
Rewriting-Based Runtime Verification
for Alternation-Free HyperLTL

Noel Brett, Umair Siddique, and Borzoo Bonakdarpour(B)

Department of Computing and Software, McMaster University, Hamilton, Canada
borzoo@mcmaster.ca

Abstract. Analysis of complex security and privacy policies (e.g., infor-
mation flow) involves reasoning about multiple execution traces. This
stems from the fact that an external observer may gain knowledge about
the system through observing and comparing several executions. Moni-
toring of such policies is in particular challenging because most existing
monitoring techniques are limited to the analysis of a single trace at run
time. In this paper, we present a rewriting-based technique for runtime
verification of the full alternation-free fragment of HyperLTL, a tempo-
ral logic for specification of hyperproperties. The distinguishing feature
of our proposed technique is its space complexity, which is independent
of the number of trace quantifiers in a given HyperLTL formula.

1 Introduction

Dependability and reliability are two crucial aspects of any computing system
that deals with cybersecurity. This is because even a short transient violation
of security or privacy policies may result in leaking private or highly sensitive
information, compromising safety, or lead to the interruption of vital public or
social services. One approach to gain confidence about the well-being of such a
system is to continuously monitor it with respect to a set of formally specified
requirements that system should meet at all times. This approach is commonly
known as runtime verification (RV).

We start with the premise that existing RV techniques cannot monitor a
large but vital class of the security and privacy polices, e.g., information flow.
Take, for instance, the non-interference policy [12], where a low user should not
be able to acquire any information about the activities (if any) of the high user
by observing independent execution traces. Monitoring this policy would require
observing and reasoning about multiple execution traces, whereas existing RV
techniques are limited to evaluating only one trace at run time.

In order to specify security and privacy policies, we focus on HyperLTL [8],
a temporal logic for expressing hyperproperties [9]. A hyperproperty is a set
of sets of execution traces. HyperLTL adds explicit and simultaneous quan-
tification over multiple traces to the standard LTL. HyperLTL significantly
extends the range of security policies under consideration, including complex

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 77–93, 2017.
DOI: 10.1007/978-3-662-54580-5 5

78 N. Brett et al.

t1 C1

t2 C2

t3 C3

tm Cm

∧m
i=1 Ci

Snapshot

Verdict

(a) Monitor Overview

Γ
Bookkeeping

ϕ

Rewriting

ti

ϕr

Observer

Constraint Ci

ϕr

Observer

Rewriting

(b) Constraint Generation for Single Trace

Fig. 1. RV framework for HyperLTL

information-flow properties like generalized non-interference, declassification,
and quantitative non-interference. For example, the following is a HyperLTL
formula:

ϕ = ∀π.∀π′. aπ → Fbπ′

It states that for any pair of traces π and π′, if proposition a holds in the initial
state of π, then proposition b should eventually hold in trace π

′
. To describe the

challenges in monitoring HyperLTL specifications, consider formula ϕ and two
traces t = cde and t′ = acddb. These traces individually (e.g., if π and π′ are both
instantiated by t), satisfy the formula, but collectively (e.g., if π is instantiated
by t and π′ by t′) do not. If a monitor first observes trace t and then t′, it has
to somehow remember that b never occurred in t and declare violation as soon
as it observes a in the initial state of t′. Thus, a HyperLTL monitor has to be
memeoryful; i.e., the monitoring algorithm has to be able to memorize the status
of propositions of interest in the past traces to be able to reason about current
and future traces.

With this motivation, in this paper, we introduce a novel RV algorithm
for monitoring the alternation-free fragment of (i.e., ∀∗ and ∃∗) HyperLTL (in
Sect. 4, we will argue that alternating formulas cannot be monitored using a
runtime technique only). Our algorithm takes as input a formula ϕ and a finite
but unbounded-size set T of finite traces (see Fig. 1(a)). The traces in T can
be produced by multiple sequential terminating or concurrent executions of a
system under inspection. This means that the traces in T can grow in number
and/or length at run time. The algorithm works as follows (see Fig. 1(b)):

– First, given ϕ, it identifies the propositions and possibly simple Boolean
expressions that need bookkeeping using a function Γ.

– Then, for each trace ti ∈ T , by incorporating the elements returned by Γ, the
monitor generates a constraint Ci. This constraint basically encapsulates two
things. It

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 79

1. encodes what the monitor has observed in ti with respect to the elements
returned by Γ, so it can reason about new incoming traces as well as
existing traces growing in length, and

2. rewrites the inner LTL formula in ϕ using Havelund and Rosu’s algo-
rithm [13] and obtains a formula ϕr.

Hence, the resulting constraint Ci encodes the full memory of all relevant
things that has occurred in ti.

– At any point of time, the conjunction
∧m

i=1 Ci where m is the number of traces
being monitored, determines the current RV verdict (see Fig. 1(a)). That is, the
result of simplification of the conjunction shows whether ϕ has been satisfied,
violated, or currently impossible to tell (i.e., it can go either way in the future).

Finally, we note that although the number and length of the generated con-
straints are theoretically unbounded, this can be prevented by making practical
assumptions. One example is to incorporate a synchronization mechanism that
ensures that the difference in length of traces do not grow over a certain bound.
Furthermore, the complexity of our algorithm is detached from the number of
trace quantifiers in a given HyperLTL formula.

Organization. The rest of the paper is organized as follows. Section 2 presents
the syntax and semantics of HyperLTL. In Sect. 3, we introduce our finite seman-
tics for HyperLTL. Section 4 discusses challenges in monitoring HyperLTL for-
mulas. Subsequently, the components of our RV algorithm are presented in
Sects. 5 and 6. Related work is discussed in Sect. 7. Finally, we make concluding
remarks and discuss future work in Sect. 8.

2 Background

Let AP be a finite set of atomic propositions and Σ = 2AP be the finite alphabet.
We call each element of Σ a letter (or an event). Throughout the paper, Σω

denotes the set of all infinite sequences (called traces) over Σ, and Σ∗ denotes
the set of all finite traces over Σ. For a trace t ∈ Σω (or t ∈ Σ∗), t[i] denotes
the ith element of t, where i ∈ Z≥0. Also, t[0, i] denotes the prefix of t up to and
including i, and t[i,∞] is written to denote the infinite suffix of t beginning with
element i. By, |t| we mean the length of (finite or infinite) trace t.

Now, let u be a finite trace and v be a finite or infinite trace. We denote the
concatenation of u and v by σ = uv. Also, u ≤ σ denotes the fact that u is a
prefix of σ. Finally, if U is a set of finite traces and V is a finite or infinite set of
traces, then the prefix relation ≤ on sets of traces is defined as:

U ≤ V ≡ ∀u ∈ U. (∃v ∈ V. u ≤ v)

Note that V may contain traces that have no prefix in U .

80 N. Brett et al.

2.1 HyperLTL

Clarkson and Schneider [9] proposed the notion of hyperproperties as a means
to express security policies that cannot be expressed by traditional properties.
A hyperproperty is a set of sets of execution traces. Thus, a hyperproperty
essentially defines a set of systems that respect a policy. HyperLTL [8] is a logic
for syntactic representation of hyperproperties. It generalizes LTL by allowing
explicit quantification over multiple execution traces simultaneously.

Syntax. The set of HyperLTL formulas is inductively defined by the grammar
as follows:

ϕ:: = ∃π.ϕ | ∀π.ϕ | φ

φ:: = aπ | ¬φ | φ ∨ φ | φUφ | Xφ

where a ∈ AP and π is a trace variable from an infinite supply of variables V.
Similar to LTL, U and X are the ‘until’ and ‘next’ operators, respectively. Other
standard temporal connectives are defined as syntactic sugar as follows: ϕ1 →
ϕ2 = ¬ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), true = aπ ∨ ¬aπ, false = ¬true,
Fφ = trueUφ, and Gφ = ¬F¬φ. Quantified formulas ∃π and ∀π are read as
‘along some trace π’ and ‘along all traces π’, respectively.

Semantics. A formula ϕ in HyperLTL satisfied by a set of traces T is written
as Π |=T ϕ, where trace assignment Π : V → Σω is a partial function mapping
trace variables to traces. Π[π → t] denotes the same function as Π, except that π
is mapped to trace t. The validity judgment for HyperLTL is defined as follows:

Π |=T ∃π.ϕ iff ∃t ∈ T.Π[π → t] |=T ϕ
Π |=T ∀π.ϕ iff ∀t ∈ T.Π[π → t] |=T ϕ
Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬φ iff Π �|=T φ
Π |=T φ1 ∨ φ2 iff (Π |=T φ1) ∨ (Π |=T φ2)
Π |=T Xφ iff Π[1,∞] |=T φ
Π |=T φ1 Uφ2 iff ∃i ≥ 0. (Π[i,∞] |=T φ2 ∧

∀j ∈ [0, i).Π[j,∞] |=T φ1)

where the trace assignment suffix Π[i,∞] denotes the trace assignment Π′ =
Π(π)[i,∞] for all π. If Π |=T φ holds for the empty assignment Π, then T
satisfies φ.

Example. Non-interference (NI) security policy requires any pair of traces with
the same initial low observation to remain indistinguishable for low users, yet
low inputs will be unaltered, irrespective of the the high inputs. This policy can
be specified by the following HyperLTL formula:

∀π.∀π′.(GλH(π′) ∧ G¬(
∧

a∈H

aπ ↔ aπ′)) → G(
∧
a∈L

aπ ↔ aπ′)

Where GλH(π′) denotes all the high variables in π′ that hold the value λ, and
H and L are the high and low variables in their respected security levels.

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 81

3 Finite Semantics for HyperLTL

In this section, we present our finite semantics for HyperLTL, inspired by the
finite semantics of LTL [15]. For a finite trace t, let t[i, j] denote the subtrace of
t from position i up to and including position j:

t[i, j] =

{
ε if i > |t|
t[i,min(j, |t| − 1)] otherwise

where ε is the empty trace. We let t[i, ..] denote t[i, |t| − 1].
Let trace assignment ΠF : V → Σ∗ be a partial function mapping trace

variables to finite traces. Similar to the infinite semantics, ΠF [π → t] denotes
the same function as ΠF , except that π is mapped to finite trace t. We consider
two truth values for the finite semantics: � and ⊥. To distinguish finite from
infinite semantics, we use [ΠF |=T ϕ] to denote the valuation of HyperLTL
formula ϕ for a set T of finite traces. The finite semantics for Boolean operators
‘∨’ and ‘¬’ as well as for the trace quantifiers ‘∀’ and ‘∃’ are identical to those
of infinite semantics. We define the finite semantics of HyperLTL for temporal
operators as follows:

[ΠF |=T ∀/∃π.ϕ] =

{
� if ∀/∃t ∈ T.[ΠF [π → t] |=T ϕ] = �
⊥ otherwise

[ΠF |=T φ1 ∨ φ2] =

{
⊥ if [ΠF |=T φ1] = ⊥ ∧ [ΠF |=T φ2] = ⊥
� otherwise

[ΠF |=T ¬φ] =

{
⊥ if [ΠF |=T φ] = �
� otherwise

[ΠF |=T Xϕ] =

{
[ΠF [1, ..] |=T ϕ] if Π[1, ..]
= ε

⊥ otherwise

[
ΠF |=T X̄ϕ

]
=

{
[ΠF [1, ..] |=T ϕ] if Π[1, ..]
= ε

� otherwise

[ΠF |=T ϕ1 Uϕ2] =

⎧⎪⎨
⎪⎩

� if ∃i ≥ 0 : ΠF [i, ..]
= ε ∧ [ΠF [i, ..] |=T ϕ2] = � ∧
∀j ∈ [0, i) : [ΠF [j, ..] |=T ϕ1] = �

⊥ otherwise

where X̄ denotes the ‘weak next’ operator.

82 N. Brett et al.

Example. Consider formula φ = ∀π1.∀π2. aπ1 U bπ2 and T = {t1 = aaab, t2 =
aab, t3 = aab}. Although traces t1, t2, and t3 individually satisfy the formula φ,
we have [ΠF |=T ϕ] = ⊥, as there does not exist a position, where each pair of
traces agree on the position of b. Now consider formula ϕ′ = ∀π1.∀π2.Faπ1 ∧Fbπ2

and let T ′ = {∗ ∗ a ∗ b, ∗ b ∗ ∗a}. We have [ΠF |=T ′ ϕ′] = �.

4 Challenges in Monitoring HyperLTL Formulas

Let us assume we are to monitor a finite but unbounded-size set T of finite
traces with respect to a HyperLTL formula ϕ. The traces in T can be produced
by multiple sequential terminating or concurrent executions of a system under
inspection. This means that traces in T can grow in number and/or length at
run time. Unlike conventional runtime monitoring techniques, where verification
decision only depends upon one current execution, monitoring T for ϕ may
depend on the past, future, or concurrent evolution of the traces in T . Thus,
a monitor for ϕ needs to bookkeep the occurrence (and even not occurrence)
of certain events to be able to reason about ϕ at run time. In the following,
we outline a set of challenges which need to be addressed in order to develop a
monitoring algorithm.

Alternating Formulas. Let ϕ = ∀π.∃π′.ψ. Verifying this formula requires us to
show that for all traces in T , there exists a trace that satisfies ψ. However, since
the number of traces in T may grow, a runtime monitor can never prove or
disprove ϕ. This argument holds in general for ∀∗∃∗ and ∃∗∀∗ formulas. This is
the main reason that in the remainder of this paper, we will only focus on the
alternation-free fragment of HyperLTL. Observe that for ∀∗ (respectively, ∃∗)
formulas, it is possible to compute verdict ⊥ (respectively, �) at run time.

Inter-trace Dependencies. Reasoning about ϕ by observing individual traces
in T is clearly not sufficient. Progression through traces in T requires to keep
information about the past or concurrent traces in T . One root cause of this is due
to the existence of a disjunction in ϕ involving two distinct trace variables. For
example, let φ = ∀π1.∀π2. aπ1 → Fbπ2 . Now, consider two traces t1 = dcf and
t2 = aeb, where AP = {a, b, c, d, e, f}. Note that traces t1 and t2, individually
satisfy ϕ, but they collectively violate ϕ, as event b does not occur in t1.

Time of Occurrence of Events. Reasoning about some formulas requires book-
keeping the time of occurrence of some propositions in each trace. For example,
consider formula ϕ1 = ∀π1.∀π2. aπ1 U bπ2 and traces t1 = aab, t2 = ab, and
t3 = aaaab. Although, each trace individually satisfies the formula, any pair
of them violates the formula, as event b occurs at different times. This can
become even more complex when the occurrence of some propositions needs to
agree across multiple traces and multiple times. An example of such a formula
is ϕ2 = ∀π1.∀π2.∀π3. (aπ1 U bπ2) U cπ3 , where the first occurrence of c and
every occurrence of b need to be agreed across all traces in T . For example,

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 83

for traces t1 = (ab)a(ac)(ac)b, t2 = (ab)a(ac)(a)(b), and t3 = a(ac)(ac)b,
traces t1 and t2 agree on times of occurrence of b and c, but trace t3 vio-
lates this agreement, thus violating formula ϕ2. Yet other examples are formula
ϕ3 = ∀π1.∀π2. G(aπ1 → aπ2) (which requires all traces to agree on each occur-
rence of a) and the non-interference formula discussed in Sect. 2.

5 Identifying Propositions of Interest

The challenges and examples outlined in Sect. 4 suggest that monitoring a Hyper-
LTL formula requires the identification of propositions which shape the trace
agreement to be followed amongst distinct traces. We call this process bookkeep-
ing, denote BK as a set of all elements which require bookkeeping, and Γ as the
function that computes BK.

We note that only the structure of the HyperLTL formula contributes to the
elements of BK. More precisely, the ‘until’ operator is the main contributor to
BK, as its semantics (in particular, the existential quantifier) may delineate the
existence of an index for satisfaction of some propositions across multiple traces.
Moreover, we may need to bookkeep Boolean expressions (and not just atomic
propositions). We may prefix elements of BK by either # or X. Prefixing an
element by # means that only the first occurrence of the element needs to be
bookkept. Prefixing by X means that bookkeeping starts from the next state.

Examples. In formula ∀π1.∀π2.∀π3.(aπ1 Ubπ2)Ucπ3 , we will have BK = {b,#c},
meaning every occurrence of b and only the first occurrence of c should be memo-
rized. For formula ∀π1.∀π2.aπ1 U (bπ2 ∨ cπ2), we have BK = {#(b ∨ c)}. However,
for formula ∀π1.∀π2.∀π3.aπ1 U (bπ2 ∨ cπ3), we have BK = {#b,#c}. Finally, for
formula ∀π.∀π′.X(aπ Ubπ′), we will have BK = {X#b}.

Our bookkeeping recursive function Γ takes as input a HyperLTL formula, a
set of trace variables V (initially empty), and a Boolean value (initially false), and
it returns as output the set BK, defined in Fig. 2. The function works as follows.
The first three cases are straightforward, as a HyperLTL formula involving only
a proposition requires bookkeeping if it is under the scope of an ‘until’ operator,
whereas operators ¬ and X allow the recursive application of Γ function to the
formula φ. The symbol � denotes the application of unary operators (¬, # and
X) to the elements of set BK (e.g., ¬ � {a, b} = {¬a,¬b}).

The next case φ1Uφ2, we require further matching on the structure of both
φ1 and φ2, as follows:

– (Case 1: Both operands are propositions). In this case, Γ returns {#b}
if π and π′ are bound by different quantifiers or removing π′ from V does
not result in an empty set. Otherwise, Γ returns the empty set. For example,
consider two formulas ∀π1.aπ1 U bπ1 and ∀π1.∀π2.aπ1 U bπ2 . The first formula
does not require any trace agreement whereas the second does require a trace
agreement due to the scope of the trace quantifiers.

84 N. Brett et al.

Fig. 2. Bookkeeping function Γ

– (Case 2: Only the left operand is a proposition). In this case, we store
the trace variable associated with a in set V and invoke Γ recursively to for-
mula φ2. We also set the value of Boolean variable k to true which indi-
cates that the original formula φ includes an ‘until’ operator. For example,
for formula ∀π.aπ U (bπUcπ), recursing through Γ will result in an empty
set since there were no variations in the trace variables, whereas for formula
∀π1.∀π2.aπ1 U (bπ1 U cπ2), the Γ function will simply return {#c}.

– (Case 3: None of the operands are propositions). In this case, we recurse
through φ1 only if it contains an ‘until’ operator, where trace vars(φ) denotes
the set of trace variables found in φ. Furthermore, we recurse through φ2 and
indicate that any elements produced need to be tracked only once (i.e., their
first occurrence). Moreover, we prefix the recursion of Γ on φ1 by symbol
#−1, which helps to remove the prefix # for elements which require tracking
more than once. The result will consist of the union of both produced sets.
For example, for formula ∀π1.∀π2.∀π3.∀π4.(aπ1Ubπ2)U(cπ3Udπ4), we have

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 85

BK = {b,#d}. Note that expressions #−1#a and ##b are equivalent to a
and #b, respectively.

The last inductive case includes an ‘or’ (∨), which also requires further match-
ing on the structure of formulas φ1 and φ2. Here, we consider the condition of
k, which reflects the case when φ1 ∨ φ2 is under the scope of an ‘until’ operator.
For example, formula ∀π1.∀π2.aπ1 U (bπ2 ∨ cπ2). The application of Γ function
will result in Γ(bπ2 ∨ cπ2 ,V, k := true), which further results in {#(b ∨ c)}. On
the contrary, the case of formula ∀π1.∀π2.∀π3.aπ1 U (bπ2 ∨ cπ3), the Γ function
will return {#b,#c} due to the disparity of trace variables.

Theorem 1 (Soundness and optimality of Γ function). Given a HyperLTL
formula ϕ and assuming we have set T such that [ΠF |=T ϕ] = � then

– Γ function returns all the propositions required for bookkeeping.
– Given the set BK, every element k ∈ BK is included in some trace agreement

described by ϕ.

6 Monitoring Algorithm

6.1 Algorithm Sketch

Given an alternation-free HyperLTL formula ϕ of the form ∀∗, our algorithm
consists of the following elements:

1. Monitor: In order to monitor ϕ, we begin by intaking an event for a particular
trace and begin to generate the constraints. At any point of time, we can take
a snapshot of our system and utilize our satisfaction function SAT to find the
RV verdict (see Fig. 1(a)).

2. Constraint Handler: Next, we manipulate ϕ according to its structure.
Disjunctions are divided and treated separately to detect which half
prompted the satisfaction. Each sub-formula of the disjunction is then sub-
ject to ConstraintRewriting. Temporal formulas without disjunction do not
undergo any manipulation before being sent to ConstraintRewriting.

3. Constraint Rewriting: Initially, ϕ is stripped of its quantifiers. This allows for
rewriting using the technique in [22] to evaluate the altered formula ϕr. The
events are examined against the propositions or Boolean expressions in BK
and the satisfaction of ϕr to generate the corresponding constraints.

4. Satisfaction of Function SAT: On each invocation of the SAT function, we com-
pute the conjunction of all the constraints collectively. If SAT returns false,
then ϕ is violated. Otherwise, the constraints are further checked for possible
refinement by checking the membership of other generated constraints.

Observe that a formula of the form ∀∗ cannot be evaluated to �. This would
require the full set of all possible system traces, which is not possible at run time.
We note that monitoring a formula of the form ∃∗ can be achieved by simply
monitoring its negation which would be of the form ∀∗.

86 N. Brett et al.

6.2 Algorithm Details

We utilize the following HyperLTL formula as a running example to demonstrate
the steps of our proposed algorithm.

∀π1.∀π2.∀π3.∀π4. ((aπ1 ∨ bπ2)U cπ3) ∨ dπ4

where AP = {a, b, c, d}. We now describe the algorithm in detail which leads to
the overview of Fig. 1.

Algorithm 1 (HyperLTL Monitor). This is our main monitoring algorithm
which is comprised of a while loop. We continue to iterate as long as new events
associated with a trace come in and until we find a violation. On Lines 2–3,
we check for a new trace and then add it to our set of traces M . Given
that the incoming event is associated with some trace tj , at Line 4, we call
ConstraintsHandler for tj , which returns constraint Cj . Lines 5–6 deal with
the process of taking a snapshot of our system to determine the RV verdict using
function SAT. Finally, if the returned value from function SAT is false (Lines
7–9), then we have found a violation and return ⊥ (Line 10). Otherwise, we
continue to iterate through the while loop.

Algorithm 2 (Constraint Handler). In this algorithm, we treat the given
HyperLTL formula according to its structure. The algorithm is recursively
applied to the given formula based on different cases. The first block of the
algorithm (Lines 1–10) handles the case (ϕ = φ1 ∨ φ2), where the given (sub-)
formula is a disjunction. In particular, we call ConstraintsHandler function
for both φ1 and φ2 (Lines 2–3). We also need to pass the information about the
elements of BK which are associated with φ1 and φ2 (as given by BKφi

). In our
running example, we have φ1 = ((aπ1 ∨ bπ2)U cπ3) and φ2 = dπ4 . In case both
values from previous steps are false, then we have found a violation and the
algorithm returns false (Lines 4–5). On the other hand, if one of the values from
Lines 2 and 3 is a constraint, then we return the corresponding constraint (Lines
6–7). Moreover, if both values have generated constraints, we return them both
(Lines 10) meaning that any one of them can influence the verdict in future.

Next block in the algorithm (Lines 12–22) handles the case when the input
formula contains an ‘until’ operators with a disjunction on the left operand with
a disparity in corresponding trace quantifiers. We invoke ConstraintsHandler
function for both operands of ‘∨’; i.e., φL and φR (Lines 13–14). In our running
example, φ1 = ((aπ1 ∨ bπ2)U cπ3) matches this case and aπ1 and bπ2 will go
through ConstraintsHandler. If both values in Lines 13 and 14 result in false,
then the formula has been violated and we return false.

However, if only one of the sides returns some constraints, then we return
false and alternating constraint for further refinement (Lines 17–20). Finally,
if both sides satisfy the formula, then we return a combination of the returned
values of Lines 13 and 14. This allows us to refine the constraints from the
function SAT in Algorithm 4.

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 87

Algorithm 1. HyperLTL Monitor
Input: HyperLTL formula φ, BK,

set of incoming traces M
Output: λ = {⊥, ?}

1 while getEvent(ei, tm) do
2 if newIncomingTrace(tm) then
3 M ← M ∪ {tm}
4 Cm ← ConstraintsHandler (φ,

BK, ei)
5 Take a snapshot for constraints

C = {C1, C2, · · ·, Cm} at time
instant

6 β ← SAT(C)
7 if (β = false) then
8 λ ← ⊥
9 break

10 return (λ)

Algorithm 3. ConstraintRewriting
Input: HyperLTL formula ϕ, BK, ei

Output: Constraints r
1 r ← true

2 ϕr ← quantifier-elimination(ϕ)
3 ϕr ← REWRITE (ei, ϕr)
4 if (ϕr = false) then
5 return ϕr

6 for (each a ∈ BK s.t. ei � a) do
7 r ← r ∧ Xia
8 if (a = #a′) then
9 BK ← BK \ {a}

10 for (each a ∈ BK s.t. a = Xa′) do
11 BK ← (BK \ {a}) ∪ {a′}
12 return r

Algorithm 2. ConstraintsHandler
Input: HyperLTL formula φ, BK,

event ei

Output: {false, Set of Constraints}
1 if (φ = φ1 ∨ φ2) then
2 ψ1 ← ConstraintsHandler

(φ1, BKφ1 , ei)
3 ψ2 ← ConstraintsHandler

(φ2, BKφ2 , ei)
4 if (ψ1 = false ∧ ψ2 = false)

then
5 return (false)

6 else if (ψ1 = false) then
7 return (ψ2)

8 else if (ψ2 = false) then
9 return (ψ1)

10 else
11 return (ψ1, ψ2)

12 else if
(φ := φ1 U φ2 ∧ ((φ1 := φL ∨ φR) ∧
¬(samequantifiers(φL, φR))))
then

13 ψ1 ← ConstraintsHandler

(φLU φ2, BK, ei)
14 ψ2 ← ConstraintsHandler

(φRU φ2, BK, ei)
15 if (ψ1 = false ∧ ψ2 = false)

then
16 return (false)

17 else if (ψ1 = false) then
18 return (ψ2, false)

19 else if (ψ2 = false) then
20 return (false, ψ1)

21 else
22 return (ψ2, ψ1)

23 else
24 r ←

ConstraintRewriting(φ,BK,
ei)

25 if (r = false) then
26 return false

27 else
28 return r

The last part of the algorithm (Lines 24–28) invokes theConstraintRewriting
function which return the constraints for other types of formulas. For example, for-
mula ∀π1.∀π2.∀π3.∀π4.(aπ1Ubπ2)U (cπ3 U dπ4)) will directly undergo constraint
generation.

Algorithm 3 (Constraints Rewriting). This algorithm generates the con-
straints (denoted by r) by utilizing the elements of BK. We set the initial value
of r to true as we have no violation in the start of the monitoring process. We
strip off the quantifiers of our formula ϕ to convert into its corresponding LTL
form ϕr (Line 2). For example, ∀π1.∀π2.(aπ1 U bπ2) will be converted to (aU b).
Then, we apply REWRITE function to formula ϕr with the given event ei (Line 3).

88 N. Brett et al.

This function is essentially the rewriting algorithm by Havelund and Rosu [13]
(see Algorithm 5). If the event violates our formula then we immediately return
the violation (Lines 4–5).

If φ is not violated and if the event satisfies any object a ∈ BK, then a is
considered for our constraints (Line 6). Given the position of the event is i in a
trace, in Line 7 we administer Xi on a (i.e., Xia). The elements of BK which
are prefixed by “#” are removed from BK as we have indicated that their first
appearance is significant (Lines 8–9). In our running example, the invocation
of ConstraintRewriting for aπ1 U cπ3 with set BK = {#c} and consecutive
events of traces t1 = (ab)(ab)a(ad)c, t2 = a(abcd), t3 = c will result in r1 = X4c,
r2 = Xc and r3 = c, respectively.

The elements of BK with “X” operators are considered for upcoming events
by stripping one instance of “X” on that element (Lines 10–11). Indeed, the
presence of X’s in the elements of BK delays the observation and expose the
corresponding proposition to be observed for constraint generation in the sub-
sequent rounds. Finally, we return our generated constraint r.

Algorithm 4. SAT
Input: Constraint Matrix C
Output: λ = {false, ?}

1 Function SAT (C)
2 Initialize m′

3 columns ← max{|x| | x ∈ C}
4 existsConstrains ← false

5 for
(j ← 0; j < columns; j + +)
do

6 β ← ∧|M|
m=1 Cm[j]

7 if (β = false) then
8 dropColumn

9 else
10 m′ ←

largest constraint of column j

11 if (∃t ∈
C(t,j).¬memberof(t, m′)
then

12 dropColumn

13 else
14 existsConstrains ←

true

15 if
(existsConstraints = false)
then

16 return (false)

17 else
18 return (?)

Algorithm 5. REWRITE
Input: ϕr, e
Output: {true, false, φ}

1 match (ϕr) with
2 | (a) :
3 if (a ∈ e) then
4 return (true)

5 else if (a /∈ e) then
6 return (false)

7 | (true) :
8 return (true)
9 | (false) :

10 return (false)
11 | (φ1 ∨ φ2) :
12 return

(REWRITE(φ1, e) ∨
REWRITE(φ2, e))

13 | (φ1 U φ2) :
14 if (lastevent (e)) then
15 return

(REWRITE(φ2, e))

16 else
17 return

(REWRITE(φ2, e) ∨
(REWRITE(φ1, e) ∧
(φ1 U φ2)))

18 | (Xφ) :
19 if (lastevent (e)) then
20 return (false)

21 else
22 return

(REWRITE(φ, e))

Algorithm 4 (Satisfaction Function). The input of the SAT function is a set
consisting of the constraints associated with each trace, i.e., C = {C1, C2, . . . , Cm}.
We can imagine all these constraints as rows of a matrix. For our running example,

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 89

we will have Ci = [C(aπ1 U cπ3)
i , C

(bπ2 U cπ3)
i , C

dπ4
i] where i corresponds to ith trace

in M . We iterate through the columns for each of the traces and conjunct together
their constraints. If they evaluate to false, then we can drop the column as traces
have found a disagreement (Lines 3–8). If the conjunction is not false, we acquire
the longest constraintm′ of the corresponding column.We then check to see that no
constraints associated by other traces disagree by confirming that they are mem-
bers of m′ (Lines 10–11). If one of the constraints disagrees, then we drop the col-
umn, or else we have found an agreement of constraints between the traces (Lines
12–14). Finally, we return a violation if we were unable to find any agreement
within the constraints between traces (Lines 15–18).

Note that the process of dropping columns indeed results in a refined set
of constraints. Since the incoming traces can progress at various speeds, we
confirm that the constraints for “slower” traces are in-fact a member of the
“fastest” trace’s constraints. If no traces contradict the “fastest trace”, then this
suggests that no disagreement has yet emerged in the system. We resume taking
snapshots of the system until a violation is detected.

Theorem 2 (Correctness of Algorithm1). Let ϕ be a HyperLTL formula.
Algorithm1 returns ⊥ for an input set of traces T iff [ΠF |=T ϕ] = ⊥.

6.3 Discussion

Our algorithms reflect that the decision of appropriate consideration for propo-
sitions or Boolean expressions, paired with the effective structural division of a
HyperLTL formula, and provides an effective way to monitor complex HyperLTL
formulas. Additionally, we encode only the minimum information to check that
the agreement between traces is delineated according to the observed locations
of propositions or Boolean expressions.

A potential drawback of our RV technique is its theoretical unbounded mem-
ory requirement. However, this requirement does not influence the cases where
the verification is done offline. For online RV we can still use our algorithms for
by making practical assumptions. For example, we can incorporate a synchro-
nization mechanism amongst traces to ensure that the difference in length of
traces is not beyond some bound. We note that the worst case complexity of
Algorithm 1 is O(|t| · |T |), where |t| is the length of the longest trace in set T .
Interestingly, this complexity is independent from the number of trace quanti-
fiers in a given HyperLTL formula. Indeed, the set BK computed pre-runtime
by Γ function provides the means to avoid dependence on the trace quantifiers,
which otherwise is polynomial on the order of numbers of quantifiers. We believe
that our proposed algorithm is efficient enough to be adopted for the monitoring
of security policies in real-world applications.

Note that our proposed algorithm can only be used to monitor alternation-
free fragment (i.e., ∀∗ and ∃∗) of HyperLTL, which can express a wide class of
security policies including non-interference and declassification. However, speci-
fication of some security policies require alternation in the trace quantifiers. For
example, noninference [17] specifies that the behavior of low-variables should

90 N. Brett et al.

not change when all high variables are replaced by an arbitrary variable λ, given
as follows:

∀π.∃π′.(GλH(π′) ∧ G(
∧
a∈L

aπ ↔ aπ′)

Similarly, generalized non-interference (GNI) [16] also requires alternation in
trace quantifiers as it allows non-determinism in the low variables of the system.

7 Related Work

Static Analysis. Sabelfeld and Myers [24] survey the literature focusing on
static program analysis for enforcement of security policies. In some cases, with
compilers using Just-in-time compilation techniques and dynamic inclusion of
code at run time in web browsers, static analysis does not guarantee secure exe-
cution at run time. Type systems, frameworks for JavaScript [6] and ML [21] are
some approaches to monitor information flow. Several tools [11,18,19] add exten-
sions such as statically checked information flow annotations to Java language.
Clark and Hunt [7] present verification of information flow for deterministic inter-
active programs. On the other hand, our approach is capable of monitoring the
subset of hyperproperties described by alternation-free HyperLTL and not just
information flow without assistance from static analyzers. In [2], the authors pro-
pose a technique for designing runtime monitors based abstract interpretation
of the system under inspection.

Dynamic Analysis. Russo and Sabelfeld [23] concentrate on permissive tech-
niques for the enforcement of information flow under flow-sensitivity. It has been
shown that in the flow-insensitive case, a sound purely dynamic monitor is more
permissive than static analysis. However, they show the impossibility of such a
monitor in the flow-sensitive case. A framework for inlining dynamic informa-
tion flow monitors has been presented by Magazinius et al. [14]. The approach
by Chudnov and Naumann [5] uses hybrid analysis instead and argues that due
to JIT compilation processes, it is no longer possible to mediate every data and
control flow event of the native code. They leverage the results of Russo and
Sabelfeld [23] by inlining the security monitors. Chudnov et al. [4] again use
hybrid analysis of 2-safety hyperproperties in relational logic. In [1], the authors
propose an automata-based RV technique for monitoring only a disjunctive frag-
ment of alternation-free HyperLTL.

Austin and Flanagan [3] implement a purely dynamic monitor, however,
restrictions such as “no-sensitive upgrade” were placed. Some techniques deploy
taint tracking and labelling of data variables dynamically [20,26]. Zdancewic
and Myers [25] verify information flow for concurrent programs. Most of the
techniques cited above aim to monitor security policies described solely with
two trace quantifiers (without alternation), on observing a single run, whereas,
our work is for any hyperproperties that can be described with alternation-free
HyperLTL, when multiple runs are observed.

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 91

SME. Secure multi-execution [10] is a technique to enforce non-interference. In
SME, one executes a program multiple times, once for each security level, using
special rules for I/O operations. Outputs are only produced in the execution
linked to their security level. Inputs are replaced by default inputs except in exe-
cutions linked to their security level or higher. Input side effects are supported by
making higher-security-level executions reuse inputs obtained in lower-security-
level threads. This approach is sound in a deterministic language.

While there are small similarities between SME and our work, there are fun-
damental differences. SME only focuses on non-interference and aims to enforce
it, but there are many critical hyperproperties that differ from non-interference
that our method is able to monitor. Thus, SME enforces a security policy at the
cost of restricting what it can enforce, whereas our technique monitors a much
larger set of policies.

8 Conclusion

In this paper, we introduced an algorithm for monitoring alternation-free frag-
ment of HyperLTL [8], a temporal logic that allows for expressing complex
information-flow properties like generalized non-interference, declassification,
and quantitative non-interference. The main challenge in designing an RV algo-
rithm for HyperLTL formulas is that reasoning about the formula involves ana-
lyzing multiple traces (as opposed to a single trace in traditional RV techniques).
Our algorithm has three components: (1) a function that identifies propositions
that have to be bookkept across multiple traces, (2) a constraint generator that
encodes the occurrence of propositions of interest, and (3) a rewriting mod-
ule based on the algorithm in [22] that incorporates formula progression with
respect to incoming events for traces. In our view, our algorithm is a significant
step forward in monitoring sophisticated information-flow security and privacy
policies.

Our first step to extend this work will be to implement our algorithm and
test it for real-world applications, e.g., in smartphones. For future work, one may
consider RV algorithms based on monitor synthesis (as opposed to rewriting).
We are also planning to develop techniques for monitoring alternating Hyper-
LTL formulas. We believe dealing with such formulas is not possible without
assistance from a static analyzer.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Proceedings of the 29th IEEE Computer Security Foundations
Symposium (CSF), pp. 239–252 (2016)

2. Assaf, M., Naumann, D.A.: Calculational design of information flow monitors. In:
Proceedings of the 29th IEEE Computer Security Foundations Symposium (CSF),
pp. 210–224 (2016)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
ACM Transactions on Programming Languages and Systems, pp. 113–124 (2009)

92 N. Brett et al.

4. Chudnov, A., Kuan, G., Naumann, D.A.: Information flow monitoring as abstract
interpretation for relational logic. In: IEEE 27th Computer Security Foundations
Symposium, CSF 2014, Vienna, Austria, 19–22 July 2014, pp. 48–62 (2014)

5. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: Proceedings
of CSF, pp. 200–214 (2010)

6. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
JavaScript. In: Proceedings of PLDI, pp. 50–62 (2009)

7. Clark, D., Hunt, S.: Non-interference for deterministic interactive programs. In:
Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp.
50–66. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01465-9 4

8. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

10. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: 31st
IEEE Symposium on Security and Privacy, S&P, pp. 109–124 (2010)

11. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2010, Vancouver, BC, Canada, pp.
393–407. USENIX Association, Berkeley (2010). http://dl.acm.org/citation.cfm?
id=1924943.1924971

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

13. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Automated Soft-
ware Engineering (ASE), pp. 135–143 (2001)

14. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. Comput. Secur. 31(7), 827–843 (2012)

15. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer,
Heidelberg (1995)

16. McCullough, D.: Noninterference and the composability of security properties. In:
IEEE Symposium on Security and Privacy, pp. 177–186 (1988)

17. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 79–93 (1994)

18. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of Conference Record of the Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 228–241 (1999)

19. Myers, A.C., Liskov, B.: Complete, safe information flow with decentralized labels
(1998)

20. Nair, S., Simpson, P.N.D., Crispo, B., Tanenbaum, A.S.: A virtual machine based
information flow control system for policy enforcement. Electron. Notes Theor.
Comput. Sci. 197(1), 3–16 (2008)

21. Pottier, F., Simonet, V.: Information flow inference for ML. In: Proceedings of
Conference Record of the Annual ACM Symposium on Principles of Programming
Languages, pp. 319–330 (2002)

22. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

http://dx.doi.org/10.1007/978-3-642-01465-9_4
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 93

23. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proceedings of the XXrd IEEE Computer Security Foundations Symposium (CSF),
pp. 186–199 (2010)

24. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

25. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Computer Security Foundations Workshop, p. 29 (2003)

26. Zhu, Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Privacy scope: a precise
information flow tracking system for finding application leaks. Technical report,
EECS Department, University of California, Berkeley, October 2009

	Rewriting-Based Runtime Verification for Alternation-Free HyperLTL
	1 Introduction
	2 Background
	2.1 HyperLTL

	3 Finite Semantics for HyperLTL
	4 Challenges in Monitoring HyperLTL Formulas
	5 Identifying Propositions of Interest
	6 Monitoring Algorithm
	6.1 Algorithm Sketch
	6.2 Algorithm Details
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

