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Abstract. Modern Cyber-Physical Production Systems provide large
amounts of data such as sensor and control signals or configuration param-
eters. The available data enables unsupervised, data-driven solutions for
model-based anomaly detection and anomaly localization: models which
represent the normal behavior of the system are learned from data. Then,
live data from the system can be compared to the predictions of the model
to detect anomalies and perform anomaly localization. In this paper we
use self-organizing maps for the aforementioned tasks and evaluate the
presented methods on real-world systems.

1 Introduction

Modern Cyber-Physical Production Systems (CPPS) evolve rapidly, become mod-
ular, can be parameterized and contain increasingly more sensors due to increasing
product variety, product complexity and pressure for efficiency in a distributed
and globalized production chain they become modular, can be parameterized and
contain a growing set of sensors [1]. This also means it becomes more and more
difficult to monitor the systems. Human operators often struggle to diagnose faults
or anomalous behavior in the system in time, leading to system break down, unex-
pected downtime or degradation in product quality.

A common approach to detect the aforementioned scenarios is to construct
models for a given system and compare the predictions of the model to the real
system. Anomalous behavior is detected when the real system’s behavior deviates
from the model’s predictions. Manual construction of system models by experts is
usually time consuming, expensive and also difficult in today’s evolving complex
systems. Experts with the necessary knowledge are usually scarce and often times
some of the necessary knowledge is not available at all. Modern CPPS often provide
large amounts of data such as control signals, sensor signals and configuration
parameters [10]. This allows the use of data-driven methods: models are learned
from data and then used for various tasks such as anomaly detection and anomaly
localization.
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Live data from the system is compared to the predictions of the learned model.
Deviations from the normal behavior are classified as anomalous. Once anomalies
are found, the anomalous samples are presented to a reverse model to localize the
anomalies. This provides a starting point for plant operators and experts to restore
the system to normal working order, ideally before production losses occur.

In this paper we use self-organizing maps (SOM) to learn a systems normal
behavior in an unsupervised manner. The learned SOM’s are then used for both
anomaly detection and anomaly localization. The contents of this paper are struc-
tured as follows: First, section 2 explains the general concept of self-organizing
maps. Second, section 2.1 presents an approach to detect and localize anomalies
within the signal domain of a system. Third, section 2.3 introduces an approach
where timed automata are used to track the working point on top of the self-
organizing map in order to detect anomalies in the time domain. Furthermore, the
aforementioned approaches to anomaly detection and localization are applied and
explained on the Institute Industrial IT’s OPAK demonstrator [11] in section 3.
Section 4 presents the conclusion and future points of research.

2 Self-Organizing Map

The self-organizing map (SOM) [5], also referred to as self-organizing feature map or
Kohonen network, is a neural network that can be associated with vector quantiza-
tion, visualization and clustering but can also be used as an approach for non-linear,
implicit dimensionality reduction [17]. A SOM consists of a collection of neurons
which are connected in a topological arrangement which is usually a two dimen-
sional rectangular or hexagonal grid. The input data is mapped to the neurons
forming the SOM. Each neuron is essentially a weight vector of original dimension-
ality but provides additional information such as its coordinates within the grid. All
experiments in this paper use a two dimensional, non-toroidal rectangular lattice
and the Euclidean distance measure as shown in Definition 1.

Definition 1. The SOM = (M,G, d) forms a topological mapping of an input
space O ⊂ R

m, m ∈ N and consist of

– a set of neurons M .
– each neuron n ∈ M has a weight vector wn ∈ R

m,m ∈ N.
– G is a two-dimensional rectangular lattice in which the neurons n ∈ M are

arranged.
– d(x,y) is the distance measure to calculate the distance between two vectors

x and y which can for example be weight vectors and/or vectors in the input
space. The euclidean distance is used for all models in this paper.

– an input sample oi ∈ R
m, i ∈ N,m ∈ N is mapped to the SOM through its best

matching unit (BMU). The BMU is given by bmu(oi) = argminn∈M d(oi,wn)

One way to learn a SOM from data is a random batch training approach: the
initial values of the neuron’s weight vectors for the training can be randomly initial-
ized or sampled from the training data to provide a diverse starting point for the
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training process. Training takes place over a chosen amount of epochs. All samples
from the training data are presented to the algorithm within one epoch. A best
matching unit (BMU) is calculated for each input sample from the training data by
finding the neuron which has the smallest distance to the sample. The BMU and
all of its neighboring neurons, assigned through the topology and neighborhood
radius, are shifted towards the input sample (Figure 1). Both the size of the neigh-
borhood and strength of the shift decrease over time to help with convergence. In
the end, each neuron of the SOM represents a part of the training data. Areas in
the training input space with few examples are represented by few neurons of the
SOM while dense areas in the input space are represented by a larger number of
neurons. Usually, the number of neurons is chosen much smaller than the number
of samples in the training data, effectively discretizing and reducing the training
data to the most important samples.

Usually, the number of neurons is chosen much smaller than the number of
samples in the training data, effectively discretizing and reducing the training data
to the most important samples. The compact representation of the training data
provided by the SOM is used in section 2.1 to detect anomalies by calculating the
quantization error.

BMU

Neighbourhood

Oi

Fig. 1. Illustration of training procedure for a single sample.

The unified distance matrix (u-matrix) [14] of the SOM is great for visual
identification of clusters in high-dimensional data. The distance to neighboring
neurons according to the SOM’s topology is computed and plotted as an image:
the X and Y coordinates of the neurons represent the first two dimensions. The third
dimension is given by the sum of distances to neighboring neurons as in definition
2. It calculates the sum of distances to neighbouring neurons according to the
SOM’s topology and visualizes clusters contained in the, usually high dimensional,
training data. The neurons located on the borders of the non-toroidal SOM have
fewer neighbours than the remaining neurons. Therefore, the summed distance is
divided by the number of neighbours of the corresponding neuron to account for the
different amounts of neighbouring neurons. A color gradient can be used instead of
a third dimension as shown in Figure 3: valleys are represented by the color yellow,
indicating a low distance between neighboring neurons. Ridges are represented by
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the color red, indicating a high distance between neighboring neurons. The u-matrix
can be defined as follows in Definition 2.

Definition 2. for each neuron n ∈ M and its associated weight vector wn, the
u-matrix height is given by U(n) =

∑
k∈NN (n,G) d(wn,wk), where NN (n,G) is the

set of neighboring neurons of n defined by grid G and d(x, y) is the distance used
in the SOM algorithm.

The u-matrix representation illustrates why SOM’s were chosen: SOM’s tend
to keep neurons with similar signal weights closely together, which results in a
topographic landscape with valleys, where weights of neighbors are similar, and
ridges, where weights of neighbors are not similar. Valleys represent regions where
the contained neurons weight vectors are very similar. These valleys are separated
by ridges which mark transitions between the different feature spaces. In section
2.3 we further explore this matter to detect anomalies within the time domain.

2.1 Anomaly detection with quantization error

The SOM can be used to detect anomalies by calculating the quantization er-
ror: small errors below a threshold are considered normal, while errors above are
considered anomalous. Quantization error based approaches were already used for
tasks such as network monitoring [6] and anomaly detection in industrial processes
[12][3][13]. These works however, did not perform an anomaly localization and only
[13] used the quantization error as a measure for system degradation.

The quantization error (Definition 3) of each sample is calculated by mapping
it to the SOM to get its BMU. The distance of the sample to the BMU’s weight
vector is the quantization error.

Definition 3. Using the notation from definition 1, the quantization error qe of
an input sample oi ∈ R

m, i ∈ N is given by the distance of the input sample to its
BMU of the SOM: qe = d(oi, bmu(oi)).

The quantization errors for data that is not anomalous are usually greater than
0 due to the discretization of the SOM. A threshold for the quantization error above
which an input sample is classified as anomalous is required. Manual selection of
the threshold works but is usually unfeasible for practical applications. It is far
more convenient to estimate the threshold from data: the quantization errors of
the training data can be seen as a probability distribution and quantiles can be
used to retrieve the threshold for the anomaly detection. The quantile can be
adjusted and we will use the parameter τ with τ ∈ R and 0.0 ≤ τ ≤ 1.0 within this
paper. This can be adjusted to optimize the outcome of the anomaly detection:
when labels are present τ can be used to fine tune the anomaly detection score.
When the training data is perfect, meaning it contains only normal behavior, no
sampling errors, no glitches in the sensors and no noise, then a τ of 1.0 is fine as
this results in the maximum error for the threshold. However, training data is never
perfect when working with real systems and data might contain a small portion of
samples affected by noise and/or other effects. The maximum error might be too
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large to effectively find anomalies. Setting τ to a value slightly smaller than 1.0 can
increase the true positive rate of the anomaly detection at the cost of some false
positives, depending on the use case and desired outcome.

2.2 Localization of anomalies

An additional step after the anomaly detection is to calculate the signal or sensor
which is most likely to cause the anomaly. Anomaly localization is performed after
an anomaly is detected: the observation found to be anomalous is fed through a
reverse model to obtain the expected values for the signals. The deviations from
the expected values can then be used to identify the signals related to the anomaly.
The weight vector of each neuron of the SOM has the same dimensions as the input
data and each element of the weight vector contains the value of its corresponding
signal. Once an anomaly is detected, the input sample is again mapped to the SOM
to retrieve the BMU. Now, the distance of each signal to the weight vector is calcu-
lated and the resulting signals and their distances are sorted in a descending order
according to their distance. Since real world systems usually provide a large number
of signals it is necessary to reduce the number of displayed signals. Therefore only
the first n signals are displayed giving plant experts and operators a starting point
to locate the anomaly and possible fault in the system and ultimately restore the
system’s normal working order. For the experiments in this paper we only consider
the signal with the largest deviation (n=1).

2.3 SOM trajectory tracking with timed automata

Another way to utilize self-organizing maps for anomaly detection in industrial
production processes is to track the trajectory of the working point on top of the
SOM. Other works such as [7], [12] and [2] already performed a visual anomaly
detection on different processes by tracking the trajectory of the working point on
the SOM: the observations are mapped to their corresponding best matching units
as soon as they are recorded. Over time, the path or trajectory of the BMU can be
observed and deviations from the known path indicate anomalous behavior.

However, these works do not attempt to track the trajectory through the use
of a mathematical model and only pursue a visual anomaly detection by plotting
the trajectory on top of the SOM’s u-matrix. In this section we use discrete timed
automata to learn the trajectory during normal production and detect deviations
from it afterwards. This provides explicit modeling of time which the SOM is unable
to do alone.

Timed automata have proven to be a great tool to learn the normal behavior
of a system and detect deviations from it. Discrete events are required to learn an
automaton. They often cause mode changes within the system and the timing of
these events is an important indicator for the health of the system. Timed automata
are used to separate the system’s modes and model the transitions and timing
between the identified modes.

Discrete events can be directly extracted from changes in the binary control and
sensor signals of the system. It is also possible to obtain discrete events through



60 Anomaly Detection and Localization for CPPS with SOM

thresholds for real-valued signals such as temperature <19◦C [4]. However, setting
the thresholds and combinations of conditions for the continuous signals requires
expert knowledge which is usually not available for real world automation systems.
For unsupervised learning of these automata only binary control signals are used
to obtain the discrete events, such as HeaterOn = true. Algorithms such as the
bottom-up timed learning algorithm (BUTLA) [8] work in an unsupervised manner,
and do not require additional expert knowledge.

A timed automaton generated by the aforementioned algorithm can be defined
as described in Definition 4.

Definition 4. a timed, probabilistic automaton is a tuple A = (S, s0, Σ, T, δ, P ),
where

– S is a finite set of states where s ∈ S.
– s0 is the initial state which can be given by the systems state at the start of the

training.
– Σ is the set of discrete events. Events a ∈ Σ is linked to the transitions of the

automaton.
– T is the set of transitions with t ∈ T and t = (s, a, s′)), s, s′ ∈ S are source

and destination state, a ∈ Σ is the trigger event of the transition.
– The timing constraint δ : T → I assigns a time interval to a transition t ∈ T ,

where I is a set of time intervals. The time here usually refers to the elapsed
time since the last event occurred.

– P is a set of probabilities: for each transition t ∈ T probability p ∈ P is calcu-
lated.

The learned automaton can then be used to detect a variety of different classes
of anomalies. This can for example be done using the anomaly detection algorithm
(ANODA) [8] which can detect the following types of anomalies:

– Unknown event / Wrong event sequence: an event occurred which was
not observed in the current state.

– Timing error: a transition occurred outside of the learned time bounds.
– State remaining error: when more time passed than for the latest event and

the state is not a final state, then we have a state remaining error.
– Probability error: the probabilities of transitions for the new data are cal-

culated and compared to the previously learned probabilities and an error is
generated when deviations are too large.

As mentioned before, discrete events are needed to learn an automaton. One way
to obtain these from the SOM is to interpret each neuron of the SOM as a binary
signal: a neuron is active (or true) when the observation is mapped to it and false
otherwise. This mapping can result in a large number of signals, depending on the
size of the SOM. This usually leads to a large number of states in the automaton.
Also, some neurons might never be activated by the training data leading to an
unknown state detection in the automaton. Again, this can lead to a large number
of false positives when new data is mapped to neurons which were previously not
active but are direct neighbors to neurons previously activated by the training data.
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To counteract these effects and ultimately reduce the number of states we group
the neurons into a smaller number of clusters. The transitions between the clusters
are then learned using a timed automaton.

SOM’s tend to keep neurons with similar signal weights closely together, which
results in a topographic landscape with valleys, where weights of neighbors are sim-
ilar, and ridges, where weights of neighbors are not similar. This landscape can be
visualized through the aforementioned u-matrix representation. Valleys represent
regions where the contained neurons weight vectors are very similar. These val-
leys are separated by ridges which mark transitions between the different feature
spaces. The valleys can be interpreted as stationary process phases while the ridges
represent transient process phases [3].

Clustering algorithms from the image processing domain, such as the watershed
transformation [9], can be used on the u-matrix representation of a SOM to identify
the clusters in a mathematical way. This works analogous to rain falling on top
of the u-matrix. The water runs from higher regions to the lower regions and
consequently flooding the basins. When the water level gets high enough so two
basins merge, a ridge forms which separates them. The watershed transformation
dissects the u-matrix into different clusters, separated by the so-called watershed
lines. Watershed lines separate the different basins and do not belong to any of the
clusters. The implementation used here is the Vincent-Soille watershed algorithm
which performs the watershed transformation in a non-recursive manner [15].

Subsequently, the samples of the training data are mapped to the SOM to
get the corresponding cluster. The clusters are encoded using a one-hot encoding
resulting in a binary vector with one element for each cluster. The value of the
active cluster is set to true, while all other values are set to false. The time-stamps
of the original samples and the binary vectors are then used to learn an automaton
with the aforementioned BUTLA.

3 Experiments

In this section we apply the aforementioned approaches for anomaly detection
and anomaly localization to one of our demonstrators. The Genesis demonstrator
of the Institute Industrial IT sorts two different materials (conductive and non-
conductive) from a magazine into their corresponding target locations (Figure 2).
It is portable and uses an air tank to supply all the gripping and storage units. The
4 different modules can switch places and the program for the programmable logic
controller (PLC) automatically adjusts for the change in location. A linear drive
with a pneumatic gripper transports the materials between the different stations.
Five real-valued signals are available from the demonstrator: current, position,
speed, acceleration and force. Data samples were taken through an OPC connection
with a resolution of 50 milliseconds for a total of 42 production cycles. The first
38 production cycles contain only normal behavior and were used to train the self-
organizing map for both experiments shown in this section. Two of the 4 remaining
cycles contain anomalous behavior and are used for the anomaly detection.
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Fig. 2. The Genesis Demonstrator

3.1 Quantization error anomaly detection and anomaly localization

A self-organizing map is trained over 100 Epochs using a 60x60 square, non toroidal
topology on the training data using the Eulidean distance measure. Its unified dis-
tance matrix representation can be seen in Figure 3. The training data only contains
only normal behavior. The anomaly detection is performed in an unsupervised way.

To estimate the threshold for the anomaly detection, tau was set to 1.0 which
gives a value of ∼0.274 as threshold for the anomaly detection as shown in Figure
4. The observations of the evaluation data are then mapped to the SOM and the
distance is calculated as seen in Figure 5. The observation is marked as an anomaly
when the distance is larger than the previously estimated threshold.

The final result of the anomaly detection is shown in Figure 6. Anomalies in this
data set are labeled which allows to calculate the quality of the anomaly detection:
in this example anomalies were detected with an accuracy of 99.63% and F1 score
of 94.34%. Sensitivity was 100% which means all anomalies were identified correctly
as true positive. Detailed results are shown in Table 1. Figure 7 shows an excerpt
of the anomaly localization of the anomalies detected above. Only the two most
likely signals estimated to be the cause of the anomaly are shown. The localization
results match the predictions made by the experts on the related signals of the
system perfectly. The two anomalous cycles shown in Figure 6 contain the same
anomalies: the first part of each anomaly, labeled ’1’ in the data set, is a jam in
the linear drive resulting in a standstill and a higher than usual motor current.
The second phase of the anomaly, labeled ’2’ in the data set, is the linear drive
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Fig. 3. U-matrix of self-organizing map
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overcoming the jam, trying to correct its lag error. This results in a much higher
than usual speed of the linear drive which is also correctly identified by the anomaly
localization.

Table 1. Anomaly detection score

TP TN FP FN Accuracy Balanced Accuracy F1

50 1565 6 0 99.63% 99.81% 94.34%

3.2 Trajectory tracking with automata

Again, a SOM is trained on 38 production cycles containing only normal behavior.
The SOM has a size of 60x60 neurons. The resulting u-matrix shown in Figure 8
is then dissected into 6 clusters by the watershed transformation in Figure 9.

Subsequently, the samples of the training data are mapped to the SOM to get
the corresponding cluster. The automaton which represents the trajectory across
the different clusters during normal operation of the system is learned and shown
in Figure 10. The one-hot encoding is easy to read the cluster transitions from the
automatons transitions: C0 = 1;C5 = 0; (5.25−10.36)(7.11s) describes a transition
from cluster 5 to cluster 0 with a timing of 5.25-10.36 seconds after entering the
state. The mean time for the transition was 7.11 seconds.

Other encodings than the one-hot can be used so less binary signals are needed
for the amount of clusters to describe but they might be harder to read and follow
when looking at the automaton.

An example mapping for a single production cycle from the evaluation data is
shown in Table 2. Not all states from the state machine can be found in the SOM, as
the SOM uses only real-valued signals. Binary signals, such as the storage ejecting
material and the gripper closing are not known. The linear drive which provides
the real-valued signals does not move during these operations and therefore, these
internal states appear in the same cluster of the SOM.

Table 2. Mapping of states to internal state machine and clusters

Automaton state State machine State machine description Cluster

S4 SM0 Idle (standstill) C0

S5 SM4 Move to storage C4

S6 SM4 Move to storage (stopping) C0

S7 SM5 Close gripper (standstill) C3

S8 SM6 Move to sensor C2

S9 SM7 Move to target container C1
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[...]

20.04.16 12:47:21.438:

MotorData.ActSpeed (0.27)

MotorData.ActCurrent (0.18)

[...]

20.04.16 12:47:22.095:

MotorData.ActCurrent (0.22)

MotorData.ActSpeed (0.21)

[...]

20.04.16 12:47:22.562:

MotorData.ActSpeed (1.50)

MotorData.ActCurrent (0.17)

[...]

20.04.16 12:47:22.703:

MotorData.ActSpeed (1.50)

MotorData.IsForce (0.17)

[...]

[...]

20.04.16 12:47:38.828:

MotorData.IsForce (0.33)

MotorData.ActCurrent (0.14)

[...]

20.04.16 12:47:39.479:

MotorData.ActCurrent (0.21)

MotorData.ActSpeed (0.21)

[...]

20.04.16 12:47:39.998:

MotorData.ActSpeed (1.49)

MotorData.ActCurrent (0.08)

[...]

20.04.16 12:47:40.096:

MotorData.ActSpeed (0.78)

MotorData.IsAcceleration (0.45)

[...]

Fig. 7. Excerpt of the anomaly localization algorithm
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Fig. 8. U-matrix of the SOM

Fig. 9. Clustering after applying watershed transformation
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1

2

C5 = 1;(0 - 0) (0s)

3

C0 = 1;C5 = 0; (5,25 - 10,36) (7,11s)

5

C0 = 0; C4 = 1;(1,6 - 3,23) (2,94s)

7

C0 = 0; C3 = 1;(1,45 - 3,05) (2,29s)

6

C0 = 1;C4 = 0; (3,09 - 6,94) (5,51s)

8

C2 = 1;C3 = 0; (1,13 - 1,31) (1,25s)

9

4

C0 = 1;C1 = 0; (1,08 - 1,26) (1,18s)

10

C0 = 1;C1 = 0; (1,08 - 1,26) (1,18s)

C0 = 0; C4 = 1;(1,6 - 3,23) (2,94s)

C0 = 0; C3 = 1;(1,45 - 3,05) (2,29s)

C1 = 1;C2 = 0; (4,5 - 4,69) (4,62s)

Fig. 10. Automaton tracking the transitions between clusters



Anomaly Detection and Localization for CPPS with SOM 69

Figure 11 shows examples from the output of the ANODA: first, on observation
482 a state remaining error occurs. During the production cycle it took more time
to move the gripper to the storage position. This triggers a timing error when the
transition finally occurs and normal operation continues. Second, at the end of the
data set it was detected that the demonstrator remains in its idle state longer than
in the training cycles. Both of these errors are not detectable using the quantization
error method presented in the previous section because the SOM itself does not
model time in an explicit manner. The automaton adds explicit modeling of time
by modeling and tracking the trajectory of the SOM’s working point.

O481|S5[Normal;]

O482|S5[StateRemainingError;Time is 6.98s but max time in state 5 is 6.94s.]

[...]

O519|S5[StateRemainingError;Time is 8.72s but max time in state 5 is 6.94s.]

O520|S5->S6[TimingError;[8.76s;3.094s to 6.94s with mean 5.50s ]]

O521|S6[Normal;]

[...]

[...]

O1600|S4[Normal;]

O1601|S4[StateRemainingError;Time is 3.23s but max time in state 4 is 3.22s.]

[...]

O1620|S4[StateRemainingError;Time is 4.12s but max time in state 4 is 3.22s.]

Fig. 11. Anomaly detection with the automaton and ANODA

4 Conclusion

This paper presented approaches to data-driven anomaly detection and localization
in Cyber-Physical Production Systems. Data provided by the system is used train
a self-organizing map to represent the systems normal behavior.

The first option shown in this paper uses the quantization error to detect anoma-
lies in the systems signal domain. Manual adjustment of a threshold above which
an anomaly detected is not easy so we estimate the threshold from the data. When
an anomaly is found, the SOM is used as a reverse model to compute the differ-
ences between expected and actual value of each signal. The signals are sorted from
largest to smallest deviation and the first n signals are provided as a starting point
for experts to restore the system to a normal working order.

This anomaly detection and localization can be applied to a wide variety of
systems and produces good results across the board. However, time is not modeled
and deviations in the timing can not be found.

The second option shown in this paper adds modeling of time: discrete timed
automata are used to learn the trajectory of the SOM’s working point. The automa-
ton keeps track of the timing between the different process phases. This approach
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detects anomalies in the systems timing and observed sequence, both of which can
not be detected by the SOM alone.

The second approach can be extended to use hybrid timed automata instead of
discrete timed automata: a separate model is learned for each state of the automa-
ton to model the different stationary process phases and detect anomalies within
them [16]. Yet another approach could replace the discrete timed automata with
variable order Markov models. The automaton only uses its current state and long
term deviations from the trajectory might not be detectable, especially when the
automaton contains cycles. In general, higher order Markov models also use a num-
ber of previous states to predict the following state and might be able to better
deal with cycles and deviations which happen over a long period of time.
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