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Abstract. Given a relational specification ϕ(X, Y ), where X and Y
are sequences of input and output variables, we wish to synthesize each
output as a function of the inputs such that the specification holds. This
is called the Boolean functional synthesis problem and has applications
in several areas. In this paper, we present the first parallel approach for
solving this problem, using compositional and CEGAR-style reasoning
as key building blocks. We show by means of extensive experiments that
our approach outperforms existing tools on a large class of benchmarks.

1 Introduction

Given a relational specification of input-output behaviour, synthesizing out-
puts as functions of inputs is a key step in several applications, viz. program
repair [14], program synthesis [28], adaptive control [25] etc. The synthesis prob-
lem is, in general, uncomputable. However, there are practically useful restric-
tions that render the problem solvable, e.g., if all inputs and outputs are Boolean,
the problem is computable in principle. Nevertheless, functional synthesis may
still require formidable computational effort, especially if there are a large num-
ber of variables and the overall specification is complex. This motivates us to
investigate techniques for Boolean functional synthesis that work well in practice.

Formally, let X be a sequence of m input Boolean variables, and Y be a
sequence of n output Boolean variables. A relational specification is a Boolean
formula ϕ(X,Y ) that expresses a desired input-output relation. The goal in
Boolean functional synthesis is to synthesize a function F : {0, 1}m → {0, 1}n

that satisfies the specification. Thus, for every value of X, if there exists some
value of Y such that ϕ(X,Y ) = 1, we must also have ϕ(X,F (X)) = 1. For values
of X that do not admit any value of Y such that ϕ(X,Y ) = 1, the value of F (X)
is inconsequential. Such a function F is also referred to as a Skolem function for
Y in ϕ(X,Y ) [15,22].

An interesting example of Boolean functional synthesis is the problem of
integer factorization. Suppose Y1 and Y2 are n-bit unsigned integers, X is a 2n-bit
unsigned integer and ×[n] denotes n-bit unsigned multiplication. The relational
specification ϕfact(X,Y1, Y2) ≡ ((X = Y1 ×[n] Y2) ∧ (Y1 �= 1) ∧ (Y2 �= 1)) specifies
that Y1 and Y2 are non-trivial factors of X. This specification can be easily
encoded as a Boolean relation. The corresponding synthesis problem requires
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us to synthesize the factors Y1 and Y2 as functions of X, whenever X is non-
prime. Note that this problem is known to be hard, and the strength of several
cryptographic systems rely on this hardness.

Existing approaches to Boolean functional synthesis vary widely in their
emphasis, ranging from purely theoretical treatments (viz. [3,6,7,10,20,23]) to
those motivated by practical tool development (viz. [4,11,12,15,17,18,21,22,27–
29]). A common aspect of these approaches is their focus on sequential algorithms
for synthesis. In this paper, we present, to the best of our knowledge, the first
parallel algorithm for Boolean functional synthesis. A key ingredient of our app-
roach is a technique for solving the synthesis problem for a specification ϕ by
composing solutions of synthesis problems corresponding to sub-formulas in ϕ.
Since Boolean functions are often represented using DAG-like structures (such
as circuits, AIGs [16], ROBDDs [1,8]), we assume w.l.o.g. that ϕ is given as a
DAG. The DAG structure provides a natural decomposition of the original prob-
lem into sub-problems with a partial order of dependencies between them. We
exploit this to design a parallel synthesis algorithm that has been implemented
on a message passing cluster. Our initial experiments show that our algorithm
significantly outperforms state-of-the-art techniques on several benchmarks.

Related Work: The earliest solutions to Boolean functional synthesis date back
to Boole [6] and Lowenheim [20], who considered the problem in the context
of Boolean unification. Subsequently, there have been several investigations into
theoretical aspects of this problem (see e.g., [3,7,10,23]). More recently, there
have been attempts to design practically efficient synthesis algorithms that scale
to much larger problem sizes. In [22], a technique to synthesize Y from a proof
of validity of ∀X∃Y ϕ(X,Y ) was proposed. While this works well in several
cases, not all specifications admit the validity of ∀X∃Y ϕ(X,Y ). For example,
∀X∃Y ϕfact(X,Y ) is not valid in the factorization example. In [12,29], a synthe-
sis approach based on functional composition was proposed. Unfortunately, this
does not scale beyond small problem instances [11,15]. To address this draw-
back, a CEGAR based technique for synthesis from factored specifications was
proposed in [15]. While this scales well if each factor in the specification depends
on a small subset of variables, its performance degrades significantly if we have
a few “large” factors, each involving many variables, or if there is significant
sharing of variables across factors. In [21], Macii et al. implemented Boole’s
and Lowenheim’s algorithms using ROBDDs and compared their performance
on small to medium-sized benchmarks. Other algorithms for synthesis based on
ROBDDs have been investigated in [4,17]. A recent work [11] adapts the func-
tional composition approach to work with ROBDDs, and shows that this scales
well for a class of benchmarks with pre-determined variable orders. However,
finding a good variable order for an arbitrary relational specification is hard,
and our experiments show that without prior knowledge of benchmark classes
and corresponding good variable orders, the performance of [11] can degrade
significantly. Techniques using templates [28] or sketches [27] have been found to
be effective for synthesis when we have partial information about the set of can-
didate solutions. A framework for functional synthesis, focused on unbounded
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domains such as integer arithmetic, was proposed in [18]. This relies heavily on
tailor-made smart heuristics that exploit specific form/structure of the relational
specification.

2 Preliminaries

Let X = (x1, . . . xm) be the sequence of input variables, and Y = (y1, . . . yn) be
the sequence of output variables in the specification ϕ(X,Y ). Abusing notation,
we use X (resp. Y ) to denote the set of elements in the sequence X (resp. Y ),
when there is no confusion. We use 1 and 0 to denote the Boolean constants
true and false, respectively. A literal is either a variable or its complement. An
assignment of values to variables satisfies a formula if it makes the formula true.

Fig. 1. DAG representing ϕ(X, Y )

We assume that the speci-
fication ϕ(X,Y ) is represented
as a rooted DAG, with inter-
nal nodes labeled by Boolean
operators and leaves labeled
by input/output literals and
Boolean constants. If the oper-
ator labeling an internal node
N has arity k, we assume
that N has k ordered chil-
dren. Figure 1 shows an exam-
ple DAG, where the internal
nodes are labeled by AND and
OR operators of different arities. Each node N in such a DAG represents a
Boolean formula Φ(N), which is inductively defined as follows. If N is a leaf,
Φ(N) is the label of N . If N is an internal node labeled by op with arity k,
and if the ordered children of N are c1, . . . ck, then Φ(N) is op(Φ(c1), . . . Φ(ck)).
A DAG with root R is said to represent the formula Φ(R). Note that popular
DAG representations of Boolean formulas, such as AIGs, ROBDDs and Boolean
circuits, are special cases of this representation.

A k-ary Boolean function f is a mapping from {0, 1}k to {0, 1}, and can
be viewed as the semantics of a Boolean formula with k variables. We use the
terms “Boolean function” and “Boolean formula” interchangeably, using formu-
las mostly to refer to specifications. Given a Boolean formula ϕ and a Boolean
function f , we use ϕ[y �→ f ] to denote the formula obtained by substituting
every occurrence of the variable y in ϕ with f . The set of variables appearing
in ϕ is called the support of ϕ. If f and g are Boolean functions, we say that f
abstracts g and g refines f , if g → f , where → denotes logical implication.

Given the specification ϕ(X,Y ), our goal is to synthesize the outputs
y1, . . . yn as functions of X. Unlike some earlier work [5,13,22], we do not assume
the validity of ∀X∃Y ϕ(X,Y ). Thus, we allow the possibility that for some val-
ues of X, there may be no value of Y that satisfies ϕ(X,Y ). This allows us to
accommodate some important classes of synthesis problems, viz. integer factor-
ization. If y1 = f1(X), . . . yn = fn(X) is a solution to the synthesis problem,
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we say that (f1(X), . . . fn(X)) realizes Y in ϕ(X,Y ). For notational clarity, we
simply use (f1, . . . fn) instead of (f1(X), . . . fn(X)) when X is clear from the
context.

In general, an instance of the synthesis problem may not have a unique
solution. The following proposition, stated in various forms in the literature,
characterizes the space of all solutions, when we have one output variable y.

Proposition 1. A function f(X) realizes y in ϕ(X, y) iff the following holds:
ϕ[y �→ 1] ∧ ¬ϕ[y �→ 0] → f(X) and f(X) → ϕ[y �→ 1] ∨ ¬ϕ[y �→ 0].

As a corollary, both ϕ[y �→ 1] and ¬ϕ[y �→ 0] realize y in ϕ(X, y). Proposi-
tion 1 can be easily extended when we have multiple output variables in Y . Let

 be a total ordering of the variables in Y , and assume without loss of gen-
erality that y1 
 y2 
 · · · yn. Let

−→
F denote the vector of Boolean functions

(f1(X), . . . fn(X)). For i ∈ {1, . . . n}, define ϕ(i) to be ∃y1 . . . ∃yi−1 ϕ, and ϕ
(i)−→
F

to be (· · · (ϕ(i)[yi+1 �→ fi+1]) · · · )[yn �→ fn], with the obvious modifications for
i = 1 (no existential quantification) and i = n (no substitution). The following
proposition, once again implicit in the literature, characterizes the space of all
solutions

−→
F that realize Y in ϕ(X,Y ).

Proposition 2. The function vector
−→
F = (f1(X), . . . fn(X)) realizes Y =

(y1, . . . yn) in ϕ(X,Y ) iff the following holds for every i ∈ {1, . . . n}:
ϕ
(i)−→
F

[yi �→ 1] ∧ ¬ϕ
(i)−→
F

[yi �→ 0] → fi(X), and fi(X) → ϕ
(i)−→
F

[yi �→ 1] ∨ ¬ϕ
(i)−→
F

[yi �→ 0].

Propositions 1 and 2 are effectively used in [11,12,15,29] to sequentially syn-
thesize y1, . . . yn as functions of X. Specifically, output y1 is first synthesized
as a function g1(X, y2, . . . yn). This is done by treating y1 as the sole output
and X ∪ {y2, . . . yn} as the inputs in ϕ(X,Y ). By substituting g1 for y1 in ϕ,
we obtain ϕ(2) ≡ ∃y1ϕ(X,Y ). Output y2 can then be synthesized as a function
g2(X, y3, . . . yn) by treating y2 as the sole output and X ∪ {y3, . . . yn} as the
inputs in ϕ(2). Substituting g2 for y2 in ϕ(2) gives ϕ(3) ≡ ∃y1∃y2 ϕ(X,Y ). This
process is then repeated until we obtain yn as a function gn(X). The desired
functions f1(X), . . . fn(X) realizing y1, . . . yn can now be obtained by letting
fn(X) be gn(X), and fi(X) be (· · · (gi[yi+1 �→ fi+1(X)]) · · · )[yn �→ fn(X)], for
all i from n − 1 down to 1. Thus, given ϕ(X,Y ), it suffices to obtain (g1, . . . gn),
where gi has support X ∪ {yi+1, . . . yn}, in order to solve the synthesis problem.
We therefore say that (g1, . . . gn) effectively realizes Y in ϕ(X,Y ), and focus on
obtaining (g1, . . . gn).

Proposition 1 implies that for every i ∈ {1, . . . n}, the function gi ≡ ϕ(i)[yi �→
1] realizes yi in ϕ(i). With this choice for gi, it is easy to see that ∃yi ϕ(i) (or
ϕ(i+1)) can be obtained as ϕ(i)[yi �→ gi] = ϕ(i)[yi �→ ϕ(i)[yi �→ 1]]. While synthe-
sis using quantifier elimination by such self-substitution [11] has been shown to
scale for certain classes of specifications with pre-determined optimized variable
orders, our experience shows that this incurs significant overheads for general
specifications with unknown “good” variable orders. An alternative technique for
synthesis from factored specification was proposed by John et al. [15], in which
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initial abstractions of g1, . . . gn are first computed quickly, and then a CEGAR-
style [9] loop is used to refine these abstractions to correct Skolem functions. We
use John et al.’s refinement technique as a black-box module in our work; more
on this is discussed in Sect. 3.1.

Definition 1. Given a specification ϕ(X,Y ), we define Δyi
(ϕ) to be the formula

(¬∃y1 . . . yi−1 ϕ) [yi �→ 0], and Γyi
(ϕ) to be the formula (¬∃y1 . . . yi−1 ϕ) [yi �→

1], for all i ∈ {1, . . . n}1. We also define
−→
Δ(ϕ) and

−→
Γ (ϕ) to be the vectors

(Δy1(ϕ), . . . Δyn
(ϕ)) and (Γy1(ϕ), . . . Γyn

(ϕ)) respectively.

If N is a node in the DAG representation of the specification, we abuse notation
and use Δyi

(N) to denote Δyi
(Φ(N)), and similarly for Γyi

(N),
−→
Δ(N) and−→

Γ (N). Furthermore, if both Y and N are clear from the context, we use Δi, Γi,−→
Δ and

−→
Γ instead of Δyi

(N), Γyi
(N),

−→
Δ(N) and

−→
Γ (N), respectively. It is easy

to see that the supports of both Γi and Δi are (subsets of) X ∪ {yi+1, . . . yn}.
Furthermore, it follows from Definition 1 that whenever Γi (resp. Δi) evaluates
to 1, if the output yi has the value 1 (resp. 0), then ϕ must evaluate to 0.
Conversely, if Γi (resp. Δi) evaluates to 0, it doesn’t hurt (as far as satisfiability
of ϕ(X,Y ) is concerned) to assign the value 1 (resp. 0) to output yi. This suggests
that both ¬Γi and Δi suffice to serve as the function gi(X, yi+1, . . . yn) when
synthesizing functions for multiple output variables. The following proposition,
adapted from [15], follows immediately, where we have abused notation and used
¬−→

Γ to denote (¬Γ1, . . . ¬Γn).

Proposition 3. Given a specification ϕ(X,Y ), both
−→
Δ and ¬−→

Γ effectively real-
ize Y in ϕ(X,Y ).

Proposition 3 shows that it suffices to compute
−→
Δ (or

−→
Γ ) from ϕ(X,Y ) in order

to solve the synthesis problem. In the remainder of the paper, we show how to
achieve this compositionally and in parallel by first computing refinements of
Δi (resp. Γi) for all i ∈ {1, . . . n}, and then using John et al.’s CEGAR-based
technique [15] to abstract them to the desired Δi (resp. Γi). Throughout the
paper, we use δi and γi to denote refinements of Δi and Γi respectively.

3 Exploiting Compositionality

Given a specification ϕ(X,Y ), one way to synthesize y1, . . . yn is to decom-
pose ϕ(X,Y ) into sub-specifications, solve the synthesis problems for the sub-
specifications in parallel, and compose the solutions to the sub-problems to
obtain the overall solution. A DAG representation of ϕ(X,Y ) provides a natural
recursive decomposition of the specification into sub-specifications. Hence, the
key technical question relates to compositionality: how do we compose solutions
to synthesis problems for sub-specifications to obtain a solution to the synthesis
problem for the overall specification? This problem is not easy, and no state-of-
the-art tool for Boolean functional synthesis uses such compositional reasoning.
1 In [15], equivalent formulas were called Cb0yi(ϕ) and Cb1yi(ϕ) respectively.
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Our compositional solution to the synthesis problem is best explained in
three steps. First, for a simple, yet representationally complete, class of DAGs
representing ϕ(X,Y ), we present a lemma that allows us to do compositional
synthesis at each node of such a DAG. Next, we show how to use this lemma to
design a parallel synthesis algorithm. Finally, we extend our lemma, and hence
the scope of our algorithm, to significantly more general classes of DAGs.

3.1 Compositional Synthesis in AND-OR DAGs

For simplicity of exposition, we first consider DAGs with internal nodes labeled
by only AND and OR operators (of arbitrary arity). Figure 1 shows an example
of such a DAG. Note that this class of DAGs is representationally complete for
Boolean specifications, since every specification can be expressed in negation
normal form (NNF). In the previous section, we saw that computing Δi(ϕ) or
Γi(ϕ) for all i in {1, . . . n} suffices for purposes of synthesis. The following lemma
shows the relation between Δi and Γi at an internal node N in the DAG and
the corresponding formulas at the node’s children, say c1, . . . ck.

Lemma 1 (Composition Lemma). Let Φ(N) = op(Φ(c1), . . . , Φ(ck)), where
op = ∨ or op = ∧. Then, for each 1 ≤ i ≤ n:

⎛
⎝

k∧
j=1

Δi(cj)

⎞
⎠ ↔ Δi(N) and

⎛
⎝

k∧
j=1

Γi(cj)

⎞
⎠ ↔ Γi(N) if op = ∨ (1)

⎛
⎝

k∨
j=1

Δi(cj)

⎞
⎠ → Δi(N) and

⎛
⎝

k∨
j=1

Γi(cj)

⎞
⎠ → Γi(N) if op = ∧ (2)

The proof of this lemma can be found in [2]. Thus, if N is an OR-node,
we obtain Δi(N) and Γi(N) directly by conjoining Δi and Γi at its children.
However, if N is an AND-node, disjoining the Δi and Γi at its children only gives
refinements of Δi(N) and Γi(N) (see Eq. (2)). Let us call these refinements δi(N)
and γi(N) respectively. To obtain Δi(N) and Γi(N) exactly at AND-nodes, we
must use the CEGAR technique developed in [15] to iteratively abstract δi(N)
and γi(N) obtained above. More on this is discussed below.

A CEGAR step involves constructing, for each i from 1 to n, a Boolean
error formula Errδi (resp. Errγi

) such that the error formula is unsatisfiable iff
δi(N) ↔ Δi(N) (resp. γi(N) ↔ Γi(N)). A SAT solver is then used to check
the satisfiability of the error formula. If the formula is unsatisfiable, we are
done; otherwise the satisfying assignment can be used to further abstract the
respective refinement. This check-and-abstract step is then repeated in a loop
until the error formulas become unsatisfiable. Following the approach outlined
in [15], it can be shown that if we use Errδi ≡ ¬δi ∧ ∧i

j=1 (yj ↔ δj) ∧ ¬ϕ

and Errγi
≡ ¬γi ∧ ∧i

j=1 (yj ↔ ¬γj) ∧ ¬ϕ, and perform CEGAR in order
from i = 1 to i = n, it suffices to gives us Δi and Γi. For details of the CEGAR
implementation, the reader is referred to [15]. The above discussion leads to
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a straightforward algorithm Compute (shown as Algorithm 1) that computes−→
Δ(N) and

−→
Γ (N) for a node N , using

−→
Δ(cj) and

−→
Γ (cj) for its children cj .

Here, we have assumed access to a black-box function Perform Cegar that
implements the CEGAR step.

Algorithm 1. Compute(Node N)

Input: A DAG Node N labelled either AND or OR

Precondition: Children of N , if any, have their
−→
Δ and

−→
Γ computed.

Output:
−→
Δ(N),

−→
Γ (N)

1 if N is a leaf // Φ(N) is a literal/constant; use Definition 1

2 then
3 for all yi ∈ Y , Δi(N) = ¬∃y1 . . . yi−1(Φ(N))[yi �→ 0];
4 for all yi ∈ Y , Γi(N) = ¬∃y1 . . . yi−1(Φ(N))[yi �→ 1];

5 else
// N is an internal node; let its children be c1, . . . ck

6 if N is an OR-node then
7 for each yi ∈ Y do
8 Δi(N) := Δi(c1) ∧ Δi(c2) . . . ∧ Δi(ck);
9 Γi(N) := Γi(c1) ∧ Γi(c2) . . . ∧ Γi(ck);

10 if N is an AND-node then
11 for each yi ∈ Y do
12 δi(N) := Δi(c1) ∨ Δi(c2) . . . ∨ Δi(ck); /* δi(N) → Δi(N) */

13 γi(N) := Γi(c1) ∨ Γi(c2) . . . ∨ Γi(ck); /* γi(N) → Γi(N) */

14

(−→
Δ(N),

−→
Γ (N)

)
= Perform Cegar(N, (δi(N), γi(N))yi∈Y );

15 return
(−→

Δ(N),
−→
Γ (N)

)
;

3.2 A Parallel Synthesis Algorithm

The DAG representation of ϕ(X,Y ) gives a natural, recursive decomposition of
the specification, and also defines a partial order of dependencies between the
corresponding synthesis sub-problems. Algorithm Compute can be invoked in
parallel on nodes in the DAG that are not ordered w.r.t. this partial order, as
long as Compute has already been invoked on their children. This suggests a
simple parallel approach to Boolean functional synthesis. Algorithm ParSyn,
shown below, implements this approach, and is motivated by a message-passing
architecture. We consider a standard manager-worker configuration, where one
out of available m cores acts as the manager, and the remaining m − 1 cores act
as workers. All communication between the manager and workers is assumed to
happen through explicit send and receive primitives.

The manager uses a queue Q of ready-to-process nodes. Initially, Q is ini-
tialized with the leaf nodes in the DAG, and we maintain the invariant that all
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Algorithm 2. ParSyn
Input: AND-OR DAG with root Rt representing ϕ(X, Y ) in NNF form
Output: (g1, . . . gn) that effectively realize Y in ϕ(X, Y )

/* Algorithm for Manager */

1 Queue Q ;
/* Invariant: Q has nodes that can be processed in parallel, i.e.,

leaves or nodes whose children have their
−→
Δ,

−→
Γ computed. */

2 Insert all leaves of DAG into Q;
3 while all DAG nodes not processed do
4 while a worker W is idle and Q is not empty do
5 Node N := Q.front();
6 send node N for processing to W ;

7 if N has children c1, . . . ck then send
−→
Δ(cj),

−→
Γ (cj) for 1 ≤ j ≤ k to W ;

8 wait until some worker W ′ processing node N ′ becomes free;

9 receive
(−→

Δ,
−→
Γ
)

from W ′, and store as
(−→

Δ(N ′),
−→
Γ (N ′)

)
;

10 Mark node N ′ as processed;
11 for each parent node N ′′ of N ′ do
12 if all children of N ′′ are processed then insert N ′′ into Q

/* All DAG nodes are processed; return ¬−→
Γ or

−→
Δ from root Rt */

13 return (¬Γ1(Rt), . . . ¬Γn(Rt)) // or alternatively (Δ1(Rt), . . . Δn(Rt))

/* Algorithm for Worker W */

14 receive node N to process, and
−→
Δ(cj),

−→
Γ (cj) for every child cj of N , if any;

15

(−→
Δ,

−→
Γ
)

:= Compute(N) ;

16 send
(−→

Δ,
−→
Γ
)

to Manager ;

nodes in Q can be processed in parallel. If there is an idle worker W and if Q is
not empty, the manager assigns the node N at the front of Q to worker W for
processing. If N is an internal DAG node, the manager also sends

−→
Δ(cj) and−→

Γ (cj) for every child cj of N to W . If there are no idle workers or if Q is empty,
the manager waits for a worker, say W ′, to finish processing its assigned node,
say N ′. When this happens, the manager stores the result sent by W ′ as

−→
Δ(N ′)

and
−→
Γ (N ′). It then inserts one or more parents N ′′ of N ′ in the queue Q, if all

children of N ′′ have been processed. The above steps are repeatedly executed
at the manager until all DAG nodes have been processed. The job of a worker
W is relatively simple: on being assigned a node N , and on receiving

−→
Δ(cj) and−→

Γ (cj) for all children cj of N , it simply executes Algorithm Compute on N

and returns
(−→

Δ(N),
−→
Γ (N)

)
.

Note that Algorithm ParSyn is guaranteed to progress as long as all workers
complete processing the nodes assigned to them in finite time. The partial order
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of dependencies between nodes ensures that when all workers are idle, either all
nodes have already been processed, or at least one unprocessed node has

−→
Δ and−→

Γ computed for all its children, if any.

3.3 Extending the Composition Lemma and Algorithms

So far, we have considered DAGs in which all internal nodes were either AND- or
OR-nodes. We now extend our results to more general DAGs. We do this by gen-
eralizing the Composition Lemma to arbitrary Boolean operators. Specifically,
given the refinements δi(cj) and γi(cj) at all children cj of a node N , we show
how to compose these to obtain δi(N) and γi(N), when N is labeled by an arbi-
trary Boolean operator. Note that the CEGAR technique discussed in Sect. 3.1
can be used to abstract the refinements δi and γi to Δi and Γi respectively, at
any node of interest. Therefore, with our generalized Composition Lemma, we
can use compositional synthesis for specifications represented by general DAGs,
even without computing Δi and Γi exactly at all DAG nodes. This gives an
extremely powerful approach for parallel, compositional synthesis.

Let Φ(N) = op(Φ(c1), . . . Φ(cr)), where op is an r-ary Boolean operator. For
convenience of notation, we use ¬N to denote ¬Φ(N), and similarly for other
nodes, in the subsequent discussion. Suppose we are given δi(cj), γi(cj), δi(¬cj)
and γi(¬cj), for 1 ≤ j ≤ r and for 1 ≤ i ≤ n. We wish to compose these
appropriately to compute δi(N), γi(N), δi(¬N) and γi(¬N) for 1 ≤ i ≤ n. Once
we have these refinements, we can adapt Algorithm 1 to work for node N , labeled
by an arbitrary Boolean operator op.

To understand how composition works for op, consider the formula
op(z1, . . . zr), where z1, . . . zr are fresh Boolean variables. Clearly, Φ(N) can be
viewed as (· · · (op(z1, . . . zr)[z1 �→ Φ(c1)]) · · · )[zr �→ Φ(cr)]. For simplicity of nota-
tion, we write op instead of op(z1, . . . , zr) in the following discussion. W.l.o.g.,
let z1 ≺ z2 ≺ · · · ≺ zr be a total ordering of the variables {z1, . . . zr}. Given
≺, suppose we compute the formulas δzl

(op), γzl
(op), δzl

(¬op) and γzl
(¬op) in

negation normal form (NNF), for all l ∈ {1, . . . r}. Note that these formulas have
support {zl+1, . . . zr}, and do not have variables in X ∪ Y in their support. We
wish to ask if we can compose these formulas with δi(cj), γi(cj), δi(¬cj) and
γi(¬cj) for 1 ≤ j ≤ r to compute δi(N), γi(N), δi(¬N) and γi(¬N), for all
i ∈ {1, . . . n}. It turns out that we can do this.

Recall that in NNF, negations appear (if at all) only on literals. Let Υl,op be
the formula obtained by replacing every literal ¬zs in the NNF of γzl

(op) with a
fresh variable zs. Similarly, let Ωl,op be obtained by replacing every literal ¬zs in
the NNF of δzl

(op) with the fresh variable zs. The definitions of Υl,¬op and Ωl,¬op

are similar. Replacing ¬zs by a fresh variable zs allows us to treat the literals zs

and ¬zs independently in the NNF of γzl
(op) and δzl

(op). The ability to treat
these independently turns out to be important when formulating the generalized
Composition Lemma. Let (Υl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])

r
s=l+1 denote the for-

mula obtained by substituting δi(¬cs) for zs and δi(cs) for zs, for every s ∈ {l +
1, . . . r}, in Υl,op. The interpretation of (Ωl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])

r
s=l+1 is

analogous. Our generalized Composition Lemma can now be stated as follows.
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Lemma 2 (Generalized Composition Lemma). Let Φ(N) = op(Φ(c1), . . .
Φ(cr)), where op is an r-ary Boolean operator. For each 1 ≤ i ≤ n and 1 ≤ l ≤ r:

1. δi(cl) ∧ (Ωl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])
r
s=l+1 → Δi(N)

2. δi(¬cl) ∧ (Υl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])
r
s=l+1 → Δi(N)

3. γi(cl) ∧ (Ωl,op [zs �→ γi(¬cs)] [zs �→ γi(cs)])
r
s=l+1 → Γi(N)

4. γi(¬cl) ∧ (Υl,op [zs �→ γi(¬cs)] [zs �→ γi(cs)])
r
s=l+1 → Γi(N)

If we replace op by ¬op above, we get refinements of Δi(¬N) and Γi(¬N).

The reader is referred to [2] for a proof of Lemma2. We simply illus-
trate the idea behind the lemma with an example here. Suppose Φ(N) =
Φ(c1) ∧ ¬Φ(c2) ∧ (¬Φ(c3) ∨ Φ(c4)), where each Φ(cj) is a Boolean function
with support X ∪ {y1, . . . yn}. We wish to compute a refinement of Δi(N),
using refinements of Δi(cj) and Δi(¬cj) for j ∈ {1, . . . 4}. Representing
N as op(c1, c2, c3, c4), let z1, . . . z4 be fresh Boolean variables, not in X ∪
{y1, . . . yn}; then op(z1, z2, z3, z4) = z1 ∧ ¬z2 ∧ (¬z3 ∨ z4). For ease of expo-
sition, assume the ordering z1 ≺ z2 ≺ z3 ≺ z4. By definition, Δz2(op) =
(¬∃z1 (z1 ∧ ¬z2 ∧ (¬z3 ∨ z4))) [z2 �→ 0] = z3 ∧ ¬z4, and suppose δz2(op) =
Δz2(op). Replacing ¬z4 by z4, we then get Ω2,op = z3 ∧ z4.

Recalling the definition of δz2(·), if we set z3 = 1, z4 = 0 and z2 = 0, then
op must evaluate to 0 regardless of the value of z1. By substituting δi(¬c3) for
z3 and δi(c4) for z4 in Ω2,op, we get the formula δi(¬c3) ∧ δi(c4). Denote this
formula by χ and note that its support is X ∪ {yi+1, . . . yn}. Note also from
the definition of δi(·) that if χ evaluates to 1 for some assignment of values to
X ∪ {yi+1, . . . yn} and if yi = 0, then ¬Φ(c3) evaluates to 0 and Φ(c4) evaluates
to 0, regardless of the values of y1, . . . yi−1. This means that z3 = 1 and z4 = 0,
and hence δz2(op) = 1. If z2 (or Φ(c2)) can also be made to evaluate to 0 for
the same assignment of values to X ∪ {yi, yi+1, . . . yn}, then N = op(c1, . . . cr)
must evaluate to 0, regardless of the values of {y1, . . . yi−1}. Since yi = 0, values
assigned to X∪{yi+1, . . . yn} must therefore be a satisfying assignment of Δi(N).
One way of having Φ(c2) evaluate to 0 is to ensure that Δi(c2) evaluates to 1 for
the same assignment of values to X ∪ {yi+1, . . . yn} that satisfies χ. Therefore,
we require the assignment of values to X ∪ {yi+1, . . . yn} to satisfy χ ∧ Δi(c2),
or even χ ∧ δi(c2). Since χ = δi(¬c3) ∧ δi(c4), we get δi(c2) ∧ δi(¬c3) ∧ δi(c4) as
a refinement of Δi(N).

Applying the Generalized Composition Lemma: Lemma 2 suggests a way of com-
positionally obtaining δi(N), γi(N), δi(¬N) and γi(¬N) for an arbitrary Boolean
operator op. Specifically, the disjunction of the left-hand sides of implications (1)
and (2) in Lemma 2, disjoined over all l ∈ {1, . . . r} and over all total orders (≺)
of {z1, . . . zr}, gives a refinement of Δi(N). A similar disjunction of the left-hand
sides of implications (3) and (4) in Lemma 2 gives a refinement of Γi(N). The
cases of Δi(¬N) and Γi(¬N) are similar. This suggests that for each operator op
that appears as label of an internal DAG node, we can pre-compute a template
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of how to compose δi and γi at the children of the node to obtain δi and γi at
the node itself. In fact, pre-computing this template for op = ∨ and op = ∧ by
disjoining as suggested above, gives us exactly the left-to-right implications, i.e.,
refinements of Δi(N) and Γi(N), as given by Lemma 1. We present templates
for some other common Boolean operators like if-then-else in [2].

Once we have pre-computed templates for composing δi and γi at children of
a node N to get δi(N) and γi(N), we can use these pre-computed templates in
Algorithm 1, just as we did for AND-nodes. This allows us to apply compositional
synthesis on general DAG representations of Boolean relational specifications.

Optimizations Using Partial Computations: Given δi and γi at children of a node
N , we have shown above how to compute δi(N) and γi(N). To compute Δi(N)
and Γi(N) exactly, we can use the CEGAR technique outlined in Sect. 3.1. While
this is necessary at the root of the DAG, we need not compute Δi(N) and Γi(N)
exactly at each intermediate node. In fact, the generalized Composition Lemma
allows us to proceed with δi(N) and γi(N). This suggests some optimizations:
(i) Instead of using the error formulas introduced in Sect. 3.1, that allow us to
obtain Δi(N) and Γi(N) exactly, we can use the error formula used in [15].
The error formula of [15] allows us to obtain some Skolem function for yi (not
necessarily Δi(N) or ¬Γi(N)) using the sub-specification Φ(N) corresponding
to node N . We have found CEGAR based on this error formula to be more
efficient in practice, while yielding refinements of Δi(N) and Γi(N). In fact, we
use this error formula in our implementation. (ii) We can introduce a timeout
parameter, such that

−→
Δ(N),

−→
Γ (N) are computed exactly at each internal node

until timeout happens. Subsequently, for the nodes still under process, we can
simply combine δi and γi at their children using our pre-computed composition
templates, and not invoke CEGAR at all. The only exception to this is at the
root node of the DAG where CEGAR must be invoked.

4 Experimental Results

Experimental Methodology. We have implemented Algorithm 2 with the
error formula from [15] used for CEGAR in Algorithm 1 (in function Per-
form Cegar), as described at the end of Sect. 3.3. We call this implementation
ParSyn in this section, and compare it with the following algorithms/tools: (i)
CSk: This is based on the sequential algorithm for conjunctive formulas, pre-
sented in [15]. For non-conjunctive formulas, the algorithm in [15], and hence
CSk, reduces to [12,29]. (ii) RSynth: The RSynth tool as described in [11]. (iii)
Bloqqer: As prescribed in [22], we first generate special QRAT proofs using the
preprocessing tool bloqqer, and then generate Boolean function vectors from the
proofs using the qrat-trim tool.

Our implementation of ParSyn, available online at [26], makes extensive use
of the ABC [19] library to represent and manipulate Boolean functions as AIGs.
We also use the default SAT solver provided by ABC, which is a variant of
MiniSAT. We present our evaluation on three different kinds of benchmarks.
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1. Disjunctive Decomposition Benchmarks: Similar to [15], these benchmarks
were generated by considering some of the larger sequential circuits in the
HWMCC10 benchmark suite, and formulating the problem of disjunctively
decomposing each circuit into components as a problem of synthesizing a vec-
tor of Boolean functions. Each generated benchmark is of the form ∃Y ϕ(X,Y )
where ∃X(∃Y ϕ(X,Y )) is true. However, unlike [15], where each benchmark
(if not already a conjunction of factors) had to be converted into factored
form using Tseitin encoding (which introduced additional variables), we have
used these benchmarks without Tseitin encoding.

2. Arithmetic Benchmarks: These benchmarks were taken from the work
described in [11]. Specifically, the benchmarks considered are floor, ceiling,
decomposition, equalization and intermediate (see [11] for details).

3. Factorization Benchmarks: We considered the integer factorization problem
for different bit-widths, as discussed in Sect. 1.

For each arithmetic and factorization benchmark, we first specified the prob-
lem instance as an SMT formula and then used Boolector [24] to generate the
Boolean version of the benchmark. For each arithmetic benchmark, three vari-
ants were generated by varying the bit-width of the arguments of arithmetic
operators; specifically, we considered bit-widths of 32, 128 and 512. Similarly,
for the factorization benchmark, we generated four variants, using 8, 10, 12 and
16 for the bit-width of the product. Further, as Bloqqer requires the input to
be in qdimacs format and RSynth in cnf format, we converted each benchmark
into qdimacs and cnf formats using Tseitin encoding [30]. All benchmarks and
the procedure by which we generated them are detailed in [26].

Variable Ordering: We used the same ordering of variables for all algorithms. For
each benchmark, the variables are ordered such that the variable which occurs in
the transitive fan-in of the least number of nodes in the AIG representation of the
specification, appears at the top. For RSynth this translated to an interleaving
of most of the input and output variables.

Machine Details: All experiments were performed on a message-passing clus-
ter, where each node had 20 cores and 64 GB main memory, each core being a
2.20 GHz Intel Xeon processor. The operating system was Cent OS 6.5. For CSk,
Bloqqer, and RSynth, a single core on the cluster was used. For all comparisons,
ParSyn was executed on 4 nodes using 5 cores each, so that we had both intra-
node and inter-node communication. The maximum time given for execution
was 3600 s, i.e., 1 h. We also restricted the total amount of main memory (across
all cores) to be 16 GB. The metric used to compare the different algorithms was
the time taken to synthesize Boolean functions.

Results. Our benchmark suite consisted of 27 disjunctive decomposition bench-
marks, 15 arithmetic benchmarks and 4 factorization benchmarks. These bench-
marks are fairly comprehensive in size i.e., the number of AIG nodes (|SZ|)
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in the benchmark, and the number of variables (|Y |) for which Boolean func-
tions are to be synthesized. Amongst disjunctive decomposition benchmarks,
|SZ| varied from 1390 to 58752 and |Y | varied from 21 to 205. Amongst the
arithmetic benchmarks, |SZ| varied from 442 to 11253 and |Y | varied from 31
to 1024. The factorization benchmarks are the smallest and the most complex
of the benchmarks, with |SZ| varying from 122 to 502 and |Y | varying from 8
to 16.

We now present the performance of the various algorithms. On 4 of the 46
benchmarks, none of the tools succeeded. Of these, 3 belonged to the intermediate
problem type in the arithmetic benchmarks, and the fourth one was the 16 bit
factorization benchmark.
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Fig. 2. Legend: Ar: arithmetic, Fa: factorization, Dd: disjunctive decomposition. FL:
benchmarks for which the corresponding algorithm was unsuccessful.

Effect of the Number of Cores. For this experiment, we chose 5 of the larger
benchmarks. Of these, two benchmarks belonged to the disjunctive decomposi-
tion category, two belonged to the arithmetic benchmark category and one was
the 12 bit factorization benchmark. The number of cores was varied from 2 to 25.
With 2 cores, ParSyn behaves like a sequential algorithm with one core acting as
the manager and the other as the worker with all computation happening at the
worker core. Hence, with 2 cores, we see the effect of compositionality without
parallelism. For number of cores > 2, the number of worker cores increase, and
the computation load is shared across the worker cores.

Figure 2a shows the results of our evaluation. The topmost points indicated
by FL are instances for which ParSyn timed out. We can see that, for all 5
benchmarks, the time taken to synthesize Boolean function vectors when the
number of cores is 2 is considerable; in fact, ParSyn times out on three of the
benchmarks. When we increase the number of cores we observe that (a) by
synthesizing in parallel, we can now solve benchmarks for which we had timed
out earlier, and (b) speedups of about 4–5 can be obtained with 5–15 cores.
From 15 cores to 25 cores, the performance of the algorithm, however, is largely
invariant and any further increase in cores does not result in further speed up.
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To understand this, we examined the benchmarks and found that their AIG
representations have more nodes close to the leaves than to the root (similar
to the DAG in Fig. 1). The time taken to process a leaf or a node close to a
leaf is typically much less than that for a node near the root. Furthermore, the
dependencies between the nodes close to the root are such that at most one or
two nodes can be processed in parallel leaving most of the cores unutilized. When
the number of cores is increased from 2 to 5–15, the leaves and the nodes close
to the leaves get processed in parallel, reducing the overall time taken by the
algorithm. However, the time taken to process the nodes close to the root remains
more or less the same and starts to dominate the total time taken. At this point,
even if the number of cores is further increased, it does not significantly reduce
the total time taken. This behaviour limits the speed-ups of our algorithm. For
the remaining experiments, the number of cores used for ParSyn was 20.

ParSyn vs CSk: As can be seen from Fig. 2b, CSk ran successfully on only
12 of the 46 benchmarks, whereas ParSyn was successful on 39 benchmarks,
timing out on 6 benchmarks and running out of memory on 1 benchmark. Of
the benchmarks that CSk was successful on, 9 belonged to the arithmetic cate-
gory, 2 to the factorization and 1 to the disjunctive decomposition category. On
further examination, we found that factorization and arithmetic benchmarks
(except the intermediate problems) were conjunctive formulae whereas disjunc-
tive decomposition benchmarks were arbitrary Boolean formulas. Since CSk has
been specially designed to handle conjunctive formulas, it is successful on some
of these benchmarks. On the other hand, since disjunctive decomposition bench-
marks are not conjunctive, CSk treats the entire formula as one factor, and the
algorithm reduces to [12,29]. The performance hit is therefore not surprising; it
has been shown in [15] and [11] that the algorithms of [12,29] do not scale to
large benchmarks that are not conjunctions of small factors. In fact, among the
disjunctive decomposition benchmarks, CSk was successful on only the smallest
one.

ParSyn vs RSynth: As seen in Fig. 3a, RSynth was successful only on 3 of the
46 benchmarks; it timed out on 37 and ran out of memory on 6 benchmarks.
The 3 benchmarks that RSynth was successful on were the smaller factorization
benchmarks. Note that the arithmetic benchmarks used in [11] are semantically
the same as the ones used in our experiments. In [11], custom variable orders
were used to construct the ROBDDs, which resulted in compact ROBDDs. In
our case, we use the variable ordering heuristic mentioned earlier, and include the
considerable time taken to build BDDs from cnf representation. As mentioned in
Sect. 1, if we know a better variable ordering, then the time taken can potentially
reduce. However, we may not know the optimal variable order for an arbitrary
specification in general. We also found the memory footprint of RSynth to be
higher as indicated by the memory-outs. This is not surprising, as RSynth uses
BDDs to represent Boolean formulas and it is well-known that BDDs can have
large memory requirements.
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Fig. 3. Legend: Ar: arithmetic, Fa: factorization, Dd: disjunctive decomposition. FL:
benchmarks for which the corresponding algorithm was unsuccessful.

ParSyn vs Bloqqer: Since Bloqqer cannot synthesize Boolean functions for for-
mulas wherein ∀X∃Y ϕ(X,Y ) is not valid, we restricted our comparison to only
the disjunctive decomposition and arithmetic benchmarks, totalling 42 in num-
ber. From Fig. 3b, we can see that Bloqqer successfully synthesizes Boolean func-
tions for 25 of the 42 benchmarks. For several benchmarks for which it is success-
ful, it outperforms ParSyn. In line 14 of Algorithm1, Perform Cegar makes
extensive use of the SAT solver, and this is reflected in the time taken by ParSyn.
However, for the remaining 17 benchmarks, Bloqqer gave a Not Verified message
indicating that it could not synthesize Boolean functions for these benchmarks.
In comparison, ParSyn was successful on most of these benchmarks.

Effect of Timeouts on ParSyn. Finally, we discuss the effect of the time-
out optimization discussed in Sect. 3.3. Specifically, for 60 s (value set through
a timeout parameter), starting from the leaves of the AIG representation of a
specification, we synthesize exact Boolean functions for DAG nodes. After time-
out, on the remaining intermediate nodes, we do not invoke the CEGAR step at
all, except at the root node of the AIG.

This optimization enabled us to handle 3 more benchmarks, i.e., ParSyn with
this optimization synthesized Boolean function vectors for all the equalization
benchmarks (in <340 s). Interestingly, ParSyn without timeouts was unable to
solve these problems. This can be explained by the fact that in these bench-
marks many internal nodes required multiple iterations of the CEGAR loop to
compute exact Boolean functions, which were, however, not needed to compute
the solution at the root node.

5 Conclusion and Future Work

In this paper, we have presented the first parallel and compositional algorithm
for complete Boolean functional synthesis from a relational specification. A key
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feature of our approach is that it is agnostic to the semantic variabilities of the
input, and hence applies to a wide variety of benchmarks. In addition to the dis-
junctive decomposition of graphs and the arithmetic operation benchmarks, we
considered the combinatorially hard problem of factorization and attempted to
generate a functional characterization for it. We found that our implementation
outperforms existing tools in a variety of benchmarks.

There are many avenues to extend our work. First, the ideas for composi-
tional synthesis that we develop in this paper could potentially lead to parallel
implementations of other synthesis tools, such as that described in [11]. Next,
the factorization problem can be generalized to synthesis of inverse functions
for classically hard one-way functions, as long as the function can be described
efficiently by a circuit/AIG. Finally, we would like to explore improved ways
of parallelizing our algorithm, perhaps exploiting features of specific classes of
problems.
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