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Abstract. Industrial plants usually consist of different process units
which are strongly cross-linked to each other. This leads to the point
that a voluntary or involuntary change in one unit (e.g. changing some
process control parameter or having a malfunctioning value) can lead to
unexpected results in another process unit. Hence, knowing which are the
causing and which are the effecting process variables is of great interest.
Still, depending on the underlying process and the characteristics of the
excitation signal, directed connectivities can or can not be detected.
Therefore, in this paper several types of dynamic SISO systems and
excitation signals are defined for which a directed connectivity from input
to output signal should be detected and from output to input should not
be detected. As a method for the detection of directed influences Spectral
Granger Causality is used, which has been extended with a surrogate-
based significance test. This test is used to define if a directed influence
exists from one process variable to another.

Keywords: Spectral Granger Causality · Detection of Directed Con-
nectivities · Time Series Analysis.

1 Introduction

Process control systems at production plants usually consist of a large number
of process variables, while the interconnectivity of the variables is not always
directly evident. Hence, due to the interconnectivity, if some change, voluntary
or on purpose is performed on one unit, this can lead to unwanted effects at
another unit. Therefore, it is of great interest to understand which variable has
a significant influence on another variable.
For the automatic detection of directed connectivities in time series exists al-
ready a wide variety of methods, which are mainly developed for the use in
neuroscience (e.g. [3] or [1] for reviews) or for the analysis of econometric data
[9]. One of the first methods developed, was done by Granger [8], being called
the Granger Causality. This method uses two vector autoregressive functions
and, by comparing their residual sum of squares, the method tells if one variable
causes the other or not. The original approach, taking place in the time domain,
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was extended by Geweke [7] into the spectral domain, having the advantage to
select specific frequencies for analysis. In 2000 Schreiber [14] developed a method
called Transfer Entropy, which measures the amount of information transferred
from one random process to another. In recent research, Transfer Entropy has
been extended by contains several extensions like Partial Transfer Entropy [11]
or Symbolic Entropy [13]. Bauer [2] proposes a Nearest-Neighbor approach for
cause-effect analysis. In [12] different methods for the detection of significant
directed influences were developed and compared on several benchmarks, con-
sisting of simulated dynamic systems data, biosignals and on disturbances from
a glass forming process. Kaminski [10] proposes the estimation of directed trans-
fer functions.
This aim of this paper to investigate under which circumstances it is possible
to detect directed influences in measurements, depending on the excitation sig-
nal as well as the underlying dynamic systems. As specific detection method
Spectral Granger Causality [7] is used, which is extended with a surrogate-based
significance test. In difference to [12], which already defines benchmark processes
for the detection of causal dependencies, the current paper focuses more on the
excitation signal characteristics.
The paper is structured as follows: Section 2 introduces how directed connectivi-
ties can be detected in time series and how Spectral Granger Causality is applied.
Additionally, the surrogate-based calculation of the significance threshold is ex-
plained. Section 3 describes the defined input signals and dynamic systems for
benchmarking, while section 4 discusses the results. Finally, section 5 gives a
summary and some ideas for future research.

2 Detecting directed connectivities in time series

2.1 Bivariate Spectral Granger Causality

The concept of Granger causality (GC) has been originally introduced in the
field of economics by Clive Granger in 1969 [8] who used it to determine the
relationships of different econometric models. The basic concept of bivariate GC
can be explained by assuming the two time series u[k] ∈ R and y[k] ∈ R with
k = 1, . . . ,K samples. In that case, the causal connectivity u → y is assumed
to exist if past values from u[k] and y[k] result in a higher forecast accuracy
for y[k] than using only past values from y[k]. Mathematically, this is evaluated
by comparing two linear vector autoregressive models, while the first one only
contains past values of y[k], called the restricted model, and the other one con-
taining past values of u[k] and y[k], called the unrestricted model.
Furthermore, Granger Causality can be easily extended into the multivariate
case, while good explanations can be found e.g. in [16] or [4]. Since the devel-
oped benchmarks in section 3 compare always one input against one output, for
simplicity, multivariate GC will not be explained in this paper.

GC in the time domain: Checking if u causes y or y causes u, is in the time
domain is done by comparing two linear vectorautoregressive (VAR) models.
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The two VAR models are defined as

u[k] =
n∑

j=1

auu[j] · u[k − j] +
n∑

j=1

auy[j] · y[k − j] + eu[k], (1)

y[k] =

n∑
j=1

ayy[j] · y[k − j] +
n∑

j=1

ayu[j] · u[k − j] + ey[k] (2)

containing the residual covariance matrix being defined as

Σ =

(
Σuu Σuy

Σyu Σyy.

)
(3)

In 1, 2 n is the model order, auu, auy, ayu, ayy ∈ R
n contain the model coefficients

and eu[k], ey[k] ∈ R define the residuals. Finally GC checks the coefficients in
ayu (respectively auy). If these are significantly different from zero, it is assumed
that u causes y (respectively y causes u). Usually, this is done by comparing the
squared-sum of residuals of eu (respectively ey) with and without taking into
account the influencing variable y (respectively u).

GC in the frequency domain The advantage when working in the frequency
domain compared to the time domain is that causal connectivities can be tied to
specific frequency bands and one gets better insights in the data. The method-
ology has been explained in detail in [7] and the main steps are given here for
completeness. The Fourier Transformation of the equations 1 and 2 can be writ-
ten in the following set of equations:

(
Auu(f) Auy(f)
Ayu(f) Ayy(f)

)(
u(f)
y(f)

)
=

(
eu(f)
ey(f)

)
(4)

with u(f) and y(f) are the Fourier transformed time series from u[k] and y[k] and
eu(f), ey(f) are the Fourier transformations of eu[k] and ey[k]. The components
of A are then transformed as

Auu(f) = 1−
n∑

i=1

auu(n)e
(−i2πfn) (5)

Auy(f) = −
n∑

i=1

auy(n)e
(−i2πfn) (6)

which counts analogous for Ayu(f) and Ayy(f). Finally, equation 4 can be rewrit-
ten as

(
u(f)
y(f)

)
=

(
Huu(f) Huy(f)
Hyu(f) Hyy(f)

)(
eu(f)
ey(f)

)
(7)
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with H(f) defining the transfer function matrix. Following Geweke [7], under
the assumption that the covariance Σuy = 0, the auto spectrum Suu(f) for the
time series u[k] can be derived as

Suu(f) = Huu(f)ΣuuHuu(f)
∗ +HuyΣyyHuy(f)

∗. (8)

The asterisk in equation 8 defines the transposed and complex conjugated trans-
fer function. According to Seth [15], equation 8 can finally be divided into an in-
trinsic part, namelyHuu(f)ΣuuHuu(f)

∗ and a causal part, namelyHuyΣyyHuy(f)
∗.

Hence, the Granger Causality for each frequency can be calculated as

fu→y(f) = ln

( |Suu(f)|
|Suu(f)−HuyΣyyHuy(f)∗|

)
.

Finally, the causal strength Fu→y is calculated by integrating over the complete
frequency spectrum being defined as

Fu→y =
1

2π

∫ 2π

0

fu→y(f)df (9)

2.2 Threshold

The in equation 9 defined causal strength Fu→y is not bounded, meaning that
from the bare value it is not possible to tell if a causal dependency is really sig-
nificant or not. Therefore, a threshold needs to be calculated each time an input
u is tested against a possible output y. Following Choudhury [5] a surrogate time
series needs to calculated for u, while surrogate means that the phase coupling
is removed but the signal keeps the same power spectrum. In other words, all
causal information is removed from the signal. To calculate the surrogate of u
the following steps need to be performed

uFFT = FFT(u)

usurr
FFT =

⎧⎪⎨
⎪⎩
uFFT[k] k = 1, N/2 + 1

uFFT[k]e
jΦk−1 k = 2, . . . , N/2

uFFT[k]e
jΦk−1 k = (N/2 + 2), . . . , N

usurr = IFFT(usurr
FFT)

with FFT being the Fourier and IFFT being the Inverse Fourier Transform.
In that case N describes the number of samples and Φn ∈ 0, . . . , 2π with k =
1, . . . , (N/2−1) is a random phase value. The final threshold is derived in terms
of a 3σ test being defined as

FThreshold
u→y = μsurr + 3σsurr

with

μsurr =
1

M

M∑
k=1

Fusurr→y, σsurr =

√√√√ 1

M

M∑
m=1

(Fusurr→y − μsurr)2.
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and M being the number of surrogate trials. If the outcome indicates Fu→y >
FThreshold

u→y , the found causal dependency is defined as being significant.

3 Benchmarks

For the detection of directed connectivities in time series two things are impor-
tant, namely the characteristics of the excitation signal and the underlying pro-
cess behavior. Hence, this section proposes several possible input signals (section
3.1) and several dynamic SISO systems (section 3.2). Next, the Spectral Granger
Causality is used to detect the input and output signal for each pair.

3.1 Analyzed Excitation Signals

As excitation signals white noise, a sinusoid, the sawtooth wave, an impulse
train and a time series based on a random walk are used. All signals are shown
in figure 1 in the time domain as well as its power spectrum. For analysis, each
signal consists in summary of N = 1000 samples. The details of the excitation
signals are as follows:

White Noise - A time series that consists of white noise means to have a sequence
of uncorrelated random variables with constant mean μ and variance σ2. In the
following, the input time series uwn[k] ∈ R is modeled as a stochastic process
with μ = 0 and σ2 = 1.

Sinusoid - A sinusoid can be seen as a prototype of a periodic disturbance,
resulting e.g. from poorly tuned PI-controllers. For the input series a sinusoid of
the form usin[k] = sin(ω ·k) ∈ R is used with an angular frequency of ω = 2π ·0.1.

Sawtooth Wave - This time series can be interpreted as some sort of a drift
e.g. when sensors are slowly polluting. For the sawtooth wave the input series
usw[k] ∈ R is defined as usw[k] = frac( k

T + Φ) with a period of T = 100 and the
phase Φ = 0 and frac being the fractional part defined as frac ≡ x− �x	.

Impulse train - Having so-called impulse or spike train means that e.g. an inert
gas or fluid injection into a process at a predefined cycle occurs. Therefore, the

input time series uit[k] ∈ R is defined as uit[k] =
∑N

K −1

k=0 δ[n − kK] with N |K,
δ being a Dirac impulse, N ∈ R representing the length of the time series and
K ∈ R the period. In the following the period K is set to 100.

Random Walk - The time series of a random walk is defined as a process where
the value at sample point [k] is composed of the past value [k− 1] plus an error
term defined as white noise. In this paper the random walk is used to investigate
how used methods behave on low-frequent changes in a process e.g. when having
a fluctuation of some concentration in a fluid. Therefore, the input time series
uRW[k] ∈ R is defined as uRW[k] = uRW[k − 1] + ε[k] where ε[k] is a white-noise
sequence with μ = 0 and σ2 = 0.1.
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Fig. 1. Investigated excitation signals in the time domain and their corresponding
power spectra.

3.2 Dynamic systems

Figure 2 shows the selected dynamic systems which are tested in combination
with the prior shown excitation signals. In detail, the systems consist of a dead
time, a low-pass filter, a nonlinearity and finally a resonant second order system.
In detail, the systems are described as follows:

Dead Time - In this benchmark, the excitation signal is shifted by 10 samples. No
dynamic system is added between input and output signal. Hence, this responds
to the most simple case for the detection of directed connectivities from one
signal to another.

Low-pass filter - The low pass filter with the time constant T = 1 s represents
the most basic system for the detection of input and output signal. In process
technology low-pass filter are e.g. fluid tanks or pipes which tend to attenuate
a disturbance and hence making in sometimes complicated to track back the
disturbance propagation path. This benchmark is mainly used to investigate the
behavior regarding the defined input signals in section 3.1.
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Nonlinear system - In this process a sinusoid is taken from the intermediate
output signal y1(t). Depending on the amplitude of the excitation signal, the
sinusoid will have a strong impact on the resulting output signal. The main
purpose is to determine for which input signals the methods can still determine
the input and output signals and their parameters.

Resonant system - This benchmark represents a classic mass-spring-damper sys-
tem. Like for the other systems the time constant is set to T = 1 s, while the
dimensionless damping ratio is set to ξ = 0.05.

sin(·)1
1+s

1
1+s

u

u

u y y

y

Nonlinear system

Low-pass filter

Dead time

1
1+0.1s+s2

u y

Resonance

Fig. 2. Used transfer functions for the validation of the detection of directed influences.

4 Results

For analysis, each dynamic systems wax excited with the different input signals
and the spectral Granger causality was used for the detection of directed influ-
ences from u → y, with results shown in figure 4, and from y → u, where the
results are shown in figure 4. If a directed influence has been found, the corre-
sponding box contains a checkmark, elsewise it contains a cross. In the following
a summary is given by following corresponding to the defined benchmarking
dynamic systems.

Dead time: In that use case, consisting of a simple time shift, for all input
signals, the directed dependencies from u → y are detected and defined as being
significant. Nevertheless, for the input signal usin and uimp a false positive di-
rected influence has been found pointing from y → u. The explanation is straight
forward, since the impulse train as well as the sinusoid are cyclic excitations sig-
nals, hence having only a time shift in the signals, it is not possible to distinguish
input from output signal .
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Fig. 4. Results of the benchmarks when testing for directed influences Fy→u

Low-pass filter: Regarding the low pass filter, uwn,usin and uimp detect the
correct directed connectivity. The saw tooth and random walk, both having a
similar power spectrum (see figure 1) are not detected. The reason is that the
low-pass filter has to too much attenuation, resulting in an output signal which
has already too much information about itself in past values. Hence, in terms
of Granger Causality, this results in a non-significant information gain for urw.
The only excitation signal leading to a connectivity from y → u is the sinusoid.
Like for the dead time benchmark, the reason is that the sinusoid is cyclic.

Nonlinear system: Adding an additional sinusoid as a non-linearity to the low-
pass filter in the prior benchmark changes the results of the detected directed
influences significantly. uwn does no longer detect the connectivity u → y, while
the urw is detecting it. The two excitation signals usin and uimp behave like
without non-linearity. Regarding the directed, causal wrong influence y → u the
excitation signals uwn,ust and urw detect this influence. Only the usin and uimp

correctly define the influence as not significant.

Dead time
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Fig. 3. Results of the benchmarks when testing for directed influences Fu→y
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Resonance: Detecting u → y in the spring-mass-damper benchmark is only
possible with uwn, usin and urw. When having as excitation the signals uimp and
ust, spectral Granger Causality assumes that there is neither a directed influence
from u → y nor from y → u. Furthermore, except for urw none of the excitation
signals detect in a wrong causal influence y → u.

5 Summary

The results showed when using spectral Granger Causality, the detection of di-
rected influences in time series depends the excitating signal as well as on the
underlying dynamic system. Regarding the excitation signals, for none of the sig-
nals it was possible to detect for all four dynamic systems the correct directed
influence u → y, while at the same time never detecting a wrong influence y → u.
Hence, when using Granger Causality, detected or not detected directed influ-
ences in data always need to be questioned in terms of the excitation as well as
in terms of the underlying process behavior. Still, this method can be of great
help to generate first a understanding of the influences variables have onto each
other in a data set, since no always, but most of the times Granger Causality
detected the correct dependency.
In terms of the development of benchmarks, there is a variety of future research.
Questions that arise are the impact of noise in the data or how a directed in-
fluence can still be detected if variables having a common cause. Regarding
Granger Causality, it can be evaluated, in which cases it is possible to differ-
enciate between direct and indirect influences, e.g. when using the multivariate
Granger Causality. Additionally, the benchmarks should be used to compare
several methods like Transfer Entropy with its extensions or the estimation of
Directed Transfer Functions.
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