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Abstract. Small humps on the floor go beyond the detectable scope of
laser scanners and are therefore not integrated into SLAM based maps of
mobile robots. However, even such small irregularities can have a tremen-
dous effect on the robot’s stability and the path quality. As a basis to
develop anomaly detection algorithms, kinematics data is collected ex-
emplarily for an overrun of a cable channel and a bulb plate. A recur-
rent neuronal network (RNN), based on the autoencoder principle, could
be trained successfully with this data. The described RNN architecture
looks promising to be used for realtime anomaly detection and also to
quantify path quality.
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1 Introduction

The navigation of mobile robots typically relies on laser scanner data. Small
humps on the floor, e.g. cable channels, doorsills, floor unevenness or other envi-
ronmental anomalies go beyond its detectable scope. Typically only a 2D map of
the environment e.g. 10cm over ground can be established. However, even such
small irregularities can have a tremendous effect on the robot’s stability and the
path quality. Induced vibrations can impact cargo or can reduce the storage life
of the robot or its mechanical components.

The new idea of our project is to seek to integrate the detection of small
anomalies into dynamic adaptation during the execution of a path and into path
planning itself. This should be done based on acceleration data, which can be
collected simple and inexpensive by inertial sensors.

Commercial mobile platforms like the Mir-100 allow the definition of driving
routes by defining manually a few target points in the map. Then, subsequent
path planning is done automatically considering several boundary conditions,
e.g. distances to walls. Such a map based path planning can be extended by
dynamic path planning in order to adjust to temporary changes in the environ-
ment [1]. By driving around or stopping in front of unpredicted and potentially
dynamic obstacles collisions can be avoided.
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2 Methodology

In robotics typically high-dimensional sensory data with application specific con-
figurations are in use. To make an anomaly detection component reusable with-
out expensive adaptions from specialists, it is desirable to base on a flexible
architecture (one or many input channels) and not to use much domain knowl-
edge about the data. This and the need to work with streaming data to find
anomalous subsequences instead only single outliers, quantifiable by a score,
exclude many anomaly detection methods available in the literature.

On the other side, artificial neuronal networks in general have been used to
solve a large range of problems in the field of robotics processing [2] particularly,
deep-learning networks are identifyed as the leading breakthrough technique
in the field of mobile robots [3]. They might be used to overcome important
challenges in perception and control of mobile robots. For example in [5,6] a
novelty detection in visual data to analyze the robot’s environment is described.

In [13] we have shown that a specific deep neural network (DNN) based
autoencoder allow for a robust and easily expandable implementation of anomaly
detection in kinematic data but which architecture should we use?

There are several approaches. A common way is to train a neuronal network
with non anomalous data to be able to predict the next few time frames in the
timeseries, based on the current and past values. Then the test data can be
compared with the predicted data and the prediction error gives an indication
of anomaly [4].

A further class of unsupervised methods combines recurrent neural networks
with an encoder/ decoder used as a reconstruction model, where some form
of reconstruction error is used, as a score measure of anomaly. The so called
autoencoders are trained to reconstruct the normal time-series and it is assumed,
that such a model would do badly to reconstruct anomalies, having not seen
during training [4].

A newer variant of the autoencoder architecture is the variational autoen-
coder (VAE) introduced in [7, 8] and amongst others used for anomaly detection
[9]. Tt is based on a reconstruction probability instead a reconstruction error,
which should be a more objective anomaly measure. To take into account the
temporal structure of timeseries in such an architecture, an additional LSTM
[11] layer can be preceded.

3 Concept

The bigger aim of the project behind this paper is to make the usage of mo-
bile robots more robust and flexible by dynamic adaptions to a changing en-
vironment. This paper extends the work in [13], which describes in detail the
kinematics of the commercially available mobile platform Mir-100 during over-
run of a cable channel as a model for an environmental anomaly. Takeoffs are
happening particular strong for the rear wheels as a product of the front and
the drive wheels already past the cable channel and therefore pulling is more
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Fig. 1. Commercially available MiR-100 mobile platform.

effectively. To avoid a damage of the platform or its cargo the idea is to detect
the overrun of the front wheels as an anomaly in realtime and to slow down the
mobile platform before the rear wheels reach the cable channel.

The measurements described in [13] are done with high precision by a marker
based optical system to have a ”gold standard”. This dataset is also used to train
the DNNs presented in this paper.

4 Experiments

Two DNNs are implemented based on DL4J, an open sourced, industry-focused,
commercially supported distributed deep-learning framework, which supports
multiple CPUs and GPUs.

Furthermore architectures based on a convolutional layer to extract features
along the time axis and fed them into a recurrent or dense layer are tried.

The first tested architecture consists of a sequence of four network layers,
three of type LSTM [12] with 64, 256 and 100 nodes and hyperbolic tangent
as activation function, followed by a dense layer with 100 nodes and linear ac-
tivation. For fitting the weights, mean squared error is chosen as loss function
and RMSPROP, which keeps a moving average of the squared gradient for each
weight, as optimizer.

The second architecture consists of six network layers. The first of type LSTM
[12] with one input node and 100 output nodes, followed by an variational autoen-
coder (VAE) introduced in [7, 8] and amongst others used for anomaly detection
[9]. It has two encoder- and two decoder-layers, 256 nodes each. The end of the
sequence builds a dense output layer.

Both DNNs are trained with vertical acceleration data from the reference
dataset which was collected in high precision by a marker based optical system
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during driving a mobile platform Mir-100 (Fig. 1) in a gait- and motion analysis
lab. Details of the dataset and its aquisition is described in [13]. Three trials are
arbitrary chosen to build a validation set.

The DNNs are trained with the remaining 24 example trials with about 15000
time frames each. Only the sections of the trial without the overruns of the cable
channel are included in the training set. Over each trial a time window of width
100 frames is moved step by step and the resulting 100 * trial length sequences
are mixed up to build the training sequence. To normalize the data and make
it more suitable as input for the DNN the mean is subtracted and a division by
the standard deviation is done.

Fig. 2. Inertial measurement unit MPU 9250 4+ Onion Omega?2.

Further three test trials with acceleration data (sampling rate 120Hz) are
collected from an inertial measurement unit MPU 9250 (Inven Sense) connected
via I12C to a Omega2 module (Onion, Fig. 2) and mounted on the mobile plat-
form. To test the DNNs the data is saved in csv files. In principle the data can
be streamed via WiF1i to an external laptop, which also collects the position data
of the mobile platform via the MiRs REST-API.

Vertical acceleration data is collected for three test trials during driving the
robot in a corridor with full speed. A cable channel (Fig. 3) is overrun in the
middle of the trial.

5 Results

Training of LSTM based autoencoder and the VAE (4) both converges well with a
batch size of 50 and a learning rate of 0.2. Loss function values after training with
1 and after 5 epochs are 4.686 and 1.154 for the LSTM layers based autoencoder
and 0.619 and 0.039 for the VAE. The values show no differences between the
three test trials (optical marker based measurements) for the shown digits.
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Fig. 3. A cable channel as an anomaly model.

Reconstructed non anomalous data looks very similar in both cases and the
overruns of the cable channels are detected clearly as anomaly in all (validation-
an inertial sensor based test trials) cases. Fig. 5 shows the difference between
original and the predicted /reconstructed data for non anomalous data. The data
was normalized to one for the complete trial inclusive anomalous data. That is
why the values for non anomalous data in Fig. 5 are so small. Fig. 6 shows a
part of the same trial with anomalous data. The three peaks correspond with
the overrun of the front-, drive- and rear-wheels. The detections work fine too for
inertial sensor based test trials although the DNNs are trained with the marker
based optical high precision lab data only.

The approach with a convolutional layer based architecture has no success
until now.

I score
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Fig. 4. Score (value of the loss function) over the current minibatch (x-axis), during
training of the VAE.

6 Discussion

Anomaly detection works fine for both tested DNN architectures but training of
the VAE converges faster and to smaller loss function values which can be an
advantage.
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Fig. 5. Normalized anomaly score (predicted minus original acceleration in z-direction)
of the VAE based autoencoder; non anomalous data.
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Fig. 6. Normalized anomaly score (predicted minus original acceleration in z-direction)
of the VAE based autoencoder; overrun of a cable channel. The three peaks correspond
with the overrun of the front-, drive- and rear-wheels. The peak corresponding to the
rear-wheels is the biggest one.
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These positive results should not hide the fact that a neural net application
often needs more care and expenditure in its configuration than an explicit for-
mulated algorithm. Neural nets always come along with the risk to learn hidden
but unwanted rules by so called overfitting. In practice you can meet this by
a number of arrangements. Carfully choosen architecture details, e.g. for the
variational autoencoder used for this project the count of hidden nodes is set
higher than the count of input/output nodes. This helps a lot against overfitting.
Furthermore you can use so called data augmentation techniques, if the training
data set is not divers enough or too small. To be sure that the DNN learns the
concrete paths of the training data as normal, we cut the complete movement
paths into pieces and create the training set with an random sequence of these
pieces.

If the configuration is such sensitive, why to use a neural net et all? The
overrun of the cable channel produces a time window with spikes. With a simple
threshold spike detector anomaly detection could be achieved with less effort.
Furthermore, this could have the additional advantage that the time threshold
for spiky data considered as anomalous, can be defined explicitly, so that the
concrete mobil platform is meaningful affected. If only 1D acceleration data is
available this can be the better approach.

However, if multichannel data is available e.g. from multiple 3d-acceleration
and other sensors in combination and if the algorithm should be robust against
single sensor dropouts, the DNN approach is more flexible. It is much easier
to train a DNN with a different sensor configuration than to adjust thresholds
for multiple sensors and to implement a configuration specific logic to make the
system robust against dropouts.

The failure of our convolutional layer approach seems to be caused by a too
small training data set.

7 Conclusion and Future Work

The DL4J and its VAE implementation has proved in our project as a production
ready framework for anomaly detection in mobile platforms acceleration data.
This motivates to implement the newer so called variational recurrent autoen-
coder (VRAE) [10] based on DL4J. The VRAE extends the VAE and takes into
account the dynamic temporal behaviour from the scratch.

The next step is to establish a multichannel approach with three or more
3D acceleration sensors and an optimization of the hyper parameters. For this
purpose the DL4J provides the the promising so called Arbiter API.
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