
Index Appearance Record for Transforming
Rabin Automata into Parity Automata

Jan Křet́ınský(B), Tobias Meggendorfer, Clara Waldmann,
and Maximilian Weininger

Technical University of Munich, Munich, Germany
jan.kretinsky@tum.de

Abstract. Transforming deterministic ω-automata into deterministic
parity automata is traditionally done using variants of appearance
records. We present a more efficient variant of this approach, tailored to
Rabin automata, and several optimizations applicable to all appearance
records. We compare the methods experimentally and find out that our
method produces smaller automata than previous approaches. Moreover,
the experiments demonstrate the potential of our method for LTL syn-
thesis, using LTL-to-Rabin translators. It leads to significantly smaller
parity automata when compared to state-of-the-art approaches on com-
plex formulae.

1 Introduction

Constructing correct-by-design systems from specifications given in linear tem-
poral logic (LTL) [Pnu77] is a classical problem [PR89], called LTL synthesis.
The automata-theoretic solution to this problem is to translate the LTL for-
mula to a deterministic automaton and solve the corresponding game on the
automaton. Although different kinds of automata can be used, a reasonable
choice would be parity automata (DPA) due to the practical efficiency of par-
ity game solvers [FL09,ML16] and the fact they allow for optimal memoryless
strategies. The bottleneck is thus to create a reasonably small DPA. The classical
way to transform LTL formulae into DPA is to first create a non-deterministic
Büchi automaton (NBA) and then determinize it, as implemented in ltl2dstar
[KB06]. Since determinization procedures [Pit06,Sch09] based on Safra’s con-
struction [Saf88] are practically inefficient, many alternative approaches to LTL
synthesis arose, trying to avoid determinization and/or focusing on fragments
of LTL, e.g. [KV05,PPS06,AL04]. However, new results on translating LTL
directly and efficiently into deterministic automata [KE12,EK14] open new pos-
sibilities for the automata-theoretic approach. Indeed, tools such as Rabinizer
[KK14] or LTL3DRA [BBKS13] can produce practically small deterministic
Rabin automata (DRA). Consequently, the task is to efficiently transform DRA
into DPA, which is the aim of this paper.

Transformations of deterministic automata into DPA are mostly based on
appearance records [GH82]. For instance, for deterministic Muller automata, we

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 443–460, 2017.
DOI: 10.1007/978-3-662-54577-5 26

444 J. Křet́ınský et al.

want to track which states appear infinitely often and which do not. In order to
do that, the state appearance record keeps a permutation of the states, ordered
according to their most recent visits, see e.g. [Sch01]. In contrast, for determin-
istic Streett automata (DSA) we only want to track which sets of states are
visited infinitely often and which not. Consequently, index appearance record
(IAR) keeps a permutation of these sets of interest instead, which are typically
very few. Such a transformation has been given first in [Saf92] from DSA to DRA
only (not DPA, which is a subclass of DRA). Fortunately, this construction can
be further modified into a transformation of DSA to DPA, as shown in [Löd99b].

Since (1) DRA and DSA are syntactically the same, recognizing the com-
plement languages of each other, and (2) DPA can be complemented without
any cost, one can apply the IAR of [Löd99b] to DRA, too. However, we design
another IAR, which is more natural from the DRA point of view, as opposed to
the DSA perspective taken in [Löd99b]. This is in spirit more similar to a sketch
of a construction suggested in [FEK11]. Surprisingly, we have found that the
DRA perspective yields an algorithm producing considerably smaller automata
than the DSA perspective.

Our contribution in this paper is as follows:

– We provide an IAR construction transforming DRA to DPA.
– We present optimizations applicable to all appearance records.
– We evaluate all the unoptimized and optimized versions of our IAR and the

IAR of [Löd99b] experimentally, in comparison to the procedure implemented
in GOAL [TTH13].

– We compare our approach LTL Rabinizer−−−−−−→DRA
optimized IAR−−−−−−−−−→DPA to the state-

of-the-art translation of LTL to DPA by Spot 2.1 [DLLF+16], which mixes the
construction of [Red12] with some optimizations of ltl2dstar [KB06] and of
their own. The experiments show that for more complex formulae our method
produces smaller automata.

2 Preliminaries on ω-automata

We recall basic definitions of ω-automata and establish some notation.

2.1 Alphabets and Words

An alphabet is any finite set Σ. The elements of Σ are called letters. A word is
a (possibly infinite) sequence of letters. The set of all infinite words is denoted
by Σω. A set of words L ⊆ Σω is called (infinite) language. The i-th letter of a
word w ∈ Σω is denoted by wi, i.e. w = w0w1

2.2 Transition Systems

A deterministic transition system (DTS) T is given by a tuple (Q,Σ, δ, q0) where
Q is a set of states, Σ is an alphabet, δ is a transition function δ : Q × Σ → Q
which may be partial (due to technical reasons) and q0 ∈ Q is the initial state.

Index Appearance Record for Transforming Rabin Automata 445

The transition function induces the set of transitions Δ = {〈q, a, q′〉 | q ∈ Q, a ∈
Σ, q′ = δ(p, a)}. For a transition t = 〈q, a, q′〉 ∈ Δ we say that t starts at q,
moves under a and ends in q′. A sequence of transitions ρ is a run of a DTS T
on a word w ∈ Σω if ρ0 starts at q0, ρi moves under wi for each i ≥ 0 and ρi+1

starts at the same state as ρi ends for each i ≥ 0. We write T (w) to denote the
unique run of T on w, if it exists. A transition t occurs in ρ if there is some i with
ρi = t. By Inf(ρ) we denote the set of all transitions occurring infinitely often in
ρ. Additionally, we extend Inf to words by defining InfT (w) = Inf(T (w)) if T
has a run on w. If T is clear from the context, we write Inf(w) for InfT (w).

2.3 Acceptance Conditions and ω-automata

An acceptance condition for T is a positive Boolean formula over the formal
variables VΔ = {Inf(T),Fin(T) | T ⊆ Δ}. Acceptance conditions are interpreted
over runs as follows. Given a run ρ of T and such an acceptance condition α,
we consider the truth assignment that sets the variable Inf(T) to true iff ρ visits
(some transition of) T infinitely often, i.e. Inf(ρ) ∩ T 	= ∅. Dually, Fin(T) is set
to true iff ρ visits every transition in T finitely often, i.e. Inf(ρ) ∩ T = ∅. A run
ρ satisfies α if this truth-assignment evaluates α to true.

A deterministic ω-automaton over Σ is a tuple A = (Q,Σ, δ, q0, α), where
(Q,Σ, δ, q0) is a DTS and α is an acceptance condition for it. An automaton
A accepts a word w ∈ Σω if the run of the automaton on w satisfies α. The
language of A, denoted by L(A), is the set of words accepted by A. An acceptance
condition α is a

– Rabin condition {(Fi, Ii)}k
i=1 if α =

∨k
i=1(Fin(Fi) ∧ Inf(Ii)). Each (Fi, Ii) is

called a Rabin pair, where the Fi and Ii are called the prohibited set and the
required set respectively.

– generalized Rabin condition {(Fi, {Ij
i }ki

j=1)}k
i=1 if the acceptance condition is

of the form α =
∨n

i=1(Fin(Fi) ∧
∧ki

j=1 Inf(Ik
j)). This generalizes the Rabin

condition, where each ki = 1. Furthermore, every generalized Rabin automa-
ton can be de-generalized into an equivalent Rabin automaton, which however
may incur an exponential blow-up [KE12].

– Streett condition {(Fi, Ii)}k
i=1 if α =

∧k
i=1(Inf(Fi) ∨ Fin(Ii)). Note that the

Streett condition is exactly the negation of the Rabin condition and thus an
automaton with a Rabin condition can be interpreted as a Streett automaton
recognizing exactly the complement language.

– Rabin chain condition {(Fi, Ii)}k
i=1 if it is a Rabin condition and F1 ⊆ I1 ⊆ · · ·

⊆ Fk ⊆ Ik. A Rabin chain condition is equivalent to a parity condition, spec-
ified by a priority assignment λ : Δ → N. Such a parity condition is satisfied
by a run ρ iff the maximum priority of all infinitely often visited transitions
max{λ(q) | q ∈ Inf(ρ)} is even.

A deterministic Rabin, generalized Rabin, Street or parity automaton is a deter-
ministic ω-automaton with an acceptance condition of the corresponding kind.
In the rest of the paper we use the corresponding abbreviations DRA, DGRA,
DSA and DPA.

446 J. Křet́ınský et al.

Furthermore, given a DRA with an acceptance set {(Fi, Ii)}k
i=1 and a word

w ∈ Σω, we write Finf = {Fi | Fi ∩ Inf(w) 	= ∅} and Iinf = {Ii | Ii ∩ Inf(w) 	= ∅}
to denote the set of all infinitely often visited prohibited and required sets,
respectively.

3 Index Appearance Record

In order to translate (state-based acceptance) Muller automata to parity
automata, a construction called latest appearance record has been devised1. In
essence, the constructed state space consists of permutations of all states in the
original automaton. In each transition, the state which has just been visited is
moved to the front of the permutation. From this, one can deduce the set of all
infinitely often visited states by investigating which states change their position
in the permutation infinitely often along the run of the word. Such a constraint
can be encoded as parity condition.

However, this approach comes with a very fast growing state space, as the
amount of permutations grows exponentially. Moreover, applying this idea to
transition based acceptance leads to even faster growth, as there usually are a
lot more transitions than states. In contrast to Muller automata, the exact set of
infinitely often visited transitions is not needed to decide acceptance of a word by
a Rabin automaton. It is sufficient to know which of the prohibited and required
sets are visited infinitely often. Hence, index appearance record uses the indices
of the Rabin pairs instead of particular states in the permutation construction.
This provides enough information to decide acceptance.

We introduce some formalities regarding permutations: For a given n ∈ N, we
use Πn to denote the set of all permutations of N = {1, . . . , n}, i.e. the set of all
bijective functions π : N → N . We identify π with its canonical representation
as a vector (π(1), . . . , π(n)). In the following, we will often say “the position of
Fi in π” or similar to refer to the position of i in a particular π, i.e. π−1(i). With
this, we define our variant of the index appearance record construction. Note
that in contrast to previous constructions, ours is transition based, which also
has a positive effect on the size of the produced automata, as discussed in our
experimental results.

Definition 1 (Transition-based index appearance record for Rabin
automata). Let R = (Q,Σ, δ, q0, {(Fi, Ii)}k

i=1) be a Rabin automaton. Then
the index appearance record automaton IAR(R) = (Q̃,Σ, δ̃, q̃0, λ) is defined as
the parity automaton with

– Q̃ = Q × Πk.
– q̃0 = (q0, (1, . . . , k)).
– δ̃((q, π), a) = (δ(q, a), π′) where π′ is the permutation obtained from π by mov-

ing all indices of prohibited sets visited by the transition t = 〈q, a, δ(q, a)〉

1 Originally, it appeared in an unpublished report of McNaughton under the name
“order vector with hit”.

Index Appearance Record for Transforming Rabin Automata 447

to the front. Formally, let Move = {i | t ∈ Fπ(i)} be the set of positions of
currently visited prohibited sets. If Move = ∅, define π′ = π, otherwise let
n = |Move| and Move = {i1, . . . , in}. With this

π′(j) =

{
ij if j ≤ n

π(j − n + |{i ∈ Move | i ≤ j}|) otherwise.

– To define the priority assignment, we first introduce some auxiliary notation.
For a transition t̃ = 〈(q, π), a, (q′, π′)〉 and its corresponding transition 〈q, a, q′〉
in the original automaton, let

maxInd(t̃) = max({π−1(i) | t ∈ Fi ∪ Ii} ∪ {0})

be the maximal position of acceptance pair in π visited by t (or 0 if none is
visited). Using this, define the priority assignment as follows:

λ(t̃) :=

⎧
⎪⎨

⎪⎩

1 if maxInd(t̃) = 0,
2 · maxInd(t̃) if t ∈ Iπ(maxInd(t̃)) \ Fπ(maxInd(t̃))

2 · maxInd(t̃) + 1 otherwise, i.e. if t ∈ Fπ(maxInd(t̃)).

When a transition visits multiple prohibited sets, they can be moved to the
front of the appearance record in arbitrary order. As an optimization we choose
existing states as successors whenever possible.

Before formally proving correctness, i.e. that IAR(R) recognizes the same
language as R, we provide a small example in Fig. 1 and explain the general
intuition behind the construction. For a given run, all prohibited sets which are
visited infinitely often will eventually be “in front” of all those only seen finitely
often: After some finite number of steps, none of the finitely often visited ones
will be seen any more. Taking another sufficiently large amount of steps, every
infinitely often visited set has been seen again and all their indices have been
moved to the front.

Lemma 1. Let w ∈ Σω be a word on which IAR(R) has a run ρ̃. Then, the
positions of all finitely often visited prohibited sets stabilize after a finite number
of steps, i.e. their positions are identical in all infinitely often visited states.
Moreover, for any i, j with Fi ∈ Finf , Fj /∈ Finf we have that the position of Fi

is smaller than the position of Fj in every infinitely often visited state.

Proof. The position of any Fi only changes in two different ways:

– Either Fi itself has been visited and thus is moved to the front,
– or some Fi′ with a position greater than the one of Fi has been visited and is

moved to the front, increasing the position of Fi.

Let ρ be the run of R on w. (We prove the existence of such a run in [KMWW17,
Lemma 3].) Assume that Fi is visited finitely often in some run ρ, i.e. there is
a step in the run from which on Fi is never visited again. As the amount of

448 J. Křet́ınský et al.

Fig. 1. An example DRA and its resulting IAR DPA. For the Rabin automaton, a
number in a white box next to a transition indicates that this transition is a required
one of that Rabin pair. A black shape dually indicates membership in the corresponding
prohibited set. For example, with t = 〈p, a, p〉 we have t ∈ F1 and t ∈ I2. In the
IAR construction, we shorten the notation for permutations to save space, so p, 12
corresponds to (p, (1, 2)). The priority of a transition is written next to the transitions
letter.

positions is bounded, the second case may only occur finitely often after this step
and the position of Fi eventually remains constant. As Fi was chosen arbitrarily,
we conclude that all finitely often visited Fi are eventually moved to the right
and remain on their position. Trivially, all infinitely often visited Fi move to the
left, proving the claim. ��

As an immediate consequence we see that if some transition (q, a, q′) ∈ Fi is
visited infinitely often, then every Fj with a smaller position than Fi in q is also
visited infinitely often:

Corollary 1. Let t̃ ∈ InfIAR(R)(w) be an infinitely often visited transition with
its corresponding transition t ∈ Fπ(i) for some i. Then ∀j ≤ i.Fπ(j) ∈ Finf .

Looking back at the definition of the priority function, the central idea of cor-
rectness can be outlined as follows. For every Ii which is visited infinitely often
we can distinguish two cases:

– Fi is visited finitely often. Then the position of the pair is greater than the one
of every Fj ∈ Finf . Hence the priority of every transition t̃ with corresponding
transition t ∈ Ii is both even and bigger than every odd priority seen infinitely
often along the run.

– Fi is visited infinitely often, i.e. after each visit of Ii, Fi is eventually visited.
As argued in the proof of Lemma 1, the position of Fi can only increase until it
is visited again. Hence every visit of Ii which yields an even parity is followed
by a visit of Fi yielding an odd parity which is strictly greater.

Using this intuition, we formally show correctness of the construction in
[KMWW17, Appendix A.1].

Index Appearance Record for Transforming Rabin Automata 449

Theorem 1. For any DRA R we have that L(IAR(R)) = L(R).

Proposition 1 (Complexity). For every DRA R with n states and k Rabin
pairs, the constructed automaton IAR(R) has at most n · k! states and 2k + 1
priorities.

Moreover, using the [Löd99a], one can show that this is essentially optimal.
There exists a family {Ln}n≥2 of languages such that for every n the language
Ln can be recognized by a DRA with O(n) states and O(n) pairs, but cannot
be recognized by a DPA with less than n! states. For details, see [KMWW17,
Appendix A.2].

Remark 1 (Comparison to previous IAR). Our construction is similar to the
index appearance record of [Löd99b] in that it keeps the information about the
current state and a permutation of pairs, implementing the appearance record.
However, from the point of view of Streett automata, it is very natural to keep
two pointers into the permutation, indicating the currently extreme positions of
both types of sets in the accpetance condition. Indeed, this way we can keep
track of all conjuncts of the form Inf(Ij) =⇒ Inf(Fj). This is also the approach
that [Löd99b] takes. In contrast, we have no pointers at all. From the Rabin
point of view, it is more natural to keep track of the prohibited sets only and the
respective pointer is hidden in the information about the current state together
with the current permutation. Additionally, the pointer for the required set is
hidden into the acceptance status of transitions. In the transition-based setting,
it is not necessary to remember the visit of a required set in the state-space; it is
sufficient to emit the respective priority upon seeing this during the transition
when we know both the source and target states. The absence of these pointers
results in better performance.

Remark 2 (Using IAR for DGRA). The straightforward way to translate a
DGRA to DPA is to first de-generalize the DGRA and then apply the pre-
sented IAR construction. However, one can also apply the IAR idea to directly
translate from DGRA to DPA: Instead of only tracking the pair indices, one
could incorporate all Fi and Ij

i into the appearance permutation. With the same
reasoning as above, a parity condition can be used to decide acceptance.

This approach yields a correct algorithm, but compared to de-generalization
combined with IAR, the state space grows much larger. Indeed, given a DGRA
with n states and k accepting pairs with li required sets each, the de-generalized
DRA has at most n·

∏k
i=1 li states and k pairs, hence the resulting parity automa-

ton has at most k!·n·
∏k

i=1 li states and 2k+1 priorities. Applying the mentioned
specific construction gives n · (

∑k
i=1(li +1))! states and 2 · (

∑k
i=1(li +1))+1 pri-

orities. A simple induction on k suffices to show that the worst case upper bound
for the specific construction is always larger. We conjecture that this behaviour
also shows in real-world applications.

450 J. Křet́ınský et al.

4 Optimizations

In general, many states generated by the IAR procedure are often superfluous
and could be omitted. In the following, we present several optimizations of our
construction, which aim to do so. Moreover, these optimizations can be applied
also to the IAR construction of [Löd99b] and in a slighly adjusted way also to
the standard SAR [Sch01]. Further, although the optimizations are transition-
based, they can be of course easily adapted to the state-based setting. Due to
space constraints, the correctness proofs can be found in [KMWW17, Appendix
A.3].

Fig. 2. Example of a suboptimal initial permutation, using the same notation as
in Fig. 1. Only the shaded states are constructed when choosing a better initial
permutation.

4.1 Choosing an Initial Permutation

The first observation is that the arbitrary choice of (1, . . . , k) as initial per-
mutation can lead to suboptimal results. It may happen that several states of
the resulting automaton are visited at most once by every run before some
“recurrent” permutation is reached. These states enlarge the state-space unnec-
essarily, as demonstrated in Fig. 2. Indeed, when choosing (p, (3, 1, 2)) instead of
(p, (1, 2, 3)) as the initial state in the example, only the shaded states are built
during the construction, while the language of the resulting automaton is still
equal to that of the input DRA.

We overload the IAR algorithm to be parametrized by the starting permu-
tation, i.e. we write IAR(R, π0) to denote the IAR construction applied to the
DRA R starting with permutation π0.

Index Appearance Record for Transforming Rabin Automata 451

Theorem 2. For an arbitrary Rabin automaton R with k pairs we have that
L(IAR(R)) = L(IAR(R, π0)) for all π0 ∈ Πk.

How to choose a “good” initial permutation is deferred to Sect. 4.3, as it is
intertwined with the algorithm presented in the following section.

4.2 SCC Decomposition

Acceptance of a word by an ω-automaton only depends on the set of states
visited infinitely often by its run. This set of states is strongly connected on
the underlying graph structure, i.e. starting from any state in the set, any other
state can be reached with finitely many steps. In general, any strongly connected
set belongs to exactly one strongly connected component (SCC). Therefore, for
a fixed SCC, only the Rabin pairs with required sets intersecting this SCC are
relevant.

Using this we can restrict ourselves to the Rabin pairs that can possibly
accept in that SCC while processing it. This reduces the number of indices we
need to track in the appearance record for each SCC, which can lead to significant
savings.

For readability, we introduce some abbreviations. Given a DRA R =
(Q,Σ, δ, q0, {(Fi, Ii)}k

j=1) and a set of states S ⊆ Q we write δ � S : S × Σ → S
to denote the restriction of δ to S, i.e. δ � S(q, a) = δ(q, a) if δ(q, a) ∈ S and
undefined otherwise. Analogously, we define Δ � S = Δ∩S ×Σ ×S as the set of
transitions in the restricted automaton. Consequently, we define the restriction
of the whole automaton R to the set of states S using q ∈ S as initial state by

R �q S = (S,Σ, δ � S, q, {(Fi ∩ (Δ � S), Ii ∩ (Δ � S)) | Ii ∩ (Δ � S) 	= ∅}).

Furthermore, we call a SCC of an automaton transient, if it is a singleton set
without a self-loop. This means that it is visited at most once by any run and
it is not of interest for acceptance. Finally, we use ε to denote the “empty”
permutation (of length 0).

Using this notation, we describe the optimized IAR construction, denoted
IAR∗ in Algorithm 1. The algorithm decomposes the DRA into its SCCs, applies
the formerly introduced IAR procedure to each sub-automaton separately and
finally connects the resulting DPAs back together.

As we apply the IAR construction to each SCC separately, we have to choose
the initial permutation for each state of those SCCs. Theorem 2 shows that
for a particular initial state, correctness of IAR does not depend on the chosen
permutation. We therefore delegate the choice to a function pickPerm and prove
correctness of the optimized algorithm independent of this function, allowing for
further optimizations. We present an optimal definition of pickPerm in the next
subsection.

Figure 3 shows an example application and the obtained savings of the con-
struction. Pair 1 is only relevant for acceptance in the SCC {p}, but in the
unoptimized construction it still changes the permutations in the part of the

452 J. Křet́ınský et al.

Input : A DRA R = (Q, Σ, δ, q0, {(Fi, Ii)}k
j=1)

Output: A DPA recognizing the same language as R
1 Q∗ ← {}, δ∗ ← {}, λ∗ ≡ 1
2 foreach SCC S in R do
3 if S transient or {i | Ii ∩ Δ � S �= ∅} = ∅ then // SCC not relevant

4 Add S × {ε} to Q∗

5 foreach q ∈ S, a ∈ Σ such that (δ � S)(q, a) is defined do
6 Let q′ = δ(q, a)
7 Set δ∗((q, ε), a) = (q′, ε) and λ∗(〈(q, ε), a, (q′, ε)〉) = 1

8 end

9 else // SCC relevant, apply IAR to the sub-automaton

10 Pick a starting state q ∈ S
11 (QS , Σ, δS , (q, π), λS) ← IAR(R �q S, pickPerm(q, S))
12 Update Q∗, δ∗ and λ∗ with QS , δS and λS , respectively

13 end

14 end
// Connect all SCCs

15 foreach (q, π) ∈ Q∗ and a ∈ Σ s.t. q′ = δ(q, a) in different SCC of R than q do
16 Pick a π′ with (q′, π′) ∈ Q∗

17 Set δ∗((q, π), a) = (q′, π′)
18 end

Algorithm 1. The optimized IAR construction IAR∗

Fig. 3. Example application of Algorithm 1

automaton constructed from {q, r}, as e.g. the transition 〈r, b, q〉 is contained
in F1. Similarly, pair 2 is tracked in {p} while actually not being relevant. The
optimized version yields improvements in both state-space size and amount of
priorities.

Index Appearance Record for Transforming Rabin Automata 453

Theorem 3. For any DRA R we have that L(IAR∗(R)) = L(R), independent
of pickPerm.

4.3 Optimal Choice of the Initial Permutation

In Fig. 2 we provided a scalable example where the choice of the initial per-
mutation can significantly reduce the size of the generated automaton. In this
subsection, we explain a procedure yielding a permutation which minimizes the
state space of the automaton generated by IAR∗.

First, we recall that pickPerm is only invoked when processing a particu-
lar (non-transient) SCC of the input automaton. Consequently, we can restrict
ourselves to only deal with Rabin automata forming a single SCC. Let now R
be such an automaton. While IAR(R, π0) may contain multiple SCCs, we show
that it contains exactly one bottom SCC (BSCC), i.e. a SCC without outgoing
edges. Additionally, this BSCC is the only SCC which contains all states of the
original automaton R in the first component of its states.

Theorem 4. Let R = (Q,Σ, δ, q0, {(Fi, Ii)}k
i=1) be a Rabin automaton that is

strongly connected. For a fixed π0 ∈ Πk, IAR(R, π0) contains exactly one BSCC
S and for every SCC S′ we have that S = S′ iff Q = {q | ∃π ∈ Πk.(q, π) ∈ S′}.
Furthermore the BSCCs for different π0 are isomorphic.

The proof can be found in [KMWW17, Appendix A.4]. This result makes defining
an optimal choice of pickPerm straightforward. By the theorem, there always is
a BSCC of the same size, independent of pickPerm. If (q0, π) is in the BSCC of
some IAR(R, π0), IAR(R, π) will generate the same BSCC and no other states.
Hence, we define pickPerm(q, S) to return any permutation such that (q, π)
lies in the corresponding BSCC. As a trivial consequence of the theorem, this
choice is optimal in terms of the state-space size of the generated automaton. In
our implementation, we start exploring the state space using an arbitrary initial
permutation and then prune all states which do not belong into the respective
BSCC.

5 Experimental Results

In this section, we compare variants of our new approach to the established
tools. All of the benchmarks have been run on a Linux 4.4.3-gentoo x64 virtual
machine with 3.0 GHz per core. We implemented our construction as part of
Rabinizer [KK14] and used the 64 bit Oracle JDK 1.8.0 102 as JVM for our
experiments.

5.1 DRA to DPA Translation

We present comparisons of different approaches to translate DRA into DPA.
As there are to our knowledge no “standard” DRA datasets for this kind of

454 J. Křet́ınský et al.

comparison, we use Spot’s tool randaut to produce various Rabin automata.
All executions in this chapter ran with a time-out of five minutes.

We consider both our basic method IAR of Sect. 3 and the optimized ver-
sion IAR∗ of Sect. 4. We compare our methods to GOAL2 [TTH13] and the
Streett-based construction StreetIAR of [Löd99b]. As we are not aware of any
implementations of StreetIAR, we implemented it ourselves in Haskell3. Both of
these constructions are using state-based acceptance. In order to allow for a fair
comparison, we therefore also implemented sbIAR, a variant of our construction
working directly with state-based acceptance4 in Haskell (See footnote 3), too.
Additionally, we combine every tool with Spot’s multi-purpose post-processing5

and denote this by a subscript P (for post-processing), e.g. IAR∗ combined with
this post-processing is written IAR∗

P .
In Table 1 we present a comparison between GOAL, StreettIAR and our

unoptimized state-based implementation sbIAR. Additionally, since GOAL does
not perform too well, we also include its post-processed variant GOALP . For
comparison, we also include our optimized variant IAR∗

P . As test data, we use
1000 state-based DRA over 4 atomic propositions with 5 to 15 states, a transition
density of 0.05 and 2 to 3 Rabin pairs6. We use Spot’s tool autfilt to gather
the statistics. Failures denote either time-outs, out of memory errors or invalid
results, e.g. automata which could not be read by autfilt, which sometimes
occurred with GOAL.

Table 1. Comparison of the DRA to DPA translations on 1000 randomly generated
DRAs. First, we compare the cases where all tools finished successfully, according to the
average size, the number of SCCs and the run-time. Second, we give the percentage each
tool produces an automaton with the least number of states, and failures, respectively.

GOAL GOALP StreettIAR sbIAR IAR∗
P

Avg. #states 1054 281 18.4 15.4 8.83

#SCC 73.2 19.2 4.97 4.33 1.61

time (s) 11.7 15.7 0.02 0.02 0.99

Smallest (%) 15.5 37.8 7.7 15.5 95.9

Failure (%) 8.6 11.9 0 0 0

2 gc batch"\$nba = load -c HOAF /dev/stdin; \$dpa = convert -t dpw \$nba;
save \$dpa -c HOAF /dev/stdout;", executed with OpenJDK IcedTea 2.6.6,

java version 1.7.0 101.
3 Compiled with GHC 7.10.3.
4 We also proved correctness for the direct construction, the proof can be obtained by

trivial modifications of the proofs in this paper.
5 autfilt --deterministic --generic --small --high.
6 randaut 4 --seed=0 -Q 5..15 --acceptance="Rabin 2..3"--density=0.05 --

deterministic --acc-probability 0.2 --state-based-acceptance --hoaf -

n1000. The acceptance probability parameter denotes the chance of a particular
transition belonging to a Rabin pair.

Index Appearance Record for Transforming Rabin Automata 455

From the results in Table 1 we observe that on this dataset all appearance-
record variants drastically outperform GOAL. We remark that IAR∗ performs
even better compared to GOAL if more SCCs are involved. However, for rea-
sonably complex automata, virtually every execution of GOAL timed out or
crashed, making more specific experiments difficult. Already for the automata
in Table 1 with 5–15 states, GOAL regularly consumed around 3 GB of memory
and needed roughly 10 seconds to complete on average, whereas our methods
only used a few hundred MB and less than a second. We could not find a dataset
where GOAL showed a significant advantage over our new methods. Therefore,
we exclude GOAL from further experiments. The remaining methods are inves-
tigated more thoroughly in the next experiment.

Table 2. Comparison of StreettIAR and (sb)IAR on 1000 randomly generated DRAs.
We use the same definitions as in Table 1.

StreettIAR sbIAR StreettIAR∗
P sbIAR∗

P IAR∗
P

Avg. #states 4959 1568 4175 1081 833

#SCC 63.8 42.5 1.35 1.35 1.35

time (s) 1.86 0.34 39.47 3.11 3.38

Smallest (%) 0 0 0.4 5.90 95.1

Failure (%) 1.3 0 1.4 0 0

In Table 2 we compare StreettIAR to sbIAR on more complex input automata
to demonstrate the advantages of our new method compared to the existing
StreettIAR construction. We consider the methods both in the basic setting and
with post-processing and optimizations. Note that as the presented optimizations
are applicable to appearance records in general, we also added them to our
implementation of StreettIAR. Its optimized version is denoted by StreettIAR∗.
Again, we include our best (transition-based) variant IAR∗

P for reference. The
dataset now contains DRA with 20 to 30 states7.

StreettIAR is significantly outperformed by our new methods in this experi-
ment. This is quite surprising, considering that both methods essentially follow
the same idea of index appearance records, only from different perspectives.
The difference is partially due to Remark 1. Besides, we have observed that
the discrepancy between StreettIAR and IAR is closely linked to the amount of
acceptance pairs. After increasing the number of pairs further, the gap between
the two approaches grows dramatically. For instance, on a dataset of automata
with 8 states and 8 Rabin pairs, the IAR construction yielded automata roughly
an order of magnitude smaller: sbIAR needed less than three hundred states

7 randaut 4 --seed=0 -Q 20..30 --acceptance="Rabin 6"--density=0.05 --acc

-probability=0.2 --deterministic --state-based-acceptance --hoaf-n1000.

456 J. Křet́ınský et al.

compared to StreettIAR needing over three thousand. Applying the post-
processing does not remedy the situation.

Table 3. Evaluation of the presented optimizations on 1000 randomly generated DRAs,
again using the same definitions as in Table 1. No tool failed for any of the input
automata.

sbIAR sbIAR∗
P IAR IARP IAR∗ IAR∗

P

Avg. #states 3431 2530 1668 1655 1302 1296

#SCC 24.8 1.14 8.98 3.5 1.43 1.43

Time (s) 0.77 11.47 1.09 48.3 76.5 95.7

Smallest (%) 0 0 38.3 48.30 76.5 95.7

Finally, we demonstrate the significance of the transition-based acceptance
and our optimizations in Table 3. To evaluate the impact of our improvements,
we compare the unoptimized IAR procedure and its post-processed counterpart
to the optimized IAR∗ and IAR∗

P . Furthermore, we also include our state-based
version in its basic (sbIAR) and best (sIAR∗

P
8) form. We run these algorithms

on a dataset of DRA with 20 states each9.
Spot’s generic post-processing algorithms often yield sizeable gains, but they

are marginal compared to the effect of our optimizations on this dataset. Our
optimizations are thus not only significantly beneficial, but also irreplacable by
general purpose optimizations. We furthermore want to highlight the reduction
of SCCs. As a final remark, we emphasize the improvements due to the adoption
of transition-based acceptance, halving the size of the automata.

5.2 Linear Temporal Logic

Motivated by the previous results we concatenated IAR∗ with Rabinizers LTL-
to-DRA translation, obtaining an LTL-to-DPA translation. We compare this
approach to the established tool ltl2tgba of Spot, which can also produce
DPA10. We use Spot’s comparison tool ltlcross in order to produce the results.
Unfortunately, this tool sometimes crashes caused by too many acceptance
sets11. We alleviated this problem by splitting our datasets into smaller chunks.
Time-outs are set to 15 min.

8 We use autfilt --state-based-acceptance to convert the transition based input
DRA to state based.

9 randaut 4 --seed=0 -Q 20 --acceptance="Rabin 5"--acc-probability=0.05--

density=0.1 --deterministic --hoaf -n1000.
10 By specifying --deterministic --generic on the command line.
11 Around 20 acceptance sets. The exact error message emitted is -terminate

called after throwing an instance of’std::runtime error’ what(): Too

many acceptance sets used.

Index Appearance Record for Transforming Rabin Automata 457

First, we compare the two tools on random LTL formulae. We use randltl
and ltlfilt to generate pure LTL formulae12. The test results are outlined in
Table 4. On average, our methods are comparable to ltl2tgba, even outper-
forming it slightly in the number of states.

Note that the averages have to be compared carefully. As the constructions
used by ltl2tgba are fundamentally different from ours, there are some formulae
where we outperform ltl2tgba by orders of magnitude and similarly in the other
direction. We conjecture that on some formulae ltl2tgba has an edge merely due
to its rewriting together with numerous pre- and post-processing steps, whereas
our method profits from Rabinizer, which can produce smaller deterministic
automata also for very complex formulae. On many dataset we tested, median
state count over all formulae (including timeouts) is better for our methods. For
more detail, see the histogram in [KMWW17, Appendix B, Fig. 4].

Table 4. Comparison of ltl2tgba to Rabinizer + IAR∗
P on 2000 LTL formulae.

Rabinizer + IAR∗
P ltl2tgba

Avg. #states 6.60 7.89

#acc 2.31 1.79

#SCC 4.49 4.69

Timeouts 22 0

To give more insight in the difference between the approaches, we list sev-
eral classes of formulae where our technique performs particularly well. For
instance, for fairness-like constraints our toolchain produces significantly smaller
automata than ltl2tgba, see Table 5. Further examples, previously investigated
in e.g. [KE12,BBKS13,EK14] can be found in [KMWW17, Appendix B, Table 6],
including formulae of the GR(1) fragment [PPS06]. Additionally, our method is
performing better on many practical formulae, for instance complex formulae
from Spec Pattern [DAC99]13.

6 Conclusion

We have presented a new version of index appearance record. In comparison to
the standard Streett-based approach, our new Rabin-based approach produces
significantly smaller automata. Besides, it has a significant potential for LTL
synthesis. For more complex formulae, it makes use of high efficiency of Rabinizer

12 randltl -n2000 5 --tree-size=20..25 --seed=0 --simplify=3 -p --ltl -

priorities’ ap=3, false=1,true=1,not=1,F=1,G=1,X=1,equiv=1,implies=1,

xor=0,R=0,U=1,W=0,M=0,and=1,or=1’ | ltlfilt --unabbreviate="eiMRW"̂.
13 Spec Patterns: Property Pattern Mappings for LTL. http://patterns.projects.cis.ksu.

edu/documentation/patterns/ltl.shtml.

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

458 J. Křet́ınský et al.

Table 5. Fairness formulae: Fairness(k) =
∧k

i=1(GF ai ⇒ GF bi)

Rabinizer+IAR∗
P ltl2tgba

Formula States Acc SCCs States Acc SCCs

Fairness(1) 2 4 1 5 4 3

Fairness(2) 12 9 1 44 8 9

Fairness(3) 1431 17 1 8607 20 546

and thus avoids the blow-up in many cases, compared to determinization-based
methods.

Since we only provided the method for DRA we want to further investigate
whether it can be extended to DGRA more efficiently than by de-generalization.
Besides, a more targeted post-processing of the state space and the priority
function is desirable. For instance, in order to decrease the total number of
used priorities, all non-accepting SCCs can be assigned any odd priority that
is already required elsewhere instead of the one suggested by the algorithm.
Further, one can adopt optimizations of Spot as well as consider optimizations
taking the automaton topology more into account. The whole tool-chain will
then be integrated into Rabinizer. Finally, in order to estimate the effect on
LTL synthesis more precisely, we shall link our tool chain to parity-game solvers
and apply it to realistic case studies.

Acknowledgment. This work is partially funded by the DFG project “Verified Model
Checkers” and by the Czech Science Foundation, grant No. P202/12/G061.

References

[AL04] Alur, R., La Torre, S.: Deterministic generators and games for LTL frag-
ments. ACM Trans. Comput. Log. 5(1), 1–25 (2004)

[BBKS13] Babiak, T., Blahoudek, F., Křet́ınský, M., Strejček, J.: Effective transla-
tion of LTL to deterministic Rabin automata: beyond the (F,G)-fragment.
In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39.
Springer, Heidelberg (2013). doi:10.1007/978-3-319-02444-8 4

[DAC99] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifi-
cations for finite-state verification. In: ICSE, pp. 411–420 (1999)

[DLLF+16] Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É.,
Xu, L.: Spot 2.0 — a framework for LTL and ω-automata manipulation.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp.
122–129. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46520-3 8

[EK14] Esparza, J., Křet́ınský, J.: From LTL to deterministic automata: a safra-
less compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 192–208. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08867-9 13

http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13

Index Appearance Record for Transforming Rabin Automata 459

[FEK11] Finkbeiner, B., Ehlers, R., Kupriyanov, A: Automata, games,
and verification (2011). https://www.react.uni-saarland.de/teaching/
automata-games-verification-11/downloads/ps9.pdf. Accessed 30 Aug
2016

[FL09] Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04761-9 15

[GH82] Gurevich, T., Harrington, L.: Trees, automata, and games. In: STOC, pp.
60–65 (1982)

[KB06] Klein, J., Baier, C.: Experiments with deterministic ω-automata for for-
mulas of linear temporal logic. Theoret. Comput. Sci. 363(2), 182–195
(2006)

[KE12] Křet́ınský, J., Esparza, J.: Deterministic Automata for the (F,G)-
fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 7

[KK14] Komárková, Z., Křet́ınský, J.: Rabinizer 3: safraless translation of LTL to
small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-11936-6 17

[KMWW17] Křet́ınský, J., Meggendorfer, T., Waldmann, C., Weininger, M.:
Index appearance record for transforming Rabin automata into parity
automata. Technical report abs/1701.05738, arXiv.org (2017)

[KV05] Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In
FOCS, pp. 531–542, (2005)

[Löd99a] Löding, C.: Optimal bounds for transformations of ω-automata. In:
Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999.
LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999). doi:10.1007/
3-540-46691-6 8

[Löd99b] Löding, C.: Methods for the transformation of automata: complexity and
connection to second order logic. Master’s thesis, Institute of Computer
Science and Applied Mathematics, Christian-Albrechts-University of Kiel,
Germany (1999)

[ML16] Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp.
262–267. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46520-3 17

[Pit06] Piterman, N.: From nondeterministic Buchi and Streett automata to
deterministic parity automata. In: LICS, pp. 255–264 (2006)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
[PPS06] Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In:

Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
364–380. Springer, Heidelberg (2005). doi:10.1007/11609773 24

[PR89] Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,
pp. 179–190 (1989)

[Red12] Redziejowski, R.R.: An improved construction of deterministic omega-
automaton using derivatives. Fundam. Inform. 119(3–4), 393–406 (2012)

[Saf88] Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327
(1988)

[Saf92] Safra, S.: Exponential determinization for omega-automata with strong-
fairness acceptance condition (extended abstract). In: STOC, pp. 275–282
(1992)

https://www.react.uni-saarland.de/teaching/automata-games-verification-11/downloads/ps9.pdf
https://www.react.uni-saarland.de/teaching/automata-games-verification-11/downloads/ps9.pdf
http://dx.doi.org/10.1007/978-3-642-04761-9_15
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-319-11936-6_17
http://dx.doi.org/10.1007/978-3-319-11936-6_17
http://arxiv.org/abs/org
http://dx.doi.org/10.1007/3-540-46691-6_8
http://dx.doi.org/10.1007/3-540-46691-6_8
http://dx.doi.org/10.1007/978-3-319-46520-3_17
http://dx.doi.org/10.1007/11609773_24

460 J. Křet́ınský et al.

[Sch01] Schwoon, S.: Determinization and complementation of Streett automata.
In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata Logics, and Infi-
nite Games. LNCS, vol. 2500, pp. 79–91. Springer, Heidelberg (2002).
doi:10.1007/3-540-36387-4 5

[Sch09] Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In:
Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00596-1 13

[TTH13] Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for Games, Omega-
Automata, and Logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013.
LNCS, vol. 8044, pp. 883–889. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 62

http://dx.doi.org/10.1007/3-540-36387-4_5
http://dx.doi.org/10.1007/978-3-642-00596-1_13
http://dx.doi.org/10.1007/978-3-642-39799-8_62
http://dx.doi.org/10.1007/978-3-642-39799-8_62

	Index Appearance Record for Transforming Rabin Automata into Parity Automata
	1 Introduction
	2 Preliminaries on -automata
	2.1 Alphabets and Words
	2.2 Transition Systems
	2.3 Acceptance Conditions and -automata

	3 Index Appearance Record
	4 Optimizations
	4.1 Choosing an Initial Permutation
	4.2 SCC Decomposition
	4.3 Optimal Choice of the Initial Permutation

	5 Experimental Results
	5.1 DRA to DPA Translation
	5.2 Linear Temporal Logic

	6 Conclusion
	References

