio b=a. Borodachev (1976) ad-
ditionally obtained an asymptotic solution for the stresses in the vicinity of the
singularities.

The complete exact solution of the problem was finally worked out by Roitman
and Shishkanova (1973), albeit in the form of recursive formulas. Through series
expansions and coefficient comparisons they obtained the following expression for
the stresses in the contact area:
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with the recursively determined coefficients
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Fig. 10.2 Normalized nor-
mal force as a function of the
ratio of the radii for a normal
contact with a hollow cylin-
drical punch, according to
(10.4) and (10.9). The solid
line represents the approxi-
mation (10.10)
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Here, .�/ŠŠ denotes the double faculty
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2 � 4 � : : : � n; n even;

1 � 3 � 5 � : : : � n; n odd
(10.7)

and I.x/ is the largest integer which x does not exceed. For b D 0 it returns the
familiar result of the flat cylindrical punch:
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As expected, the series in (10.5) converges in the open interval b < r < a. Term
by term integration gives the following expression for � :

� D �

2

1X
kD0

1X
pD0

�
b

a

�p
"

p̨k

2k C 2

 
1 �

�
b

a

�2kC2
!

C p̌k

2k C 1

b2

a2

 
1 �

�
b

a

�2kC1
!#

: (10.9)

It should be noted that the result for � in (2.18) of the publication by Roitman
and Shishkanova (1973) is incorrect. Grouping the right-hand side of the (10.9) by
terms .b=a/n returns the series expansion from (10.4).

The solutions for � and the pressure distribution from the (10.9) and (10.5) are
shown in Figs. 10.2 and 10.3. The coefficients in (10.6) were evaluated only to
p; k D 150, with the curve, then scaled to the value �.b D 0/ D 1.

A closed-form analytical solution was later published by Antipov (1989), the
complexity of which would exceed the scope of this handbook. A very good ap-
proximation for �."/,

�."/ � .1 � "m/n; m D 2:915I n D 0:147 (10.10)

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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Fig. 10.3 Normalized pres-
sure distribution for a normal
contact with a hollow cylin-
drical punch. The thin solid
line represents the solution of
the solid cylinder
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was given by Willert et al. (2016) on the basis of a very precise boundary element
calculation. This is also displayed in Fig. 10.2.

10.1.2 The Concave Cone

The Boussinesq problem of a concave cone was examined by Barber (1976) and
Shibuya (1980). A schematic diagram of the problem is shown in Fig. 10.4. Let
the base cylinder have the radius a and a concave, conical tip of the depth h. A
normal force FN presses the body into the elastic half-space to the depth d, with the
(a priori unknown) inner contact radius of b.

Shibuya utilized the same solution approach as in his 1974 publication on the
annular punch, i.e., he reduced the problem via a series expansion at the stress
singularity at r D a to an infinite system of coupled linear equations and then

Fig. 10.4 Normal contact
of a concave cone with an
elastic half-space
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solved these numerically. He provided a variety of graphical representations of the
numerical solution.

Barber (1976) examined the contact problem in two limiting cases: firstly, for
very small values of " D b=a, and secondly, for the case " ! 1. For the first ap-
proach he used the method by Collins (1963), and for the second approach he used
the one by Grinberg and Kuritsyn (1962). For small values of ", the relationship
between FN , d and " is given by:

FN .d; "/ D 2E�a
�
.d � h/�1."/ C �h

4
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3�2
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; (10.11)
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The condition stemming from (10.1)
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leads to the desired relationship between d and ",
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Figures 10.5 and 10.6 provide a visualization of the shorthand symbols introduced
in (10.12) and (10.15).

Greater normal forces cause the radius b to increase and the expression 1 � " to
shrink correspondingly. For this case, Barber (1976) gave the following solution for
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Fig. 10.5 The parameters �1
to �3 from (10.12) as func-
tions of " D b=a
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Fig. 10.6 The parameters �4
to �6 from (10.15) as func-
tions of " D b=a
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the relationship between the global quantities:

FN .d; ı/ D 2�2E�ah
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with the expressions
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Fig. 10.7 Normalized inden-
tation depth d=h and normal
force FN =.2E

�ha/ as func-
tions of " D b=a for normal
contact with a concave coni-
cal indenter
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Fig. 10.8 Normalized normal
force as a function of the
normalized indentation depth
for the normal contact with
a concave conical indenter
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A graphical representation of the relationships between the global contact quantities
is given in Figs. 10.7 and 10.8. For " < 0:5, (10.11) and (10.14) were used; for all
others (10.16) was used. They achieve a near perfect match at the transition point
" D 0:5. It can also be seen that, quantitatively, the curves are nearly identical, thus
the implicitly given relationship FN D FN .d/ can be written as:

FN � 2E�da; (10.18)

which means that the relationship between the normal force and the indentation
depth roughly corresponds to the one of the flat cylindrical punch! The case b D 0,
i.e., complete contact, is impossible since it would imply an infinitely large normal
force.
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10.1.3 The Concave Paraboloid

The normal contact with a concave paraboloid was investigated by Barber (1976),
Gladwell and Gupta (1979), and Shibuya (1980). Shibuya formulated the problem
as a coupled system of infinitely many linear equations and then solved these nu-
merically (see the beginning of the previous section). Gladwell and Gupta utilized
an elegant approximation method which relied on a superposition of appropriate
potentials (see Sect. 10.1.1). They compared their results to that of Barber’s which
was the source of the only completely analytical calculations.

A schematic diagram of the contact problem is displayed in Fig. 10.9. Let a
flat punch of radius a have a parabolic depression of height h at its tip. Under
small loads, the contact area will be ring-shaped with an inner radius b. As already
demonstrated in Chap. 2 (see Sect. 2.5.15), fulfilment of the condition

d 	 dc D 3h; (10.19)

or alternatively

FN 	 Fc D 16

3
E�ah; (10.20)

leads to the formation of complete contact (b D 0), in which case solution is much
simpler. In the following section, we will present the solution of the incomplete
contact. Barber (1976) examined, as in the case of the concave conical indenter, the
limiting cases " D b=a ! 0 (using the method of Collins 1963) and " ! 1 (with
the method of Grinberg and Kuritsyn 1962). Small values of " return the following
equations as the solution of the contact problem:

FN .d; "/ D 2E�a
�
.d � h/�1."/ C 2h

3
�2."/

	
;

d

h
D 1 C 2

�3."/

�4."/
; (10.21)

Fig. 10.9 Normal contact of
a concave paraboloid with an
elastic half-space
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with the previously introduced shorthand symbols:
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For values of " ! 1 we obtain:
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with the expressions:

ı D 1 � "

1 C "
;

L D ln
16

ı
: (10.24)

Fig. 10.10 Normalized in-
dentation depth d=h and
normalized normal force
FN =.2E

�ha/ as functions
of " D b=a for the nor-
mal contact with a concave
parabolic indenter. Left-hand
side according to (10.21), and
right-hand side according to
(10.23)
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Fig. 10.11 Normalized nor-
mal force as a function of the
normalized indentation depth
for the normal contact of a
concave parabolic indenter.
Left-hand side according to
(10.21), and right-hand side
according to (10.23)
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Note that (25) of Barber’s publication (corresponding to (10.23)) contains a small
printing error.

Figures 10.10 and 10.11 offer a visual representation of the relationships between
the global contact quantities. For " < 0:5, (10.21) were used; for all others, (10.23)
were used. They achieve quite a good match at the transition point. The limits
stated in this section for b D 0 are quite clear to see.

10.1.4 The Flat Cylindrical Punch with a Central Circular Recess

To fully understand the line of reasoning present in the literature, and due to the
technical importance of this problem, this section is devoted to describing a contact
problem that so far has completely evaded an analytical solution. It has even evaded
one in the form of integrals, series expansions, or recursions as in the previous
sections.

We consider the frictionless normal contact of a flat cylindrical punch of radius
a, which features a central circular recess of radius b and depth e. Let the normal
force FN be sufficiently large to form another contact domain in the interior of the
recess of radius c (for c D 0 it would result in the contact of the annular punch
discussed in Sect. 10.1.1). A schematic diagram of the contact problem is given in
Fig. 10.12.

This is a four-part boundary value problem, since in the zones 0 � r � c and
b � r � a the displacement are known. In the zones c < r < b and r > a

the (vanishing) normal stress are the given values. The problem was considered
by Barber (1983b), who reduced it to two coupled Fredholm equations using the
method of complex potentials by Green and Collins (see, for example, the preceding
publication by Barber 1983a). The equations are then solved numerically. The
author provides graphical representations for the normal force and the indentation
depth as functions of the contact radius.
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Fig. 10.12 Normal contact
of a flat punch with a central
recess and an elastic half-
space
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10.1.5 The Torus

We now consider the frictionless normal contact between a toroidal indenter and an
elastic half-space. Let the torus of radiiR1 andR2 be pressed by a normal force FN

into the elastic half-space to the depth d (see Fig. 10.13).
A ring-shaped contact area of the thickness 2h is formed. Argatov and Nazarov

(1996, 1999) found the asymptotic solution of this problem for h � R2. The
relationships between FN , d , and h are given by:

FN � �2E�

2

R2

R1

h2;

d � h2

2R1

�
ln
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h
C 4 ln 2 C 1

2

�
: (10.25)

As a first-order approximation, the stress state under the torus (i.e., in the contact
area) can be treated as two-dimensional and is given by:
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2 ln.16R2=h/

1p
h2 � .r � R2/2

: (10.26)
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Fig. 10.13 Normal contact (cross-section) between a torus and an elastic half-space
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10.1.6 The Toroidal Indenter with a Power-Law Profile

An analogy to the classic torus in the preceding section, the toroidal indenter with
an arbitrary profile in the shape of a power-law could also be solved through an
asymptotic solution, which was first published by Argatov et al. (2016). A cross-
section of the contact problem is given in Fig. 10.14. Let the torus have the radius
R and the resulting ring-shaped contact area the width 2h. The indenter is pressed
by a normal force FN into the half-space to the depth d. The following results are
only valid for thin rings; i.e., for h � R.

Consider an indenter having the rotationally symmetric profile

f .r/ D cjr � Rjn; n 2 RC; (10.27)

where c is a constant and n a positive real number. The relationship between h and
d is given approximately by the expression:
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with the scaling factor from Chap. 2:
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Here, 
.�/ denotes the Gamma function
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The normal force FN is approximately equal to:

FN .h/ � n�2cRE�

	.n/
hn: (10.31)
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Fig. 10.14 Normal contact (cross-section) between a toroidal body and an elastic half-space

http://dx.doi.org/10.1007/978-3-662-58709-6_2
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For n D 2 and c D 1=.2R1/, we obtain the results of the preceding section. The
stress distribution is, in first approximation, two-dimensional and (independent of
n) identical to the term in (10.26).

10.1.7 The IndenterWhich Generates a Constant Pressure
on the Circular Ring

It poses no problem to determine the indenter shape which generates a constant
pressure p0 on the circular ring b < r < a. The pressure distribution is a superpo-
sition p.r/ D p1.r/ C p2.r/ of both distributions

p1.r/ D p0; r < a

p2.r/ D �p0; r < b: (10.32)

Chap. 2 (Sect. 2.5.6) provides the following displacements of the half-space under
the influence of a constant pressure on a circular area of radius a:
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; r > a: (10.33)

Fig. 10.15 Normalized curve
of the half-space displace-
ments under the influence of
a constant pressure on a ring-
shaped area b < r < a for
different ratios of the radii.
The thin solid line corre-
sponds to the case b D 0
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It follows that the displacement under the influence of a constant pressure on a
ring-shaped area is:

w.r I a; b; p0/ D

4p0

�E�

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

aE
� r
a

�
� bE

� r
b

�
; r � b

aE
� r
a

�
� r

�
E
�
b

r

�
�
�
1 � b2

r2

�
K
�
b

r

�	
; b < r � a

r

"
E
�a
r

�
�
�
1 � a2

r2

�
K
�a
r

�
� E

�
b

r

�

C
�
1 � b2

r2

�
K
�
b
r

� #
; r > a:

(10.34)

These displacements are shown in a normalized representation in Fig. 10.15.

10.2 Frictionless Normal Contact with JKR Adhesion

Ring-shaped contacts also occur in systems which are sufficiently small or soft so
that surface forces play a role. One example are hollow ring-shaped positioners in
micro-assemblers; such structures are also typical for various biological systems.

As in the compact adhesive contacts, all adhesive models described in Chap. 3
can be applied to ring-shaped contacts, which was the theory of Johnson, Kendall,
and Roberts (1971), Maugis (1992), and others. We can also distinguish whether a
contact is frictionless or truly adhesive, i.e., sticking without tangential slip. We will
restrict our consideration to frictionless normal contacts in the JKR approximation.
This means that we will assume the range of the adhesive interactions to be small
compared to all characteristic lengths of the system. In the JKR approximation,
adhesion properties can be completely characterized by the effective surface energy
(work of adhesion) per unit area, �w. The notation�w used in this chapter differs
from the standard notation �� used in all other parts of this book. This is to avoid
confusion with the many � used in the solutions of ring-shaped contacts. Let the
half-space have, as always, the effective elasticity modulus E�.

For contact areas in the form of very thin circular rings, Argatov et al. (2016)
presented a very elegant solution for the toroidal indenter in the style of the MDR.
It presents the relationships between the global quantities—normal force FN , in-
dentation depth d , and half of the contact width h D .a � b/=2 (with the contact
radii b and a)—in the case of the adhesive normal contact. First, the variable

ı D 2h

a C b
D a � b

a C b
(10.35)

http://dx.doi.org/10.1007/978-3-662-58709-6_3


310 10 Annular Contacts

is introduced, which (in the case of thin circular rings) represents a small parameter.
If the adhesion is structured according to the framework of the JKR theory and the
relationships of the indentation depth and the normal force of the non-adhesive
contact, dn.a. D dn.a..ı/ and FN;n.a. D FN;n.a..ı/, are known, the relationships of
the adhesive contact can be obtained through the addition of an appropriate “punch
solution”.

d.ı/ D dn.a..ı/ � 2 ln
�
16

ı

�r
.a C b/�w

�E� ı;

FN .ı/ D FN;n.a..ı/ �
p
�3.a C b/3E��wı: (10.36)

The critical state, in which the contact loses its stability and detaches, results from
the local maximums of these expressions as functions of ı.

In general though, the solutions are usually only available in the form of asymp-
totic expansions, which will be presented in the following sections.

10.2.1 The Hollow Flat Cylindrical Punch

Let a hollow flat cylindrical punch with the radii b (inner) and a (outer) be pressed
into an elastic half-space. And let adhesion act in the ring-shaped contact area
b � r � a with the effective surface energy �w. As in the previous sections, we
introduce the ratio " D b=a. The following solution was first presented by Willert
et al. (2016).

In Sect. 10.1.1 the following relationship between the normal force FN;n.a. and
the indentation depth d for the non-adhesive contact was derived:

FN;n.a. D 2E�da�."/: (10.37)

Here, the index “n.a.” indicates the non-adhesive quantity. The complete expression
of the function �1."/ can be referenced in (10.4), (10.9), and (10.10). It should
be noted that the two analytical approximations result from series expansions at
" D 0, thus they are only accurate for small values of ". In Fig. 10.2 a graphical
representation of both approximations of the function is given. The elastic energy
is then given by:

Uel D
dZ

0

FN;n.a..ı/dı D E�d2a�."/: (10.38)

The surface energy, according to the JKR theory, is given by the expression:

Uadh D ��wAc D ���wa2

�
1 � b2

a2

�
D ���wa2�2."/; (10.39)

with the contact area Ac . The total potential energy is then:

Utot D E�d2a�."/ � ��wa2�2."/: (10.40)
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The relation between the normal force and the indentation depth in the adhesive
case is then given by:

FN D @Utot

@d
D 2E�da�."/ D FN;n.a.: (10.41)

The contact experiences a loss of its stability at:

dc D � d0p
�."/ � "� 0."/

; (10.42)

(the prime denotes the derivative with respect to the argument). The corresponding
critical normal force, which is also called the adhesive force, is given by:

Fc D � F0�."/p
�."/ � "� 0."/

: (10.43)

Here the values of the full cylinder, according to Kendall (1971), were used:

d0 WD
r

2�a�w

E� ; F0 WD
p
8�a3E��w: (10.44)

Using the results of Collins for �."/ (see (10.4)) yields the expression in the de-
nominator:

"

�."/

d�

d"
D �

4
�2 "

3 C 8
3�2 "

5 C 32
9�4 "

6 C O."7/

1 � 4
3�2 "

3 � 8
15�2 "

5 � 16
27�4 "

6 C O."7/
: (10.45)

The Case " ! 1

As noted in this section, Collins’ solution is only usable for small values of ". For
the other limiting case " ! 1, i.e., with ı ! 0 (ı from (10.35)), the solution by
Argatov et al. (2016) can be used.

The relation FN D FN;n.a. remains valid of course. Independent of whether
a force-controlled or displacement-controlled trial is being conducted, the contact
loses its stability at:

d D dc D �2 ln
�
16

ı

�r
.a C b/�w

�E� ı;

FN D Fc D �
p
�3.a C b/3E��wı: (10.46)

The curves of the critical indentation depth and the adhesive force, both normalized
to the values of the solid cylinder, are depicted in Fig. 10.16. For " > 0:85, the
results of (10.46) were used; for all others, (10.42) to (10.45) was used. The values
at the transition point are clearly in good agreement. Additionally, the approximate
solutions are displayed for which the numerical expression (10.10) was inserted into
(10.42) and (10.43).
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|dc| / d0 (Collins, Argatov et al.)
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Fig. 10.16 Dependency of the critical indentation depth and adhesive force for the adhesive nor-
mal contact with a flat annular punch on " D b=a. The curves are normalized to the values of the
full cylinder (b D 0). For " < 0:85, (10.42), (10.43), and (10.45) were used, and for " > 0:85,
the expressions from (10.46) were used. The smooth transition is clearly visible. The approximate
solutions refer to (10.42) and (10.43) with the approximation (10.10)

10.2.2 The Toroidal Indenter with a Power-Law Profile

We consider the adhesive normal contact between a toroidal indenter and an elastic
half-space. The indenter has the profile:

f .r/ D cjr � Rjn; n 2 RC; (10.47)

with a constant c, the radius of the torus R, and a positive real number n. Let the
annular contact have the width 2h and let the value

ı D h

R
(10.48)

be small. In this case we can use (10.36). Section 10.1.6 documents the derivation
of the following equation for the non-adhesive relationships between the normal
force FN , indentation depth d, and the normalized contact width ı:

dn.a..ı/ � ncınRn

	.n/

�
ln
�
16

ı

�
C 1

n

	
;

FN;n.a..ı/ � n�2cE�

	.n/
R1Cnın: (10.49)



10.2 Frictionless Normal Contact with JKR Adhesion 313

Here, the index “n.a.” indicates the non-adhesive quantities. The function 	.n/ can
be gathered from (10.29). Using (10.36), the adhesive relationships are then given
by:

d.ı/ � ncınRn

	.n/

�
ln

�
16

ı

�
C 1

n

	
� 2 ln

�
16

ı

�r
2R�w

�E� ı;

FN .ı/ � n�2cE�

	.n/
R1Cnın �

p
8�3R3E��wı: (10.50)

In a force-controlled trial, the contact experiences a loss of stability at

ıc
2n�1 D 2

�

�
	.n/

cn2

�2

R1�2n�w

E� : (10.51)

The corresponding adhesive force has the value

Fc D �R

�
.E�/n�1.�w/n	.n/�3n�22n

n2nC1c

	 1
2n�1

.2n � 1/: (10.52)

It is obvious that these expressions can be valid only for n > 0; 5. For n ! 1 we
obtain the results of the hollow flat cylindrical punch from (10.46). Other special
cases which we will briefly examine are:

The V-Shaped Toroidal Indenter with n D 1

In case of a V-shaped toriidal indenter it is c D tan � , with the slope angle � of the
V-profile, n D 1 and 	.n D 1/ D �=2. This yields:

ıc D �

2 tan �

�w

RE� ;

Fc D �R
�w�2

tan �
: (10.53)

Thus the adhesive force is independent of the elasticity properties of the half-space.

The Classic Torus n D 2

With c D 1=.2R1/, the radius of the torusR1, n D 2 and 	.n D 2/ D 2, we obtain:

ıc D 3

s
1

�R1

�w

R3E� ;

Fc D �3R 3

s�
R1E�.�w/2�4

2

�
: (10.54)
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10.3 Torsional Contact

The purely torsional contact problem between a rigid indenter and an elastic half-
space is also referred to as the Reissner–Sagoci problem. The boundary conditions
at the surface of the half-space at z D 0, in the axisymmetric case for a ring-shaped
contact area with the radii b and a > b, are as follows:

u'.r; z D 0/ D f .r/; b � r � a;

�'z.r; z D 0/ D 0; r < b; r > a; (10.55)

with the rotational displacement and the tangential stresses. This consideration only
deals with the pure torsion problem without slip, which means that all other stresses
and displacements vanish.

10.3.1 The Hollow Flat Cylindrical Punch

In drilling applications, sometimes hollow or concave drill bits are used. This ap-
proximately corresponds to the contact problem described in this section. For the
contact of a hollow flat cylindrical punch, the function f .r/ of the torsional dis-
placement is given by:

f .r/ D 'r; (10.56)

with the twisting angle ' of the punch around its axis of symmetry. The contact
problem was studied by Borodachev and Borodacheva (1966b), Shibuya (1976),
and Gladwell and Gupta (1979).

Borodachev and Borodacheva (1966b) applied the same method which Collins
(1962, 1963) utilized for the solution of the normal contact problem of a flat annular
punch. They numerically solved the Fredholm equation that arose over the course of
the solution process and obtained the following relationship between the torsional
momentMz and the torsion angle ':

Mz D 16

3
Ga3'�."/; (10.57)

once again introducing the shorthand notation " D b=a. G is the shear modulus of
the elastic half-space. A series expansion of the function �."/ is only possible for
small values of ". The authors presented the approximate solution:

� D 1C0:0094"4�0:1189"5�0:0792"7�0:0094"8�0:0645"9CO."10/: (10.58)

For the stresses in the contact area they provided the expression:

�'z.r/ � � 4G�

�

(
rp

a2 � r2

�
1 C "5

�2

�
˛0 C ˛2

r2

a2
C ˛4

r4

a4
C ˛6

r6

a6

�	

C "b4

�r3
p
r2 � b2

�
ˇ0 C ˇ2

b2

r2
C ˇ4

b4

r4
C ˇ6

b6

r6

�)
; (10.59)
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with the shorthand notation:

˛0 D 0:0839 C 0:0913"2 C 0:0929"4 C 0:0007"5 C 0:1469"6;

˛2 D 0:0531 C 0:0698"2 C 0:101"4;

˛4 D 0:0434 C 0:0844"2; ˛6 D 0:0579;

ˇ0 D 0:2896 C 0:0917"2 C 0:0562"4 C 0:0025"5 C 0:0625"6;

ˇ2 D 0:2083 C 0:075"2 C 0:05"4;

ˇ4 D 0:15 C 0:1"2; ˇ6 D 0:2: (10.60)

Gladwell and Gupta (1979) solved the contact problem in a very elegant manner
through a combination of appropriate potentials. They gave the sought stresses and
displacements inside and outside the contact area as:

u'.r/ D 'a

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
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� 2b1

r
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r
1 � r2
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"
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r
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1 � a2
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� 6a1
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r
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;
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�
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� 9b1r
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�
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r

�
� 9a1
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r4
U
� r
a

�	
;

b � r � a; (10.61)

with the functions U and R and the shorthand notations defined as follows:

U.x/ D

8̂
<
:̂
arcsin x � xp

1 � x2

�
1 � x2

3

�
; x < 1

�

2
; x 	 1;

R.x/ D
8<
:

1p
1 � x2

; x < 1

0; x 	 1;

b1 D 600"2

675�2 � 48"5
; a1 D 4"3b1

15�
D 160"5

675�3 � 48�"5
; (10.62)

which is in very good agreement with the results of Shibuya (1976), who converted
this problem into a coupled system of infinitely many linear equations and solved
these numerically.

If we then determine the torsional moment via integration of the stress distribu-
tion (this step was not performed in the publication by Gladwell and Gupta) and
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Fig. 10.17 Normalized
torsional moment � D
3Mz=16G'a3 as a function
of the ratio of radii " D b=a

according to (10.58) (Boro-
dachev and Borodacheva
1966b) and (10.63) (Gladwell
and Gupta 1979)
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Fig. 10.18 Normalized tor-
sional stresses according to
Borodachev and Borodacheva
(1966b) as a function of the
radial coordinate for different
values of b=a. The thin solid
line represents the solution of
the full cylinder
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expand the expression for � in Taylor series to powers of " we obtain:

� D 1 � 16

15�2
"5 C O."6/: (10.63)

Figure 10.17 shows the solutions for � , according to Borodachev and Borodacheva
(1966b) and Gladwell and Gupta (1979). For values of " < 0:6 they are in very
good agreement. We must keep in mind that both solutions are intended only for
small values of ". Figures 10.18 and 10.19 display the solution for the tangential
stress distribution on the basis of (10.59) and (10.61). The stress singularities at
the sharp edges of the indenter and the convergence with the solution for the flat
cylindrical punch from Chap. 5 (see Sect. 5.1.1) are easily recognized.

http://dx.doi.org/10.1007/978-3-662-58709-6_5
http://dx.doi.org/10.1007/978-3-662-58709-6_5
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Fig. 10.19 Normalized tor-
sional stresses according to
Gladwell and Gupta (1979)
as a function of the radial co-
ordinate for different values
of b=a. The thin solid line
represents the solution of the
full cylinder
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