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Abstract. We present ERODE, a multi-platform tool for the solution
and exact reduction of systems of ordinary differential equations (ODEs).
ERODE supports two recently introduced, complementary, equivalence
relations over ODE variables: forward differential equivalence yields a
self-consistent aggregate system where each ODE gives the cumulative
dynamics of the sum of the original variables in the respective equiv-
alence class. Backward differential equivalence identifies variables that
have identical solutions whenever starting from the same initial con-
ditions. As back-end ERODE uses the well-known Z3 SMT solver to
compute the largest equivalence that refines a given initial partition of
ODE variables. In the special case of ODEs with polynomial derivatives
of degree at most two (covering affine systems and elementary chemical
reaction networks), it implements a more efficient partition-refinement
algorithm in the style of Paige and Tarjan. ERODE comes with a rich
development environment based on the Eclipse plug-in framework offer-
ing: (i) seamless project management; (ii) a fully-featured text editor;
and (iii) importing-exporting capabilities.

1 Introduction

Ordinary differential equations (ODEs) have gained momentum in computer sci-
ence due to the interest in formal methods for computational biology [14,20,35]
and for their capability of accurately approximating large-scale Markovian mod-
els [5,24,30,37,39]. This has led to a number of results concerning the important,
cross-disciplinary, and longstanding problem of reducing the size of ODE sys-
tems (e.g., [2,27,32]) using techniques such as abstract interpretation [13,18]
and bisimulation [9,12,19,26,38].

Our contribution borrows ideas from programming languages and concur-
rency theory to recast the ODE reduction problem into finding an appropriate
equivalence relation over ODE variables [9,11,12]. Two equivalence relations
are presented in [12] for a class of nonlinear systems that covers multivari-
ate rational derivatives and minimum/maximum operators. Forward differen-
tial equivalence (FDE) identifies a partition of the ODE variables for which a
self-consistent aggregate ODE system can be provided which preserves the sums
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of variables within each block. Variables related by a backward differential equiv-
alence (BDE) have the same solution whenever initialized equally. The largest
differential equivalence that refines a given input partition is computed via an
SMT encoding, using Z3 [15] as a back-end.

ODEs with derivatives that are multivariate polynomials of degree at most
two are an important sub-class, covering notable models such as affine systems
and elementary chemical reaction networks (CRNs) with mass-action semantics
(where each reaction has at most two reagents). For this class, in [9] we presented
the notions of forward bisimulation (FB) and backward bisimulation (BB). FB
is a sufficient condition for FDE; BB, instead, coincides with BDE for this class
of ODEs. The main advantage in using these bisimulations is that the more
expensive, symbolic checks through SMT are replaced by “syntactic” ones on
a reaction network, a finitary structure similar to a CRN which encodes the
ODE system. This has led in [11] to an efficient partition-refinement algorithm
with polynomial space and time complexity. The bisimulations can be seen as
liftings of equivalences and minimization algorithms for continuous-time Markov
chains (CTMCs). Indeed the well-known notions of CTMC ordinary and exact
lumpability [7] correspond to FB and BB, respectively, when the ODEs represent
the CTMC’s Kolmogorov equations; and, in this case, the complexity of our
partition-refinement algorithm collapses to those of the best-performing ones for
CTMC minimization [16,41]. As a consequence of this connection, FDE and
BDE are not comparable in general.

This paper presents ERODE (https://sysma.imtlucca.it/tools/erode/), a
fully-featured multi-platform tool implementing the reduction techniques
from [9,11,12]. The tool distinguishes itself from the prototypes accompany-
ing [9,11,12] in that: (i) It is not a command-line prototype but a mature tool
with a modern integrated development environment; (ii) It collects all the tech-
niques of our framework for ODE reduction in a unified coherent environment;
(iii) It offers a language, and an editor, to express the entire class of ODEs
supported by the reduction techniques, while the prototypes could reduce only
CRNs; (iv) It implements an ODE workflow consisting of numerical solution and
graphical visualization of results; (v) It offers importing/exporting facilities for
other formats like biochemical models for the well-known tools BioNetGen [4]
and Microsoft GEC [21], or ODEs defined in MATLAB.

Paper Outline. Section 2 reviews the reduction techniques from [9,11,12];
Sect. 3.1 describes ERODE’s architecture, while Sect. 3.2 details its functionali-
ties by discussing the components of an ERODE specification. ERODE’s capa-
bilities are further stated using a collection of large examples in Sect. 4. Finally,
Sect. 5 concludes.

2 Theory Overview

The theory behind the techniques implemented in ERODE has been presented
in [9,11,12], while a tutorial-like unifying presentation can be found in [43]. This
section provides an overview that emphasizes relevant aspects for explaining
ERODE’s performance.

https://sysma.imtlucca.it/tools/erode/
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Fig. 1. CRN model (a) and underlying ODEs (b) of an idealized biochemical
interaction.

Illustrating Example. Let us consider an idealized biochemical interaction
between molecules A and B; A can be in two states, u (unphosphorylated)
and p (phosphorylated) and can bind/unbind with B. This results in a network
with five species, denoted by Au, Ap, B, AuB, and ApB. The dynamics of the
system is described in Fig. 1(a) through a CRN with six reactions, where r1, r2,
r3 and r4, are the kinetic constants. By applying the well-known law of mass
action, each species is associated with one ODE variable which models the evo-
lution of its concentration as a function of time, with reactions that fire at a
speed proportional to their rate times the concentrations of their reagents. For
example, Au +B

r3−→ AuB fires at speed r3[Au][B], where [·] denotes the current
concentration of a species. Consequently, this term appears with negative sign
in the ODEs of its reagents (Au and B), and with positive sign in the ODE
of its product, AuB. The resulting ODEs for our sample system are shown in
Fig. 1(b), where the ‘dot’ operator denotes the (time) derivative. The model is
completed by an initial condition which assigns the initial concentration [X](0)
to each species X in the network.1

Differential Equivalences. It can be shown that {{[Au], [Ap]}, {[B]}, {[AuB],
[ApB]}} is an FDE for our running example. Indeed, exploiting basic properties
one can write self-consistent ODEs for the sums of species in each equivalence
class:

˙[Au] + ˙[Ap] = −r3
(
[Au] + [Ap]

)
[B] + r4

(
[AuB] + [ApB]

)
,

˙[B] = −r3
(
[Au] + [Ap]

)
[B] + r4

(
[AuB] + [ApB]

)
,

˙[AuB] + ˙[ApB] = r3
(
[Au] + [Ap]

)
[B] − r4

(
[AuB] + [ApB]

)
. (1)

By the change of variables [A] = [Au] + [Ap] and [AB] = [AuB] + [ApB], we get:

˙[A]=−r3[A][B] + r4[AB], ˙[B]=−r3[A][B] + r4[AB], ˙[AB]=r3[A][B] − r4[AB]

This quotient ODE model essentially disregards the phosphorilation status of the
A molecule. Setting the initial condition [A](0) = [Au](0)+[Ap](0) and [AB](0) =
1 Throughout the paper we will work with autonomous ODE systems, which are

not dependent on time. Also, we will use the terms ‘variable’ and ‘species’
interchangeably.
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[AuB](0) + [ApB](0) yields that the solution satisfies [A](t) = [Au](t) + [Ap](t)
and [AB](t) = [AuB](t) + [ApB](t) at all time points t.

Backward differential equivalence (BDE) equates variables that have the
same solutions at all time points, if initialized equally. It can be shown that
{{[Au], [Ap]}, {[B]}, {[AuB], [ApB]}} is also a BDE if r1 = r2. In this case, we
obtain a quotient ODE by keeping only one variable (and equation) per equiva-
lence class, say [Au], [B] and [AuB], and rewriting every occurrence of [Ap] and
[ApB] as [Au] and [AuB], respectively:

˙[Au] = −2r1[Au] − r3[Au][B] + r4[AuB]
˙[B] = −2r3[Au][B] + 2r4[AuB]

˙[AuB] = r3[Au][B] − r4[AuB]

Both FDE and BDE yield a reduced model that can be exactly related to
the original one. BDE is lossless, because every variable in the same equivalence
class has the same solution, but it is subject to the constraint that variables
in the same block be initialized equally. Instead, with FDE one cannot recover
the individual solution of an original variable in general, but no constraint is
imposed on the initial conditions.

Symbolic Minimization Algorithms. In [12], establishing that a given partition
is a differential equivalence amounts to checking the equality of the functions
representing their derivatives. This is encoded in (quantifier-free) first-order logic
formulae over the nonlinear theory of the reals. The problem is decidable for a
large class of ODEs (and Z3 implements a decision procedure [28]). Such a class
is identified by the IDOL language of [12], covering polynomials of any degree,
rational expressions, minima and maxima. This captures affine systems, CRNs
with mass-action or Hill kinetics [44], and the deterministic fluid semantics of
process algebra [24,37].

A partition of ODE variables is a BDE if any assignment with equal values in
any equivalence class has equal derivatives within each equivalence class. Thus,
{{[Au], [Ap]}, {[B], [AuB], [ApB]}} is a BDE if and only if the following formula
is valid (i.e. true for all assignments to the real variables [Au], [Ap], [B], [AuB],
and [ApB]):

[Au] = [Ap] ∧ [B] = [AuB] = [ApB] =⇒
f[Au] = f[Ap] ∧ f[B] = f[AuB] = f[ApB] (2)

where f[·] stands for the derivative assigned to the corresponding species in
Fig. 1(b). As usual, the SMT solver will check the satisfiability of its negation.

To automatically find differential equivalences of an ODE model, the SMT
checks are embedded in a partition-refinement algorithm that computes the
largest differential equivalence which refines a given input partition of variables.
In particular, a current partition is refined at each step using the witness returned
by the SMT solver, i.e. a variable assignment that falsifies the hypothesis that
the current partition is a differential equivalence. The algorithm terminates
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when no witness is found, guaranteeing that the current partition is a differ-
ential equivalence. Let us fix the rates r1 = r2 = 1, r3 = 3 and r4 = 4.
Then, {{[Au], [Ap]}, {[B], [AuB], [ApB]}} is not a BDE for our running example.
Indeed, the assignment {[Au] = 1, [Ap] = 1, [B] = 2, [AuB] = 2, [ApB] = 2}
is a witness for the negation of Eq. 2, since we get f[Au] = 2, f[Ap] = 2,
f[B] = 4, f[AuB] = −2 and f[ApB] = −2 under this assignment. This infor-
mation is then used to refine the current partition by splitting its blocks into
sub-blocks of variables that have the same computation of derivative, obtain-
ing {{[Au], [Ap]}, {[B]}, {[AuB], [ApB]}}. No witness can be generated for this
partition, ensuring that it is a BDE.

The FDE case is more involved, as discussed in [12]. Considering our running
example, we have that {{[Au], [Ap]}, {[B], [AuB], [ApB]}} is an FDE if and only if

(f[Au]+f[Ap] = f̂[Au]+f̂[Ap])∧(f[B]+f[AuB]+f[ApB] = f̂[B]+f̂[AuB]+f̂[ApB]) (3)

is valid, where each f̂[·] is obtained from the corresponding derivative f[·] by
replacing each variable with the sum of the variables in its block divided by the
size of the block. For example, each occurrence of the term r4[AuB] is replaced
by r4

[B]+[AuB]+[AuB]
3 . It can be shown that the partition is not an FDE, because

a witness falsifying Eq. 3 can be found by the SMT solver. However, differently
from the BDE case, Eq. 3 does not compare single derivatives, but sums of deriv-
atives, hence it cannot be used to decide how to refine the partition. For this, a
“binary” characterization of FDE performs SMT checks on each pair of species
in the same block of a partition to decide if they have to be split into different
sub-blocks.

We remark that the algorithms allow the preservation of user-defined observ-
ables. For instance, a variable of interest can be put in an initial singleton block
when reducing with FDE. Similarly, in order to meet the constraints on BDE,
one can build an initial partition consistent with the initial conditions of the
original model (that is, two variables are in the same initial block if their initial
conditions are the same).

Syntax-Driven Minimisation. A reaction network (RN) differs from an elemen-
tary CRN in that the kinetic constants may be negative. This gives rise to an
ODE system with derivatives that are multivariate polynomials of degree at
most two [11]. FB and BB are equivalence relations over variables/species in the
Larsen-Skou style of probabilistic bisimulation [31]. They are defined in terms
of quantities computed by inspecting the set of reactions [31]. In order to check
if a given partition of species H is an FB one computes the ρ-reaction rate of a
species X, and the cumulative ρ-production rate by X of the species in a block
H ∈ H, defined respectively as:

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr[X,H, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(H)
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where ρ and π are multisets of species, and ρ(X) and π(H) denote the multiplic-
ity of X in ρ, and the cumulative multiplicity of species from H in ρ, respectively.
We note that ρ is the reagent partner of X, which can be either ∅ for unary reac-
tions, or a species for binary ones. Intuitively, crr[X, ρ] quantifies the decrease
of X’s concentration due to reactions where X has partner ρ, while pr[X,H, ρ]
quantifies the increase of its concentration gained by the species in H. In partic-
ular, H is an FB if for any pair of species X, Y in the same block of H it holds
that crr[X, ρ] = crr[Y, ρ] and pr[X,H, ρ] = pr[Y,H, ρ] for all blocks H of H,
and all reagent partners ρ. BB is defined similarly. We refer to [9] for a detailed
presentation of FB and BB.

The bisimulation style enabled in [11] the adaptation of Paige and Tarjan’s
coarsest refinement problem [33] to compute the largest FB/BB. This is done by
generalizing algorithms for Markov chain lumping [16,41], obtaining algorithms
with O(m · n · log n) and O(m · n) time and space complexity, respectively, with
m being the number of monomials appearing in the underlying ODE system,
and n the number of ODE variables.

Let us fix r1 = 1, r2 = 2, r3 = 3 and r4 = 4 in our running example. Then,
{{Au, Ap}, {B,AuB,ApB}} is not an FB. The algorithm from [11] proceeds in
two steps.

In the first step, crr[X, ρ] is computed for each species X and partner ρ. This
information is used to refine the input partition, obtaining {{Au}, {Ap}, {B},
{AuB,ApB}}. The first block is split because we have crr[Au, ∅] = r1 and
crr[Au, ∅] = r2. Similarly, B is singled out because crr[B, ∅] = 0, while
crr[AuB, ∅] = crr[ApB, ∅] = r4.

In the second step, the algorithm iteratively refines the current partition by
selecting one of its blocks, Hsp, as a splitter in the current iteration: pr[X,Hsp, ρ]
is computed for each X and ρ. This can be done efficiently by considering only
reactions with species of Hsp in their products. Let us assume that {Au} is
the splitter used in the first iteration. Only two reactions have Au in their
products, leading to the computation of pr[Ap, {Au}, ∅] = r2 and pr[AuB,
{Au}, ∅] = r4. Any other production rate of {Au}, like pr[ApB, {Au}, ∅],
has value 0. This information is used to refine the partition, obtaining
{{Au}, {Ap}, {B}, {AuB}, {ApB}}. No further refinement is possible in the fol-
lowing iterations, hence the partition, which is an FB, is returned.

3 ERODE

ERODE is an application based on the Eclipse framework for Windows, Mac
OS and Linux. It does not require any installation process, and it is available,
together with a manual and sample models, at http://sysma.imtlucca.it/tools/
erode.

3.1 Architecture

Figure 2 provides a pictorial representation of the architecture of ERODE. It is
organized in the presentation layer, with the graphical user interface, and the

http://sysma.imtlucca.it/tools/erode
http://sysma.imtlucca.it/tools/erode
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Fig. 2. ERODE’s architecture.

Fig. 3. A screenshot of ERODE.

core layer. The main components of the GUI layer are depicted in the screenshot
of ERODE in Fig. 3, including a fully-featured text editor based on the xText
framework which supports syntax highlighting, content assist, error detection
and fix suggestions (top-middle of Fig. 3). This layer also offers a number of
views, including a project explorer to navigate among different ERODE files (top-
left of Fig. 3); an outline to navigate the parts of the currently open ERODE
file (bottom-left of Fig. 3); a plot view to display ODE solutions (top-right of
Fig. 3); and a console view to display diagnostic information like warnings and
model reduction statistics (bottom-right of Fig. 3). Finally, the GUI layer offers
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a number of wizards for: (i) updating ERODE to the latest distribution; (ii)
creating new ERODE files and projects; and (iii) importing models provided in
third-party languages.

The core layer implements the minimization algorithms and related data
structures for FDE, BDE, FB and BB (not detailed here because already
addressed in [11,12,43]). A wrapper to Z3 via Java bindings is included for
FDE/BDE reduction. The core layer also provides functionalities to encode an
RN specification in its corresponding explicit ODE (or IDOL) format, and vice
versa, as well as export/import functionalities for third-party languages. Finally,
this layer provides support for numerical ODE solvers, using the Apache Com-
mons Maths library [3]. When the input is a CRN (i.e. an RN with only posi-
tive rates) it can also be interpreted as a CTMC, following an established app-
roach [22]. Using the FERN library [17], ERODE features CTMC simulation.

3.2 Language

This section details ERODE’s features by discussing the parts composing an
ERODE file. We do this referring to the two alternative specification formats of
our running example from Fig. 1, expressed in ERODE in Listings 1 and 2 There
are six components of an ERODE specification: (i) parameter specification; (ii)
declaration of variables and (optional) initial conditions; (iii) initial partition of
variables; (iv) ODE system, either in plain format or as an RN; (v) observables,
called views, tracked by the numerical solver; (vi) commands for ODE numerical
solution, reduction, and exporting into other formats.

begin model ExampleODE
begin parameters
r1 = 1.0
r2 = 2.0

end parameters
begin init
Au = 1.0 Ap = 2.0 B = 3.0
AuB = 0 ApB = 0

end init
begin partition
{Au,Ap}, {AuB}, {B,ApB}

end partition
begin ODE
// C-style comments
d(Au) = -r1*Au + r2*Ap - 3*Au*B + 4*AuB
d(Ap) = r1*Au - r2*Ap - 3*Ap*B + 4*ApB
d(B) = -3*Au*B + 4*AuB - 3*Ap*B + 4*ApB
d(AuB) = 3*Au*B - 4*AuB
d(ApB) = 3*Ap*B - 4*ApB

end ODE
begin views
v1 = Au + Ap
v2 = AuB

end views
reduceBDE(reducedFile="ExampleODE_BDE.ode")

end model

Listing 1. Direct ODE specification.

begin model ExampleRN
begin parameters
r1 = 1.0
r2 = 2.0

end parameters
begin init
Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB

end init
begin partition

{Au,Ap}, {AuB}
end partition

begin reactions
Au -> Ap , r1
Ap -> Au , r2
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
Ap + B -> ApB , 3.0
ApB -> Ap + B , 4.0

end reactions
begin views
v1 = Au + Ap
v2 = AuB

end views
simulateODE(tEnd =1.0)

end model

Listing 2. Reaction network.



318 L. Cardelli et al.

Parameter Specification. An ERODE specification might start with an optional
list of parameters enclosed in the parameters block, each is specified as:

<parameter> = expression

where expression is an arithmetic expression involving parameter names and
reals through the following operators: +, -, *, / ^ abs, min, and max. Parameters
can be used to specify values of initial conditions, kinetic rates, or views.

Variable Declaration. The mandatory init block defines all ODE variables of
the model, each specified as:

<variable> [= expression]

where expression is an arithmetic expression as above that evaluates to the
initial condition assigned to the variable (defaulting to zero if not specified).

Initial Partition of Variables. Optionally, a partition of variables can be spec-
ified in the partition block. This can then be used as the initial partition of
the partition-refinement algorithms, as described later. (The user is required to
specify only the partition blocks of interest, while all variables not mentioned
explicitly are assigned to an implicit additional block.) For instance, Listings 1
and 2 represent the same initial partition {{Au,Ap},{AuB},{B,ApB}}.

ODE Definition. In the direct declaration format (Listing 1) the derivatives are
specified within the ODE block. Each equation is specified as:

d(<variable>) = derivative

where derivative is an arithmetic expression, possibly containing also ODE
variables. This allows to express ODEs belonging to IDOL [12].

In the reaction network format (Listing 2), the ODEs are inferred from reac-
tions of the form:

reagents -> products, rate

where reagents and products are two multisets of variables. The multiplicity
of a variable in a multiset can be defined through the + operator or with the
* operator in the obvious way; that is, A + A is equivalent to 2*A. If rate is a
variable-free expression that evaluates to a real number (as in all reactions of
Listing 2), then the reaction represents a dynamics akin to the law of mass action,
discussed in Sect. 2. In addition, ERODE supports more general arithmetical
expressions for rates through the arbitrary keyword. In this case, the reaction
firing rate is explicit. For instance, the two following reactions are equivalent:

Au + B -> AuB, arbitrary 3.0*Au*B Au + B -> AuB, 3.0
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Views. Views are the observations of interest. As for ODEs, each view can be
specified as an arithmetic expression involving variables, parameters and reals. In
Listings 1 and 2 the intent is to collect the total concentration of the A-molecules,
regardless of their phosphorylation state (view v1), and the concentration of the
species AuB (view v2).

For a CRN specification, views can also contain terms of form var(s1) and
covar(s1,s2), to compute the variance of the variable s1 and the covariance
of s1 and s2, respectively. To do so, ERODE implements the so-called linear
noise approximation (e.g., [6]) to be able to study approximations of higher order
moments of the concentrations of species in a CRN.

ODE Solution. The ODEs can be numerically solved using the command:

simulateODE(tEnd=<value>, steps=<value>, csvFile=<filename>)

It numerically integrates the ODE system starting from the specified initial
conditions up to time point tEnd, interpolating the results at steps equally
spaced time points. Two plots are generated, one for the trace of each ODE
variable and one for the trace of each specified view, respectively. If the optional
argument csvFile is present, the plots are exported into a comma-separated
values format.

Conversion Options. An explicit ODE specification can be converted in the RN
format (and vice versa) using

write(fileOut=fileName,format=<ODE|RN|MA-RN>)

If format is set to ODE, then the target file will be in explicit ODE format, while
with RN an RN with possibly arbitrary rates will be generated. If the ERODE
input to be exported is an explicit ODE with derivatives given by multivariate
polynomials of degree at most two, the MA-RN will use the encoding of [11] to
output a mass-action RN.

Export to Third-Party Languages. The command:

export<format> (fileOut=fileName)

exports ERODE files into four different target third-party languages:

Matlab: a Matlab function representing an ODE system (extension .m).
BNG: a CRN generated with the well-established tool BioNetGen version 2.2.5-

stable [4] (extension .net). This is available for CRN specifications only.
LBS: format of the Microsoft’s tool GEC [21] (extension .lbs), available for CRN

specifications only.
SBML: the well-known SBML interchange format (http://sbml.org) (extension

.sbml).

http://sbml.org
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Reduction Commands. All ODE reduction commands share the common
signature

reduce<kind> (prePartition=<NO|IC|USER>, reducedFile=<name>)

where kind can be FDE, BDE, FB, or BB. The ODE input format affects which
reduction options are available. For an ODE system defined directly, only FDE
and BDE are enabled. FB and BB are additionally available for RNs representing
polynomial ODE systems of degree at most two [11]. This is imposed by having
reagents multisets of size at most two in each reaction and restricting to mass-
action type rate expressions.

The option prePartition defines the initial partition for the minimization
algorithm. The maximal aggregation is obtained with the NO option. If it is set
to IC, the initial partition is built according to the constraints given by the
initial conditions: variables are in the same initial block whenever their initial
conditions are equal. If the option is set to USER, then the partition specified in
the partition block will be used.

If reducedFile is present, then a reduced model will be generated according
to the computed partition following the model-to-model transformation from [9]
(for FB and BB) and [12] (for FDE and BDE). This will have the same format
as the input, and will contain one variable for each equivalence class. The name
of the variable is given by the first variable name in that block, according to a
lexicographical order.

Considering our running example, no reduction is found running reduceFDE
on Listing 1 if pre-partitioning is set to USER. Instead, when it is set to NO
we find the FDE {{Au, Ap}, {B}, {AuB,ApB}} discussed in Sect. 2, implying
that it is the maximal one of the model. The output file for the case without
pre-partitioning is provided in Listing 3, which also shows that the association
between the original ODE variables and those in the reduced model is maintained
by annotating the output file with comments alongside the new variables.2 This
information can be useful for visually inspecting the reduced model in order to
gain insights into the physical interpretation of the reduction [9]. Finally, we note
that each reduced species has initial concentration equal to the sum of those in
the corresponding block.

In Sect. 2 we have shown that the partition {{Au, Ap}, {B}, {AuB,ApB}} is
also a BDE provided that r1 = r2. However, this reduction is not found if running
reduceBDE with pre-partitioning set to IC, as it violates the initial conditions for
Au and Ap. Instead, if the pre-partitioning is disabled, then the above partition is
the coarsest refinement, but the user is warned about the inconsistency with the
initial conditions. The BDE reduction without pre-partitioning for r1=r2=1.0
is given in Listing 4. The initial condition for the ODE of each representative is
equal to that of the corresponding original variable.

2 Here output files have been typographically adjusted to improve presentation.
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begin model ExampleODE_FDE
begin parameters
r1 = 1.0
r2 = 2.0

end parameters
begin init
Au = 1.0 + 2.0
B = 3.0
AuB

end init
begin ODE
d(Au) = - 3*Au*B + 4*AuB
d(B) = - 3*Au*B + 4*AuB
d(AuB) = 3*Au*B - 4*AuB

end ODE
// Comments associated to the

species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB , ApB}

end model

Listing 3. FDE reduction.

begin model ExampleODE_BDE
begin parameters
r1 = 1.0
r2 = 1.0

end parameters
begin init
Au = 1.0
B = 3.0
AuB

end init
begin ODE
d(Au) = - 3*Au*B + 4*AuB
d(B) = - 6*Au*B + 8*AuB
d(AuB) = 3*Au*B - 4*AuB

end ODE
// Comments associated to the

species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB , ApB}

end model

Listing 4. BDE reduction.

begin parameters
r1 = 1.0 r2 = 1.0

end parameters
begin init
Au = 1.0 B = 3.0 AuB
SINK

end init
begin reactions
Au -> 2*Au , r2
Au -> SINK , r1
Au + B -> Au , 3.0
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
AuB -> B + AuB , 4.0

end reactions
// Comments associated to the species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB , ApB}

end model

The model of Listing 2 is not
reduced by FB, independently on the
pre-partitioning choice. This is consis-
tent with FB being only a sufficient
condition for FDE (although it is effec-
tive on many meaningful models from
the literature, as discussed in [11]). The
result of the BB reduction is instead
provided in the right inset. As for BDE,
we considered the case r1=1.0 and
r2=1.0 without pre-partitioning. It can
be shown that the underlying ODEs of
the reduced model correspond to those
of Listing 4, as expected. (The place-
holder species SINK is created to rule
out reactions that have no products.)

4 Evaluation

Prototypal versions of ERODE’s reduction algorithms have been evaluated in [9,
11,12,43] against a number of models from the literature. The main outcomes
of these analyses are: (i) Our reduction techniques are effective, as we found
reductions in many large-scale models that enjoy substantial speed-ups for the
numerical ODE solution [9,11]; (ii) Our forward and backward notions are not
comparable in general, as there are models which can be reduced by the former
but not by the latter, and vice versa [9]; (iii) In some cases, observables of
interest specified by the modeller can be used to automatically generate initial
partitions that lead to forward reductions preserving them [43]; (iv) FDE and
BDE are less efficient than FB and BB, but are more general and lead to better
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reductions in the forward case [12]. (v) FB and BB correspond to the notions
of ordinary and exact CTMC lumpability [7], respectively [11]; in particular FB
has been validated in [11] against the ordinary CTMC lumping algorithm [16]
implemented in MRMC [29].

With ERODE we could confirm all these previously reported results. In this
section, we carry out a systematic evaluation of ERODE’s capabilities in terms
of scalability as a function of: the input model size (Sect. 4.1), its degree of
non-linearity (Sect. 4.2), and its degree of aggregability (Sect. 4.3). For this, we
considered a collection of synthetic benchmarks to be able to gain full control
on the model parameters to be changed for performing these studies.

All experiments were run on a 3.2 GHz Intel Core i5 machine with 16 GB of
RAM. In order to avoid interferences, each single model was tested on a fresh
Java Virtual Machine, with assigned 10 GB of RAM. For each reduction we used
initial partitions with one block only containing all variables. Information on
how to replicate the experiments is available at http://sysma.imtlucca.it/tools/
erode/benchmarks.

4.1 Scalability

We begin by studying the scalability of the partition-refinement algorithms in
terms of the model size. Such an assessment has been conducted already in [12]
for BDE/FDE, where it has been shown that BDE can handle models up to
786,432 reactions and 65,538 species, while FDE handled up to 8,620 reactions
and 745 species. For larger models Z3 issued out-of-memory errors. Here we
confirm these figures when using ERODE.

Instead, to study the scalability of FB and BB, we consider a number of ran-
dom RNs underlying degree-two polynomials. The set-up is as follows. First, we
fixed 7 different configurations with increasing number of reactions and species
(columns |R| and |S| of Table 1, respectively). For each configuration, we gen-
erated five random RNs, each having 70% unary reactions in the form A → B,
leading to degree-one monomials in the ODEs for species A and B, and 30%

Table 1. FB and BB reductions for random RNs with 30% of binary reactions.

http://sysma.imtlucca.it/tools/erode/benchmarks
http://sysma.imtlucca.it/tools/erode/benchmarks
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binary reactions in the form A+B→C, leading to degree-two monomials for A,
B, and C. (Here the percentage of binary reactions was fixed arbitrarily — it will
be studied in more detail in the next subsection.) The species involved in each
reaction were sampled uniformly (with re-insertion), while the kinetic rates were
drawn uniformly from the interval [1;10,000]. We ensured that none of the RNs
could be reduced in order to stress the algorithm by forcing it to evaluate the
maximum number of partition-refinement iterations. To reduce noise, the mea-
surements for each RN were repeated three times, for a total of 15 experiments
per configuration.

Table 1 summarizes the results. The columns Min, Avg and Max provide,
respectively, the minimum, average, and maximum reduction times obtained per
configuration. FB and BB reductions succeeded for models up to 25,000,000 reac-
tions and 2,50,0000 species, requiring about 5 and 15 min, respectively. Larger
RNs led to out-of-memory errors. The first and sixth row show that an incre-
ment of factor 25 in both the number of species and reactions leads to about two
order of magnitude larger runtimes, consistently with the algorithms’ complexi-
ties (Sect. 2). Finally, we note that BB reductions were performed twice as slow
as the corresponding FB ones This is consistent with [11], which shows that for
BB the inner loops of the partition-refinement algorithm execute about twice as
many instructions as for FB (see Algorithms 4 and 5 from [11]).

4.2 Degree of Nonlinearity

We now study how the reduction runtimes are affected by the nonlinearity in
the model, here measured as the percentage of monomials of degree greater than
one in the ODE.

For FB and BB we fixed a configuration with |R|= 3,500,000, and |S| =
250,000, similarly to the largest CRN in [9,11], and considered models with
increasing percentage of binary reactions. For each percentage, we generated
five RNs similarly to Sect. 4.1. Table 2 gives the reduction runtimes. We note
an increase in the runtimes as a function of the percentage of binary reactions.
This is consistent with the time complexity of FB and BB (Sect. 2). In fact, RNs

Table 2. Reductions of random elementary RNs with varying ratio of binary reactions.
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with higher ratio of binary reactions have more monomials in the underlying
ODEs (see Sect. 4.1). However we note that in practice the runtimes at worst
only quadruplicates respect to the linear case (column 0%).

Table 2 also reports the evaluation for FDE/BDE considering RNs of size |R|
= 1,500 and |S| = 250. We note that BDE requires much less time than FDE,
as expected from the discussion in Sect. 2. In addition, we find that the BDE
runtimes are essentially not affected. The same does not hold for FDE: incre-
menting the percentage of binary reactions by 20 leads to an increment of factor
between 1.3 and 2.3 in the runtimes. The different impact on the performance
of BDE and FDE can be explained by the algebraic transformations required by
FDE to compute the f̂[·] terms shown in Eq. (3). Consider for example a parti-
tion H and a species X belonging to a block H of H. Then, terms of form X2

are substituted with terms of form (
∑

Y ∈H Y )2/|H|2, with an explosion in the
number of monomials appearing in the derivatives. We do not provide the FDE
runtime for the 0% case, because it can be shown that, akin to CTMC lumpa-
bility, partitions with one block only are FDE for RNs with unary reagents and
products only.

We further study the behavior of FDE/BDE as a function of the max-
imum degree of the polynomials. For this, we constructed RNs with 60%
unary reactions and 40% n-ary reactions (leading to degree n monomials
in the underlying ODEs), with n = 20, 40, 60, 80, 100. The RNs have size
|R| = 1,500, |S|= 250, as in the last rows of Table 2. The runtimes, averaged
over 5 random RNs, are given in the bottom inset. The BDE runtime for
n = 20 is five times that of the corresponding one for degree-two polynomi-
als (third column of Table 2), and it further increases of factor 20 for n = 100.

Maximum degree of the polynomial n

20 40 60 80 100
BDE (s) 1.46E+0 8.30E+0 9.881E+0 1.42E+1 3.34E+1
FDE (s) 7.00E+2 2.00E+3 – “unknown” –

FDE succeeded for up to n = 40,
despite the discussed highly demand-
ing algebraic manipulations required,
while Z3 returned “unknown” for
larger values of n, suggesting an out
of memory error.

4.3 Number of Iterations vs Runtime

Finally, we study how the number of performed iterations of the partition-
refinement algorithms affects the runtime. For FB and BB this is done using
variants of model M1 of [9,11], with 3,538,944 reactions and 262,146 species.
It is the largest of a family of synthetic benchmarks used in [36] to study the
scalability of a network-free simulator for CRNs. It models an idealized bind-
ing/unbiding interaction between two molecules, A and B, which can take place
through A’s nine binding sites. Symmetries in the model are introduced through
the assumption that such binding sites are equivalent, in the sense that the rate
of binding/unbinding does not depend on the identity of the binding site.

Table 3(a) studies increasingly less symmetric variants of the model, obtained
by changing the binding/unbinding rates of each site; the first column shows
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Table 3. Reductions for variants of M1 of [9,11] by decreasing binding sites’
symmetries.

FB reduction BB reduction

Sym. Red. (s) Iter. |H| Red. (s) Iter. |H|
9 3.61E+0 223 222 7.60E+0 224 222
8 3.96E+0 663 662 8.12E+0 664 662
7 4.18E+0 1,923 1,922 8.63E+0 1,924 1,922
6 4.51E+0 5,379 5,378 8.73E+0 5,380 5,378
5 4.51E+0 14,339 14,338 8.77E+0 14,340 14,338
4 4.71E+0 35,849 35,842 8.97E+0 35,844 35,842
3 5.29E+0 81,959 81,922 9.58E+0 81,924 81,922
2 5.56E+0 163,910 163,842 9.71E+0 163,845 163,842
0 6.29E+0 262,147 262,146 1.12E+1 262,157 262,146

(a) 9 binding sites, |R|=3,538,944, |S|=262,146

FDE reduction BDE reduction

Sym. Red.(s) Iter. |H| Red.(s) Iter. |H|
4 1.39E+2 13,284 37 4.10E–1 42 37
3 2.66E+2 38,355 82 6.00E–1 81 82
2 3.52E+2 50,517 162 7.75E–1 113 162
0 2.54E+2 37,022 258 2.22E–1 9 258

(b) 4 binding sites, |R|=1,536, |S|=258

the number of equivalent sites in the model. The columns Red. provide the
runtimes of our algorithms. Columns Iter. and |H| show the number of iterations
performed and the blocks for the coarsest partitions obtained. Decreasing the
number of symmetric binding sites by one leads to an increment of factor between
2 and 3 in the number of iterations and blocks in the partitions. Instead, the
runtime increases only slightly: the number of iterations between the first and the
last experiment are separated by three orders of magnitude while their respective
runtimes at most only double for both FB and BB. This can be explained by
the fact that, at each iteration, one block of the current partition is chosen as a
potential splitter. Therefore only the reactions that have species belonging to the
splitter in their products will be inspected. As a result, the smaller is the current
splitter, the fewer reactions are scanned in the iteration. More importantly, as
discussed in detail in [11], the FB/BB algorithms follow Paige and Tarjan’s
approach of ignoring the largest sub-part [33]. This means that, whenever a
block is split, one of its sub-blocks with maximal size will not be further used as
splitter. This guarantees that each species will appear in at most log |S| splitters,
with S being the species in the model.

Table 3(b) reports a similar analysis for FDE and BDE. We use a simpli-
fication of M1 where A has only four binding sites, obtaining 1,536 reactions
and 258 species, to which both FDE and BDE can be successfully applied. The
table has the same structure of Table 3(a), however here Iter. counts the num-
ber of performed SMT checks. The table also shows that our symbolic algo-
rithms are strongly affected by the number of performed iterations: the nature
of the FDE/BDE algorithms does not allow for advanced optimizations like
those discussed for FB/BB. Lastly, it is interesting to note that the number of
necessary iterations decreases in the case when no reduction is found (last row
of Table 3(b)). Here, the computation of the largest BDE required nine SMT
checks: the SMT solver was able to split the initial block in 250 blocks in the
first iteration, then one new block has been created in the following eight iter-
ations until reaching the final partition with one block per species. For FDE,
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instead, 37,022 SMT checks were necessary. We note that this is relatively close
to the number of binary comparisons among 258 elements, i.e.

(
258
2

)
= 33153, as

expected from the discussion in Sect. 2.

5 Conclusion

We presented ERODE, a tool for the analysis and reduction of ODEs. The main
novelty is in the implementation of partition-refinement algorithms that com-
pute the largest equivalence over ODE variables that refine an initial partition,
using both syntactic criteria as well as symbolic SMT ones. However, currently
ERODE does not support algorithms required when the modeler is interested in
equivalences that satisfy constraints that are not expressible as initial partitions.
An example is the notion of emulation used for model comparison between two
CRNs [8], where each BDE partition block must contain at least one species of
the source CRN, and exactly one of the target. We plan to integrate ERODE
with the algorithm for computing all the BDEs of a CRN from [10].

ERODE is concerned with exact aggregations. These may be too strong in
some cases, as small perturbations in the parameters might prevent reductions
for ODE variables with nearby trajectories in practice. This motivated the devel-
opment of approximate notions of equivalence [1,23,34,42]. Preliminary work is
treated in [25,40]. However these approaches lack an algorithm for automatic
reduction, and they provide error bounds that tend to grow fast with time. In
the future we aim at tackling these two issues.
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