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Abstract.  This paper shows how automation components can be enhanced with 
self-monitoring capabilities, which are more effective than traditional rule-based 
methods, by using Industrial Analytics approaches. Two application examples 
are presented to show how this approach allows the realization of a predictive 
maintenance strategy, while drastically reducing the realization effort. Further-
more, the benefits of a flexible architecture combining edge- and cloud-compu-
ting for the realization of such monitoring system are discussed. 
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1    Motivation and Application Areas 
The realization of predictive maintenance strategies in nowadays production facili-

ties is a complex endeavor. Given the rather heterogeneous landscape of typical pro-
duction facilities, where machines at different stages of their life cycle and from differ-
ent vendors are combined for a single production line, this situation is even more chal-
lenging. In many cases, unplanned downtime is caused by components lacking moni-
toring capabilities (e.g., dedicated monitoring sensors), which force plant operators to 
increase the maintenance efforts to guaranty a steady operation. One promising way to 
drastically reduce the costs of maintenance is the use of Industrial Analytics ap-
proaches. Here, the use of data from the production system combined with machine 
learning methods and domain knowledge leads to the realization of monitoring systems 
able to automatically detect changes in the behavior of a machine or a component dur-
ing operation or to predict undesirable situations.   

There is a need for flexibility in the realization of Industrial Analytics functions to 
address the long range of industry applications. For machinery applications, data sets 
are generated from control systems operating in real time. The applied algorithms need 
to operate with short reaction times to avoid critical failures or to decrease quality prob-
lems resulting on the production of scrap. In these kind of applications, the required 
sensor data is rather small and the sensor signals are highly correlated to each other. 
Therefore, an implementation of industrial analytics functions using edge devices alone 
or in combination with cloud computing brings many advantages, such as short reaction 
times and decreasing network traffic.  
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This paper shows the use of Industrial Analytics as means of enabling a condition 
based- or even a predictive maintenance strategy for simple automation components 
lacking dedicated monitoring resources. It is shown in section 2 how a flexible archi-
tecture combining edge and cloud computation enables the realization of such monitor-
ing system. The process to develop an Industrial Analytics solution is then explained in 
section 3. Two practical use cases are then presented in section 4, disclosing the poten-
tial of this approach to reduce maintenance costs while increasing its effectiveness. 

2    Development process of Industrial Analytics solutions 
Industrial analytics functions are typically composed of different tasks, as shown in 

Figure . The figure shows the typical workflow of an industrial analytics application, 
where data from the different devices are first consolidated in a single data source (data 
storage). The next step is to pre-process the data as preparation for the learning process 
(preprocessing). In this step, relevant features are extracted from the raw data signals, 
involving the combination of statistical methods with domain-knowledge to select 
meaningful features.  

Figure 1: Typical workflow of an industrial analytics system. 

The next step is the selection, training and tuning of machine learning algorithms to 
derive a model from the selected features (model learning). Again, the combination of 
analytics expertise and domain knowledge is key to develop an efficient model. Once 
developed, the model can be used at runtime to monitor the machine or process (model 
execution). To be useful the results need to be properly visualized (visualization). The 
kind of visualization should be selected according to the role of the person who shall 
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use this information, e.g., the machine operator, the maintenance manager, etc. The 
integration of an industrial analytics function in an automation system can be done at 
different levels, for instance at the machine, or using a cloud platform. These possibil-
ities are explored in the next section. 

3    A flexible automation system architecture for Industrial 
Analytics  

In a typical automation system, the continuous stream of heterogeneous data created 
by machines, actuators and sensors can be used as input for industrial analytic applica-
tions such as predictive maintenance. As more and more smart components from the 
Internet of Things (IoT) domain enter the production facilities, this flood of data will 
grow dramatically and will become increasingly difficult to manage utilizing a central-
ized Cloud-based data collection and processing approach. The concept of Edge Com-
puting has recently been proposed to overcome this limitation by providing a distrib-
uted computing model where data is processed at the "edge" of a network, i.e., near 
field devices [SD2016, GJFVR2016]. 

The core benefit of this approach is to allow for low latency by computing the data 
where it is created without incurring network latencies, which is essential for real-time 
condition monitoring applications. Another benefit is scalability: while a traditional 
centralized approach will no longer be feasible with an increasing number of communi-
cating devices, Edge Computing provides a linear scalability and is needed as augmen-
tation to reduce pressure on network infrastructure. Furthermore, storage and operation 
cost can be reduced by processing time-sensitive data locally and significantly reducing 
raw data before being sent to the Cloud. This technique can also be used to preserve 
privacy by ensuring that sensitive data is pre-processed on-premise so that only privacy-
complaint data is transferred to the Cloud. Following the steps from data acquisition to 
analytics processing and to the visualization of meaningful machine information, vari-
ous processing steps at different system components are involved. Figure 1 illustrates 
an example of a flexible automation system architecture implementing Industrial Ana-
lytics at Edge-, on-premise- and Cloud levels.   

Raw data are acquired by Remote Terminal Units (RTUs) from machines, and pro-
cess-relevant actuators and sensors over a fieldbus, e.g. PROFIBUS, depicted by green 
bus connections. An initial pre-processing stage such as filtering can be implemented 
on these devices.  The signals are then collected by a Programmable Logic Controller 
(PLC) and used to control the system. Additional process-independent components like 
smart temperature-, vibration- or pressure sensors are typically connected to an Indus-
trial IoT (IIoT) gateway via Bluetooth, WiFi, Ethernet or the emerging 5G 
[PLZW2015]. These components play an important role in the process of retrofitting 
and enabling Industrial Analytics services on older machines. Monitoring systems for 
important control parts that usually don’t offer data interfaces by design (i.e. electro-
mechanical relays or solenoid valves) can ideally be connected to an IIoT Gateway. We 
present two practical use cases for these systems in the following section of this paper. 
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Figure 2: A flexible automation system architecture for Industrial Analytics. 

Low latency Edge Analytics functions can be implemented in both, modern PLCs 
and IIoT gateways. While the PLC can only monitor the devices connected to it, the 
IIoT gateway typically can access the PLC data in addition to the process-independent 
component data to generate a larger machine learning model. If necessary, the data 
density can be further decreased at the Edge level. In addition to data storage and visu-
alization, more complex analytics functions over multiple machines or devices can be 
performed on-premise by an Industrial PC (IPC) or in the Cloud at the cost of higher 
latency and increased network traffic. Rich and detailed visualization functions are of-
fered by the Supervisory Control and Data Acquisition (SCADA) or Manufacturing 
Execution System (MES). 

4    Use Cases 
In this section two use cases are presented, which show the benefits of enabling sim-

ple automation devices with self-monitoring capabilities: Monitoring of electrome-
chanical relays and solenoid valves.  

Monitoring of Electromechanical Relays 
Electromechanical relays are electrically operated switches that use an electromagnet 
to mechanically operate a switch to control a circuit by a separate low-power signal. 
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They are widely used in industrial areas such as plant construction, mechanical engi-
neering or shipbuilding for switching inductive loads, e.g. for controlling solenoid 
valves.  

Figure 3: Cross section of a typical electromechanical relay 

A simple electromechanical relay consists of an electromagnetic coil, a movable ar-
mature and contacts. The armature is attached with a spring so that under normal work-
ing conditions it comes back to its original position. If the coil is supplied by the source, 
a magnetic field causes to attract the armature towards the electromagnet so that the 
normally open contact (NO) and common terminal contact (COM) connect. This state 
is shown in Figure 3. When the coil is not supplied by the source, there is no magnetic 
flux production and the spring draws the armature to its original position so that the 
normally closed contact (NC) and COM connect. The heavy load on the relay contacts 
NC and NO that repeatedly occurs while switching inductive DC loads causes prema-
ture failure of the relay. Depending on the application, downtime, equipment damage 
or personal injury can result from component failure. For this reason, it is important to 
replace damaged relays in time.  

In this use case, electromechanical relays were tested for inductive load over their 
lifetime to develop Industrial Analytics methods for failure detection. In the experi-
mental setup, relays were tested by switching on and off repeatedly under a high DC 
load. An inductive load was connected to the contact side of the relays, causing an arc 
between the opening contact surfaces at the moment of switch-off and damaging the 
relay contacts. This process was repeated until failure of the relay.   

A combination of features based on the electric current flow through the relay coil 
in combination with a Kullback-Leibler divergence-based classifier [KL1951] has been 
found which allows for a prediction of imminent failure and predictive maintenance. In 
this study, only features that can be directly measured in the relay without additional 
sensors were considered. Figure 3 shows an example plot of the classification output. 
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Figure 4: Example classification output of the relay condition monitoring method 

Here, the relays were classified into three categories: healthy (green), damaged (or-
ange) and possible failure (red). With the method presented in this paper it is possible 
to detect an imminent failure due to welding of the relay contacts with high accuracy. 
In this case, a condition monitoring system can trigger a warning and initiate a predic-
tive maintenance measure before actual damage has occurred. The time remaining in a 
concrete use case scenario to respond to the imminent failure depends heavily on the 
switching frequency of the relay being monitored. Based on our experiments, the 
method presented here allows enough reaction time for applications having high 
switching frequencies (10 operations per second) or low switching frequencies (1 op-
eration per hour). For this kind of applications, analytics  

Monitoring of solenoid valves 
Solenoid valves are among the most important control units in today's industry. Espe-
cially in the process industry, solenoid valves play an important role because they con-
trol the media flow of gases and liquids.  

When a current is applied to the magnet winding, the movable magnet armature is 
attracted, thus releasing the valve plug from the valve seat (see Figure 5). A medium 
can flow. When switching off the current, the return spring ensures the lowering of the 
magnet armature and thus the closure of the valve seat by the valve plug. Mechanical 
loads on the moving parts and the permanent flow of media cause signs of wear inside 
the solenoid valve. Also, the continuous use under difficult operating conditions, such 
as high temperatures and vibrating environments, can cause additional wear.  Since so-
lenoid valves are often used in safety-critical applications, malfunctions can have cata-
strophic economic consequences and, above all, put in danger human lives. Not only is 
wear within a solenoid valve a safety hazard, errors in the signal line (e.g., wire break, 
short circuit) to the solenoid valve can also cause failures and thus pose a high risk. 
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Figure 5: Schematic of a solenoid valve 

To prevent premature wear due to wear, the valve or drain in the solenoid valve and 
the signal line to the valve must be monitored. Four error classes dominate the reports 
[NRC1987]: 

Foreign matter in the valve (16%)
Burnt coil / short circuit (15%)
Worn or defective valve parts (11%)
Open circuit in coil (9%)

 When monitoring solenoid valves, there are two different approaches. The first 
approach is a rule based approach. During operation, the load current is monitored by 
means of an electronic component. If the current falls below or exceeds the set limits, 
the block sends a signal to the controller.  

Figure 6: A significant shift in the curves indicates signs of wear on the valve mechanism 
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With this method, events such as wire breakage, short circuit or overvoltage and 
undervoltage can be detected and reported. However, changes in the dynamics of the 
system inside the defined boundaries are not detected.   

The second approach pursues the goal of early detection of valve failure. Here, the 
current waveforms of switching cycles are recorded and compared (see Figure 6). This 
approach enables device- and application-specific monitoring, because the reference 
model is created or parameterized during operation. Deviations to a certain extent may 
indicate a near defect and thus initiate the timely replacement of the valve (see Figure 
6). As in the previous case, the realization of this monitoring strategy does not require 
the use of dedicated sensors, because features extracted from already existing signals 
are used. This enables the realization of such strategy also for low cost applications.  

5    Summary and Conclusions 
This paper has shown the use of Industrial Analytics as means of enabling a predictive 
maintenance strategy. It is shown how a flexible architecture for the realization of data-
driven monitoring enables the realization of such monitoring system also for simple 
automation devices. This is demonstrated by two practical use cases, disclosing the po-
tential of this approach to reduce maintenance costs while increasing its effectiveness. 
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