GPU GEMM-Kernel Autotuning for scalable
machine learners

Johannes Sailer, Christian Frey and Christian Kiihnert

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
10SB, Karlsruhe, Germany

Abstract. Deep learning (DL) is one of the key technologies in the ar-
tificial intelligence (AI) domain Deep learning neural networks (DLNN)
profit a lot from the overall exponential data growth while on the other
hand the computational effort for training and inference strongly in-
crease. Most of the computational time in DLNN is consumed by the con-
volution step, which is based on a general matrix multiplication (GEMM).
In order to accelerate the computational time for DLNN different highly
optimized GEMM implementations for Graphic Processing Units (GPUs)
have been presented in the last years [1] most of these approaches are
GPU hardware specific implementations of the GEMM software kernel
and do not incorporate the performance dependency of the training data
layout . In order to achieve a maximum performance the parameters of
the GEMM algorithm have to be tuned for the different GPU hardware
and specific data layout of the training task. In this paper we present a
two step autotuning approach for GPU based GEMM algorithms. In the
first step the kernel parameter search space is pruned by several perfor-
mance criteria and afterwards further processed by a modified Simulated
Annealing in order to find the best kernel parameter combinations with
respect to the GPU hardware and the task specific data layout. Our re-
sults were carried out on 160 different input problems with the proposed
approach an average speedup against the state of the art implementation
from NVIDIA (cuBLAS) from around 12 on a NVIDIA GTX 1080 Ti
accelerator card can be achieved.
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1 Introduction

1.1 Motivation

Deep learning (DL) is one of the key technologies in the artificial intelligence
(AI) domain Deep learning neural networks (DLNN) profit a lot from the over-
all exponential data growth while on the other hand the computational effort for
training and inference strongly increase. Machine learning applications profit a
lot from that overall data growth, since the models can be trained more precise.
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However, those algorithms runtime depend heavily on the input data. Most of
the computational time in DLNN is consumed by the convolution step, which
is based on a general matrix multiplication (GEMM). In order to accelerate
the computational time for DLNN different highly optimized GEMM implemen-
tations for Graphic Processing Units (GPUs) have been presented in the last
years [1]. In order to achieve a high computational throughput, most of these
approaches are based on a hardware specific software kernel implementation
of the GEMM algorithm. Usually the different hardware dependent kernel pa-
rameters are tuned manually, which involves expertise about the specific GPU
architecture. Furthermore the performance of the GEMM kernel is strongly af-
fected by the shape of the input data processed different data sizes have a huge
impact on the computational runtime of the GEMM kernel due to the different
memory layouts of the GPU accelerators.

In order to achieve a maximum performance the parameters of the GEMM al-
gorithm have to be tuned hardware and task specific. In the last years, several
autotuning approaches of GEMM kernel parameters have been proposed [2] -
the basic idea is to automatically tune a limited number of essential GPU kernel
parameters in order to achieve a maximum performance. Usually the approaches
do not take into account the size and shape of the given input data, which yields
to varying computational runtimes.

The motivation of the presented work is to develop an autotune procedure for
GPU based GEMM kernels, which takes into account a comprehensive set of
kernel parameters and varying shapes of the data in the input task.

Proposed autotuning solutions such as [2] usually require a lot of computational
runtime to find an optimal kernel parameter set. The kernel parameter space
e.g. in the MAGMA GEMM kernel [4] is very large and therefore restrictions
are made to reduce the search space for the kernel parameters followed by a
brute search mechanism. This usually results in high search times for the kernel
parameters to be set.

1.2 Related Work

Well known autotuning concepts like the Automated Tuned Linear Algebra Soft-
ware Project (ATLAS) [5] or the Optimized Sparse Kernel Interface (OSKI) [6]
focus on the optimization of CPU calculations. There are only a few approaches,
which introduce concepts for autotuning GPU kernel parameters [7] the ap-
proaches focus only on a small number of tuning parameters and therefore the
achieved performance cannot be compared reasonable to the proposed approach
in this work. In order to achieve optimal performance a comprehensive set of
GPU kernel parameters have to be taken into account.

In literature there are several more autotuning approaches such as [8,9] . While
the work presented in [8] focuses on 3D TFT, the approach in [9] focuses on
sparse matrices and optimizing the GPU kernel based on a statistical model.
The concepts presented in [10] and [11] focus on automatic generating GPU
kernel code and autotune over different generated kernels. Since the generated
code is not optimized with respect to the underlying GPU architecture, usually
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the performance of these concepts is not optimal. The presented work in this
contribution is based on the well-known MAGMA GEMM kernel. The software
implementation is characterized by an extensive GPU kernel parameter space.
The MAGMA GEMM Kernel, has already been investigates in several autotun-
ing approaches [2,12-16]. The original kernel implementation has been described
in [12] and a first autotune concept [13]. With the introduction of the NVIDIA
Fermi GPU architecture, the kernel implementation has been revised [14] and an
autotuning procedure has been presented in [2]. The approach is characterized
by a huge search space for the GPU kernel parameters in conjunction with a
brute-force parameter search mechanism, which leads to a high computational
effort for finding optimal kernel parameters. With respect to small GEMM oper-
ations in [15,16] approaches for batched GEMM operations have been presented
and [17] describes the utilization of the Magma GEMM kernel in machine learn-
ing procedures. The autotuning approach presented in [18] focuses on energy
efficiency of the GPU while processing GEMM operations.

Most of the presented state-of-the-art work is based on a brute-force approach
for determining the optimal GEMM kernel parameters. This usually yields to
a huge parameter search space and therefore most of the approaches use a pa-
rameter combination pre-elimination step in order to reduce the computational
effort. The different heuristics for reducing the search space can possibly dismiss
optimal kernel parameter combinations. With respect to this suppositions, the
presented work focuses on defining optimal heuristics to reduce the search space
in combination with a Simulated Annealing(SA) procedure to find efficiently
optimal performing GEMM kernel parameters.

2 Solution

Optimal GPU kernel parameters strongly rely on the underlying GPU hard-
ware architecture, the memory layout and the input data size different settings
lead to different optimal parameter combinations. Therefore the resulting search
space for finding the optimal parameter combination can be enormous. Tuning
the parameters by hand is impractical, since it has to be redone for every GPU
architecture and every set of input data size again. With respect to these sup-
positions in the following sections we present a two step autotuning approach
for GPU-based GEMM algorithms. In the first step the kernel parameter search
space is pruned by several heuristic performance criteria, keeping good perform-
ing parameter combinations for a set of different use cases. In the second step
based on a modified Simulated Annealing (SA) algorithm the remaining pa-
rameter sets are further processed in order to find the best kernel parameter
combinations with respect to the GPU architecture and task specific data lay-
out.

In the following sections, the proposed autotuning approach is presented in sec-
tion 2.1 a short overview of the MAGMA GEMM kernel is given, in section 2.2
we explain the developed heuristics for reducing the search space and in section
2.3 the SA approach is introduced.
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2.1 Magma GEMM Stencil structure

The developed autotuning approach is based on the well-known MAGMA GEMM
kernel. The original kernel implementation has been described in [12] and is char-
acterized by an extensive GPU kernel parameter space. Algorithm 1 shows the
pseudo-code of the kernel. The kernel has 11 parameters - two of the kernel pa-
rameters are only relevant for calculations in complex number space. Therefore
the kernel parameter space is reduced to nine relevant kernel parameters - the
parameters are described in the following:

Blocksizes The Blocksizes BLK_M, BLK_N and BLK_K define how many ele-
ments a Threadblock will calculate.

Threadblock dimensions The Threadblock dimensions DIM_X and DIM_Y deter-
mine the size of the Threadblock, which calculates a block on the result matrix.

Subdimensions The Subdimensions DIM_XA, DIM_XB, DIM_YA and DIM_YB
determine how the Shared Memory(SMEM) is filled.

Algorithm 1: GEMM Kernel Algorithm (simplified)

Data: Matrix A [M x K], Matrix B [K x N], Matrix C [M x NJ, alpha,
beta
Result: C=A x B * alpha C + beta * B
load A; and B; to SMEM;
for i + 0 to KstepBLK_K do
A¢yr1 and By to regs;
for i <+ 0 to BLK_K do
L load A; and B; to REG;
Ctemp:At * Bt
load Ayy1 and Byq to SMEM;
C = Ciemp * alpha + beta

2.2 Reducing search space

To reduce the search time for finding optimal kernel parameter sets in the first
step it is necessary to eliminate parameter sets, which with respect to the un-
derlying GPU hardware layout are not possible and possibly lead to an unstable
behaviour of the kernel execution. The following parameters are reduced:

prelimitations

We started with reducing the viable threadcounts respectively the threadblock
dimensions. The threadblock dimensions(DIM_X, DIM_Y) can only be 8, 16 or
32 resulting in 64, 256, 512 or 1024 threads. The GPU manufacturer NVIDIA
recommends using a minimum of 64 threads [20], which is the lower limit we
are applying, the upper limit is given by the hardware specification of the GPU.
Other configurations will not map onto the GPU hardware.
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utilization criteria

The idea behind this approach is to make use of the Latency Hiding Principle
of the GPU explained in [21]. Basically when the GPU chip loads data from the
off-chip Global Memory (GMEM), it will pause the corresponding warp, which
is a bundle of 32 threads. The GPU will schedule another warp, while previous
one is waiting. Typically loading data from GMEM takes many hundred GPU
cycles so Latency Hiding this is essential for performance. To enable Latency
Hiding it is essential GPU kernels keep enough warps available and the GPU
can switch between contexts while loading data.

The number of available warps on the GPU is described by the utilization. The
utilization is limited by the available SMEM and number of Registers (REG)
used by the GPU kernel itself. Based on these resources the upper limit of
the achievable utilization can be calculated. The resource consumption and the
maximum utilization can be determined by analysing the kernel source code
- a similar approach can be found in [2]. Important to note is, that the pre-
sented work measures the utilization in Warps per Streaming Multiprocessor
(SM). The GPU schedules everything in Warps so this seems to be a reasonable
approach. Furthermore we are forcing similar utilization levels of SMEM and
REG. This constraint avoids parameter combinations, which heavily utilize one
resource while barely utilizing the other one. Parameter combinations, which
are heavily limited in utilization due to REG suffer from poor performance as
well as those, which are heavily limited through SMEM. Those parameter com-
binations, which are heavily limited in utilization due to SMEM, are keeping to
few entries from the result matrix, for the utilization they achieve. Therefore,
data has to be loaded more frequently from GMEM than necessary. Parameter
combinations, which are highly restricted with REG, are keeping to less data
to read for achieving faster times. Therefore, they have to load and wait more
frequently.

efficiency criteria

The presented work introduces a further criteria for finding optimal kernel pa-
rameters: The efficiency criteria describes how long a parameter combination
can work, until data has to be reloaded from GMEM. The efficiency criteria is
calculated based on the kernel source code by the equations given in 1 to 3.

e Equation 1 describes how often data is loaded from SMEM, minus how often
data is loaded from GMEM.

e Equation 2 describes how often data is read from SMEM compared to load-
ing data from GMEM.

e Equation 3 describes the size of workload per thread.
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Equation 1 and 2 prefer combination with high SMEM consumption. Equation
3 prefers squared fields, which are not proven to be better.

SMEM Accessdiferenz (SMRW) = BLK_ K *
((BLK.M / DIM_X) +(BLK_N / DIM.Y)) -
BLK K / DIM_YA * BLK-M / DIM_XA -
BLK.N / DIM_YB * BLK_K / DIM_XB

SMEM Reuse (SMR) = BLK K *

((BLKM / DIM_X) + (BLK.N / DIM.Y)) /
(BLK_K / DIM_YA * BLK.M / DIM_XA +
BLK.N / DIM_YB * BLK_K / DIM_XB)

Work per Thread (WpT) = (BLK.M / DIMX) * (BLK.N / DIM.Y)  (3)

Because of the contradictory definition of the efficiency criteria and the utiliza-
tion criteria, it is not possible to optimize both at once. The efficiency criteria will
force contexts, which will reduce the reload operations from GMEM and there-
fore enforce higher resource consumption. On the other hand, the utilization cri-
teria will favour shorter working times for the contexts by consuming less SMEM
and REG resources. The approach of this work is to use those parametrizations
for the subsequent SA autotuning step, which forces to achieve the highest ef-
ficiency criteria on a specific utilization level. This ensures long living contexts
on a specific utilization level with respect to the latency hiding principle from
Paragraph 2.2. With respect to these suppositions, the resulting search space
reduces to 84 meaningful parameter combinations.

2.3 Simulated Annealing

Simulated annealing (SA) is a probabilistic technique for finding optimal param-
eter combinations in a given search space - a detailed overview of the concept
is given in [22]. For our approach SA is fitting, because of its ability to ignore
local minima and converge to the global one. Sorting the search space after dif-
ferent criteria enforces grouping of parameter combinations with similar runtime
on similar problems in the search space, resulting in faster convergence of SA.
The parameter combinations found in Paragraph 2.1 are sorted according to
their achieved utilization on the GPU and processed in the SA step. It should
be noted, that other possible criteria for SA could be the blocksizes (BLK_M *
BLK_N) or the leading dimension (DIM _X) from Paragraph 2.1.

3 Performance Evaluation

The performance evaluation of the proposed work is based on a NVIDIA Pascal
GPU (MSI Geforce GTX 1080 Ti Aero 11G OC) in combination with a Intel
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Xeon E5-1620 with 96 GB Memory host system. The operating system is Win-
dows 64 Bit with NVIDIA Driver Version is 390.65 and CUDA 8. To evaluate
the performance of the proposed approach different data sets are used - Table
1 gives on overview of the different matrix shapes for evaluation. These matrix
shapes have been chosen, because cuBLAS proven to perform very well. An eval-
uation test consists of three Matrices A,B and C with format M x K, K x N and
M x N € N. Additionally in order to illustrate the flexibility of the proposed
approach, several other matrix shapes have been evaluated. The results of the
performance evaluation are shown in Figure 1 and Table 2. Figure 1 shows the
achieved speedups with respect to the matrix shapes compared to cuBLAS. It
can be seen, that the larger N the lower the performance speedup. In the worst
case the achieved result of the proposed approach is 1.3 times faster than the
highly optimized cuBLAS routine, in the best case the speedup is 187 times
faster than cuBLAS.

Table 1 shows a comparison between the best-found solutions with a standard
the brute-force approach to the proposed approach based on SA proposed in
this work. The speedup for finding optimal kernel parameters with the proposed
SA approach is nearly five to six times faster than the standard brute force
approach, while the performance loss for GEMM kernel execution is maximum

10%.

Algorithm 2: Procedure for proving performance capability of this
work. The algorythm generates examples in the form of three matrices
A, B and C with the formats M x K, K x N and M x N € N. After 152
generated examples the process terminates.

for M = 25; M < 1000000; M = M + 25 do
for K = 25; K < 1000000: K = K + 25 do
if M * K = 6250000 or 25000000 or between 2000 and 1000
then
N = 25;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);

N = 0.5 * M;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);

N =M;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);

N=5%*M;

Brute-force search space (M,N,K);

Simulated Annealing (M,N,K);
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Matrix Entries Matrix Number Matrix Entries Matrix Number
M K N M K N

10000 25 10000 1 1250 5000 1250 5

10000 200 10000 2 25 1000000 25 6

5000 500 5000 3 4000 50000 25 7

2500 2500 2500 4 25 10000 2000 8

Table 1. Data Matrix sizes for performance evaluation.

1000,0

100,0 }

| =

M=25 M=0,5*N M=N M=5*N
Format of the matrices form [M x K, K x N, M x N]

Speedup

=

Fig. 1. Comparison of the speedup times against cuBLAS with the brute-force ap-
proach on the examples from Algorythm 2. The minimum Speedup was 1,3, the max-
imum was 187 times as fast as cuBLAS. The average was 12.3 compared to 11.9 in
the Simulated Annealing approach. The figure shows, that with an increasing size of
N compared to M the speedup reduces. But there was no negative speedup in this test
so the results are always faster than the calculation with cuBLAS.

Matrix Format brute-force
Speedup against Simulated Annealing (%)
N=25 10,0
N=M/2 8,4
N=M 3,7
N=5M 4,3
average 5,8

Table 2. Comparison between the best achieved brute-force solution in comparison
to the found solution with the Simulated Annealer on examples in the form of three
matrices A, B and C with the formats M x K, Kx Nand M x N € N
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4 Conclusion

The computational throughput of Machine Learning algorithms is limited by the
available computational power of the underlying hardware. Most of the compu-
tation power in DLNN is consumed by the convolution step, which is based on
a general matrix multiplication (GEMM). To accelerate the computational time
in Machine Learning applications different highly optimized GEMM implemen-
tations for GPUs have been presented in the last years - usually these software
libraries have been optimized for a specific GPU version and a specific layout of
the data to be processed.

In order to achieve a maximum performance the kernel parameters of the GEMM
algorithm have to be tuned hardware and learning task specific. With respect
to these suppositions, we have presented a two-step autotuning approach for
GPU-based GEMM algorithms: In the first step, the kernel parameter search
space is pruned by analysing the kernel source code with several developed per-
formance metrics. In the second step a modified Simulated Annealing algorithm
is utilized, which enables a fast searching process for performance optimal ker-
nel parameters, while maintaining search runtimes lower than state of the art
brute-force implementations. We have shown that the proposed approach for
autotuning MAGMA-GEMM kernels yields high performance and adapts to the
GPU hardware and the data layout. Our results have been carried out base on
160 different input problems - we get an average speed up against the state of the
art GEMM implementation from NVIDIA (cuBLAS) from around 12 on Pascal
based NVIDIA accelerator cards. The key concepts of this contribution can be
generalized, to autotune the kernel parameters of other performance sensitive
GPU kernels.
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