
RPP: Automatic Proof of Relational Properties
by Self-composition

Lionel Blatter1(B), Nikolai Kosmatov1, Pascale Le Gall2, and Virgile Prevosto1

1 Software Reliability and Security Laboratory, CEA, LIST,
91191 Gif-sur-Yvette, France

{lionel.blatter,nikolai.kosmatov,virgile.prevosto}@cea.fr
2 Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes,

CentraleSupélec, Université Paris-Saclay, 92295 Châtenay-Malabry, France
pascale.legall@centralesupelec.fr

Abstract. Self-composition provides a powerful theoretical approach
to prove relational properties, i.e. properties relating several program
executions, that has been applied to compare two runs of one or simi-
lar programs (in secure dataflow properties, code transformations, etc.).
This tool demo paper presents RPP, an original implementation of self-
composition for specification and verification of relational properties in C
programs in the Frama-C platform. We consider a very general notion
of relational properties invoking any finite number of function calls of
possibly dissimilar functions with possible nested calls. The new tool
allows the user to specify a relational property, to prove it in a com-
pletely automatic way using classic deductive verification, and to use it
as a hypothesis in the proof of other properties that may rely on it.

Keywords: Self-composition · Relational properties · Deductive
verification · Specification · Frama-C

1 Introduction

Modular deductive verification allows the user to prove that a function respects
its formal specification. For a given function f , any individual call to f can
be proved to respect the contract of f , that is, basically an implication: if the
given precondition is true before the call, the given postcondition is true after it.
However, some kinds of properties are not reduced to one function call. Indeed,
it is frequently necessary to express a property that involves several functions or
relates the results of several calls to the same function for different arguments.
We call them relational properties.

Different theories and techniques have been proposed to deal with relational
properties in different contexts. They include Relational Hoare Logic to show the
equivalence of program transformations [5] or Cartesian Hoare Logic for k-safety
properties [15]. Self-composition [2] is a theoretical approach to prove relational
properties relating two execution traces. It reduces the verification of a relational

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 391–397, 2017.
DOI: 10.1007/978-3-662-54577-5 22

392 L. Blatter et al.

property to a standard verification problem of a new function. Self-composition
techniques have been applied for verification of information flow properties [1,2]
and properties of two equivalent-result object methods [14]. Relational proper-
ties can be expressed on Java pure methods [11] using the JML specification
language. OpenJML [8] offers a partial support for deductive verification of rela-
tional properties. The purpose of the present work is to implement and extend
self-composition for specification and verification of relational properties in the
context of the acsl specification language [4] and the deductive verification plu-
gin Wp of Frama-C [13]. We consider a large class of relational properties
(universally quantified properties invoking any finite number of calls of possibly
dissimilar functions with possibly nested calls), and propose an automatic solu-
tion allowing the user not only to prove a relational property, but also to use it
as a hypothesis.

Motivation. The necessity to deal with relational properties in Frama-C has
been faced in various verification projects. Recent work [6] reports on verifi-
cation of continuous monotonic functions in an industrial case study on smart
sensor software. The authors write: “After reviewing around twenty possible
code analysis tools, we decided to use Frama-C, which fulfilled all our require-
ments (apart from the specifications involving the comparison of function calls).”
The relational property in question is the monotonicity of a function (e.g.,
x ≤ y ⇒ f(x) ≤ f(y)). To deal with it in Frama-C, [6] applies a variation
of self-composition consisting in a separate verification of an additional, manu-
ally created wrapper function simulating the calls to be compared.

Relational properties can often be useful to give an expressive specification of
library functions or hardware-supported functions, when the source code is not
available. In this case, relational properties are only specified and used to verify
client code, but are not verified themselves. For instance, in the PISCO project1,
an industrial case study on verification of software using hardware-provided
cryptographic primitives (PKCS#11 standard) required tying together different
functions with properties such as Decrypt(Encrypt(Msg, PrivKey), PubKey) =
Msg. Other examples include properties of data structures, such as matrix trans-
formations (e.g. (A + B)ᵀ = Aᵀ + Bᵀ or det(A) = det(Aᵀ)), the specifica-
tion of Push and Pop over a stack [7], or parallel program specification (e.g.,
map(append(l1, l2)) = append(map(l1),map(l2)) in the MapReduce approach).
A subclass of relational properties, metamorphic properties, relating multiple
executions of the same function [12], are also used in a different context in order
to address the oracle problem in software testing [16].

Manual application of self-composition or possible workarounds reduce the
level of automation, can be error-prone and do not provide a complete automated
link between three key components: (i) the property specification, (ii) its proof,
and (iii) its usage as a hypothesis in other proofs. Thus, the lack of support for
relational properties can be a major obstacle to a wider application of deductive
verification in academic and industrial projects.

1 http://www.systematic-paris-region.org/en/projets/pisco.

http://www.systematic-paris-region.org/en/projets/pisco

RPP: Automatic Proof of Relational Properties by Self-composition 393

The contributions of this tool demo paper include:

– a new specification mechanism to formally express a relational property in
acsl;

– a fully-automated transformation into ACSL-annotated C code based on (an
extension of) self-composition, that allows the user to prove such a property;

– a generation of an axiomatic definition and additional annotations that allow
us to use a relational property as a hypothesis for the proof of other properties
in a completely automatic and transparent way;

– an extension of self-composition to a large class of relational properties,
including several calls of possibly dissimilar functions and possibly nested
calls, and

– an implementation of this approach in a Frama-C plugin RPP with a sound
integration of proof statuses of relational properties.

2 The Method and the Tool

2.1 Specification and Preprocessing of a Relational Property

The proposed solution is designed and implemented on top of Frama-C [13],
a framework for analysis of C code developed at CEA LIST. Frama-C offers
a specification language, called acsl [4], and a deductive verification plugin,
Wp [3], that allow the user to specify the desired program properties as function
contracts and to prove them. A typical acsl function contract may include a
precondition (requires clause stating a property supposed to hold before the
function call) and a postcondition (ensures clause that should hold after the
call), as well as a frame rule (assigns clause indicating which parts of the
global program state the function is allowed to modify). An assertion (assert
clause) can also specify a local property at any function statement.

Specification. To specify a relational property, we propose an extension of acsl
specification language with a new clause, relational. For technical, Frama-
C-related, reasons, these clauses must be attached to a function contract. Thus, a
property relating calls of different functions, such as R3 in Fig. 1a, must appear in
the contract of the last function involved in the property, i.e. when all relevant
functions are in scope. To refer to several function calls in such a property,
we introduce a new construct \call(f,<args>) used to indicate the value
returned by the call f(<args>) to f with arguments <args>. \call can be
used recursively, i.e. a parameter of a called function can be the result of another
function call. For example, properties R1,R2 at lines 2–3, 10–11 of Fig. 1a specify
monotonicity of functions f1,f2, while property R3 at line 12–13 indicates that
f1(x) is always less than f2(x).

Preprocessing and Proof Status Propagation. Since this new syntax is not
supported by classic deductive verification tools, we have designed a code trans-
formation, inspired by self-composition, allowing the user to prove the property
with one of these tools.

394 L. Blatter et al.

Fig. 1. (a) Two monotonic functions f1,f2 with three relational properties (file f.c),
and (b) excerpt of their transformation by RPP for deductive verification

We illustrate the transformation for function f1 and property R1 (see
Fig. 1a). The transformation result (Fig. 1b) consists of three parts. First, a new
function, called wrapper, is generated. The wrapper function is inspired by the
workaround proposed in [6] and self-composition. It inlines the function calls
occurring in the relational property, records their results in local variables and
states an assertion equivalent to the relational property (lines 1–7 in Fig. 1b).
The proof of such an assertion is possible with a classic deductive verification
tool (Wp can prove it in this example).

However, a wrapper function is not sufficient if we need to use the relational
property as a hypothesis in other proofs and to make their support fully auto-
matic and transparent for the user. For this purpose, we generate an axiomatic
definition (cf. axiomatic section at lines 9–14) to give a logical reformulation
of the relational property as a lemma (cf. lines 11–12). This logical formulation
can be used in subsequent proofs (as we illustrate below). Lemmas can refer to
several function calls, but only for logic functions. Therefore, a logic counter-
part (with−acsl suffix) is declareds for each C function involved in a relational
property (cf. line 10). The ACSL function is partially specified via lemmas cor-
responding to the relational properties of the original C function. Note that the
correspondence between f and f−acsl implies that f does not access global
memory (neither for writing nor for reading). Indeed, since f−acsl is a pure
logic function, it has no side effect and its result only depends on its parame-
ters. Extending our approach for this case can rely on assigns...\from...
clauses, similarly to what is proposed in [10], for adding to f−acsl parameters
representing the relevant parts of the program state. This extension is left as
future work.

RPP: Automatic Proof of Relational Properties by Self-composition 395

Finally, to create a bridge between the C function and its logic counterpart,
we add a postcondition (an ensures clause, placed in a separate behavior for
readability) to state that they always return the same result (cf. line 18 relating
f1 and f1−acsl).

To make the proposed solution as transparent as possible for the user and
to ensure automatic propagation of proof statuses in the Frama-C property
database [9], two additional rules are necessary. First, the postconditions making
the link between C functions and their associated logic counterparts are always
supposed valid (so the clause of line 18 is declared as valid). Second, the logic
reformulation of a relational property in a lemma (lines 11–12) is declared valid2

as soon as the assertion (line 6) at the end of the wrapper function is proved.

2.2 Implementation and Illustrative Examples

Implementation. A proof-of-concept implementation of the proposed tech-
nique has been realized in a Frama-C plugin RPP (Relational Property Prover).
RPP works like a preprocessor for Wp: after its execution on a project con-
taining relational properties, the proof on the generated code proceeds like any
other proof with Wp [13]: proof obligations are generated and can be either
discharged automatically by automatic theorem provers (e.g. Alt-Ergo, CVC4,
Z33) or proven interactively (e.g. in Coq4).

Thanks to the proposed code transformation no significant modification was
required in Frama-C and Wp. RPP currently supports relational properties of
the form

∀ <args1>, . . . , ∀ <argsN>,

P (<args1>, . . . ,<argsN>, \call(f_1,<args1>), . . . , \call(f_N,<argsN>))

for an arbitrary predicate P invoking N ≥ 1 calls of non-recursive functions
without side effects and complex data structures.

Illustrative Examples. After preprocessing with RPP, Frama-C/Wp auto-
matically validates properties R1-R3 of Fig. 1a by proving the assertions in the
generated wrapper functions and by propagating proof statuses.

To show how relational properties can be used in another proof, consider
properties Rg,Rh of Fig. 2a for slightly more complex functions (inspired by [6])
whose proof needs to use properties R1,R2. Thanks to their reformulation as
lemmas and to the link between logic and C functions (cf. lines 11–12, 18 of
Fig. 1b for f1), Wp automatically proves the assertion at line 6 of Fig. 2b and
validates property Rg as proven. The proof for Rh is similar.

2 Technically, a special “valid under condition” status is used in this case in Frama-C.
3 See, resp., https://alt-ergo.ocamlpro.com, http://cvc4.cs.nyu.edu, https://z3.
codeplex.com/.

4 See http://coq.inria.fr/.

https://alt-ergo.ocamlpro.com
http://cvc4.cs.nyu.edu
https://z3.codeplex.com/
https://z3.codeplex.com/
http://coq.inria.fr/

396 L. Blatter et al.

Fig. 2. (a) Two monotonic functions g,h with two relational properties, and (b) extract
of their transformation by RPP for deductive verification

Notice that in examples of Fig. 2, functions f1,f2 can be undefined since
only their (relational) specification is required, which is suitable for specifica-
tion of library or hardware-provided functions that cannot be specified without
relational properties.

The RPP tool has also been successfully tested on several other examples such
as cryptographic properties like Decrypt(Encrypt(Msg, PrivKey), PubKey) =
Msg, squeeze lemma condition (i.e. ∀x, f1(x) ≤ f2(x) ≤ f3(x)), median func-
tion properties (e.g. ∀a, b, c, Med(a, b, c) = Med(a, c, b)), properties of determi-
nant for matrices of order 2 and 3 (e.g. det(A) = det(Aᵀ)), matrix equations like
(A + B)ᵀ = Aᵀ + Bᵀ, etc. Some of them include loops whose loop invariants are
automatically transferred by RPP into the wrapper function to make possible its
automatic proof.

3 Conclusion and Future Work

We proposed a novel technique for specification and proof of relational properties
for C programs in Frama-C. We implemented it in a Frama-C plugin RPP and
illustrated its capacity to treat a large range of examples coming from various
industrial and academic projects that were suffering from the impossibility to
express relational properties. One benefit of this approach is its capacity to rely
on sound and mature verification tools like Frama-C/Wp, thus allowing for
automatic or interactive proof from the specified code. Thanks to an elegant
transformation into auxiliary C code and logic definitions accompanied by a
property status propagation, the user can treat complex relational properties
and observe the results in a convenient and fully automatic manner. Another

RPP: Automatic Proof of Relational Properties by Self-composition 397

key benefit is that this approach is suitable for verification of programs relying
on library or hardware-provided functions whose source code is not available.

Future work includes extending the tool to support complex data structures
and functions with side-effects, support of recursive functions, studying other
variants of generated code (e.g. avoiding function inlining in some cases), as well
as further experiments on real-life programs.

Acknowledgment. Part of the research work leading to these results has received
funding for DEWI project (www.dewi-project.eu) from the ARTEMIS Joint Underta-
king under grant agreement No. 621353, and for the S3P project from French DGE and
BPIFrance.

References

1. Barthe, G., Crespo, J.M., Kunz, C.: Product programs and relational program
logics. J. Log. Algebr. Methods Program. 85, 847–859 (2016)

2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21, 1207–1252 (2011)

3. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z.: WP Plugin Manual v1.0 (2016)
4. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.:

ACSL: ANSI/ISO C Specification Language (2016). http://frama-c.com/acsl.html
5. Benton, N.: Simple relational correctness proofs for static analyses and program

transformations. In: POPL (2004)
6. Bishop, P.G., Bloomfield, R.E., Cyra, L.: Combining testing and proof to gain high

assurance in software: a case study. In: ISSRE (2013)
7. Burghardt, J., Gerlach, J., Lapawczyk, T.: ACSL by Example (2016). http://www.

fokus.fraunhofer.de/download/acsl by example
8. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and

Eclipse. In: F-IDE (2014)
9. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:

Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32469-7 8

10. Cuoq, P., Monate, B., Pacalet, A., Prevosto, V.: Functional dependencies of C
functions via weakest pre-conditions. STTT 13(5), 405–417 (2011)

11. Darvas, A., Müller, P.: Reasoning about method calls in JML specifications. FTfJP
(2005)

12. Hui, Z.W., Huang, S.: A formal model for metamorphic relation decomposition.
In: WCSE (2013)

13. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: a software analysis perspective. Form. Aspect Comput. 27(3), 573–609 (2015).
http://frama-c.com

14. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-78739-6 24

15. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
PLDI (2016)

16. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982)

http://www.dewi-project.eu
http://frama-c.com/acsl.html
http://www.fokus.fraunhofer.de/download/acsl_by_example
http://www.fokus.fraunhofer.de/download/acsl_by_example
http://dx.doi.org/10.1007/978-3-642-32469-7_8
http://frama-c.com
http://dx.doi.org/10.1007/978-3-540-78739-6_24

	RPP: Automatic Proof of Relational Properties by Self-composition
	1 Introduction
	2 The Method and the Tool
	2.1 Specification and Preprocessing of a Relational Property
	2.2 Implementation and Illustrative Examples

	3 Conclusion and Future Work
	References

