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Abstract. This paper considers the problem of assumptions refinement
in the context of unrealizable specifications for reactive systems. We
propose a new counterstrategy-guided synthesis approach for GR(1)
specifications based on Craig’s interpolants. Our interpolation-based
method identifies causes for unrealizability and computes assumptions
that directly target unrealizable cores, without the need for user input.
Thereby, we discuss how this property reduces the maximum number of
steps needed to converge to realizability compared with other techniques.
We describe properties of interpolants that yield helpful GR(1) assump-
tions and prove the soundness of the results. Finally, we demonstrate
that our approach yields weaker assumptions than baseline techniques.
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1 Introduction

Constructing formal specifications that capture user requirements precisely and
from which implementations can be successfully derived is a difficult task [25].
Their imprecision often results from the conception of over-ideal systems, i.e.,
where the environment always behaves as expected [2,26]. Thus one of the chal-
lenges in building correct specifications is identifying sufficient assumptions over
the environment under which a system would always be able to guarantee their
satisfaction, in other words making a specification realizable.

This paper presents a new technique for automatically synthesizing assump-
tions over an adversarial environment for realizability assurance. More specifi-
cally, we develop a novel counterstrategy-guided synthesis procedure that itera-
tively generates assumption refinements, expressed in a fragment of Linear Tem-
poral Logic (LTL) called Generalized Reactivity (1) (GR(1) for short), based on
logical interpolation. Craig interpolants characterize automatically computable
explanations for the inconsistency between Boolean formulae, in their shared
alphabet. We exploit this feature to construct expressions that exrplain why a
counterstrategy, and hence the environment, violates a guarantee, and whose
negations form assumptions.

We demonstrate in our case study applications that our approach directly tar-
gets unrealizable cores, in the sense that by adding the assumptions returned at
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each iteration, a specific subset of minimally unfulfillable guarantees [13] becomes
realizable. Therefore each iteration takes a step closer to realizability. To char-
acterize the scope of our approach we introduce the notion of fully-separable
interpolants and prove the soundness of our computation when interpolants are
fully separable. We further provide a discussion about the complexity of the pro-
posed approach and its convergence, as well as the weakness of our refinements
in comparison with those computed by existing techniques [3,4,27].

2 Related Work

Recent years have seen the development of effective counterstrategy-guided
approaches to GR(1) assumptions refinement, notably [3,4,27]. Nonetheless
those approaches depend significantly on users’ knowledge of the problem domain
and of the cause of unrealizability. The work in [27] requires users to specify a set
of temporal logic templates as formulae with placeholders to be replaced with
Boolean variables. Assumptions are then generated as instantiations of such tem-
plates that eliminate a given counterstrategy. This typically constrains the search
space to only a subset of GR(1) formulae, which do not necessarily address the
cause of unrealizability, and potentially eliminate viable solutions to the realiz-
ability problem. Similarly, the work in [3], although generating such templates
automatically, requires users to provide a subset of variables for template instan-
tiation. Unless the user knows the exact subset of variables that form the cause,
this may yield assumptions that do not target the true cause of unrealizability,
leading to refinements that needlessly over-constrain the environment. Our pro-
posed method instead directly targets counter-strategies and unrealizable cores,
and does not require users to provide variables for constructing refinements.

Other related work on assumption refinement includes those operating
directly on game structures [12]. With regard to the parity game model used
for controller synthesis (such as in [32,33]), the paper defines the concept of
safety assumptions as sets of edges that have to be avoided by the environment,
and the concept of fairness assumptions as sets of edges that have to be traversed
by the environment infinitely often. The work devises an algorithm for finding
minimal edge sets in order to ensure that the controller has a winning strategy.
Our approach instead focuses on synthesizing general declarative temporal asser-
tions whose inclusion has the effect of removing edges from the game structure,
and directly targeting sources of unrealizability. The problem of synthesizing
environment constraints has been tackled in the context of assume-guarantee
reasoning for compositional model checking [15,21,31] to support compositional
verification. In these, assumptions are typically expressed as LTSs and learning
algorithms like £* [5] are used to incrementally refine the environment assump-
tions needed in order to verify the satisfaction of properties.

Craig interpolants have been deployed in the context of abstraction refine-
ment for verification in [18,19]. The differences with our work are in specification
language and overall objective: they seek additional assertions for static analy-
sis of programs, while we look for GR(1) refinements of systems specifications
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to enable their automated synthesis. The authors of [17] use interpolation to
support the extraction of pre- and trigger-conditions of operations within event-
driven systems to enable the ‘satisfaction’ of goals expressed within restricted
fragment of LTL. Though different in objective, approach and class of properties,
our technique can help in identifying specifications operationalizable by [17].

3 Background

Generalized Reactivity (1) Specifications. LTL [29] is a formalism widely
used for specifying reactive systems. The syntax of LTL is defined over a finite
non-empty set of propositional variables V), the logical constants true and false,
Boolean connectives, and operators X (next), G (always), F (eventually), U
(until). Given a set of states @ and a labelling function A : Q — 2V, an LTL
formula ¢ is interpreted over an infinite sequence of states ¢ = ¢gqy... in the stan-
dard way, and its language L£(¢) is the set of (infinite) state valuation sequences
w = A(go)A(q1)... such that w = ¢). We assume that the set V consists of two
disjoint sets: input variables X and output variables ). We will use the expres-
sion B(V) for a boolean expression (i.e., a logical expression without temporal
operators) which uses variables in the set V. We will also denote by XV the set
of expressions obtained by prepending a “next” operator to the variables in V:
this is equivalent to the set of primed versions of such variables [9].

Generalized Reactivity (1) specifications (written GR(1) for short) are a sub-
set of LTL of the form ¢ — ¢° where ¢ represents the assumptions of an
environment and ¢ the guarantees of a controller. The expression ¢/, where
0 € {&, S}, is specified as conjunction of the following: (1) a Boolean formula 9, .,
of the form B(X) if § = £ and B(V) otherwise, representing initial conditions; (2)
a set of LTL formulae ¢9  of the form GB(VUXUX) if § = £ and GB(V UXV)
when 6 = S, representing invariants; and (3) a set of LTL formulae @?m-r of
the form GFB(V) representing fairness conditions. We will sometimes indicate
GR(1) specifications as a tuple (¢€,¢S) with ¢/ = {¢? ..} U{e? }U {go?(m}.

A finite-state Moore transducer is a tuple M = (Q, qo,Z, O, p,d) where Q
is a set of states, qo € @ is the initial state, p : Q@ x T — @ is the transi-
tion function, and § : @ — O is the output function. Given an input sequence
w = igii..., a run of M is the sequence o = ¢oqi... such that ¢xr1 = p(qx,ix)
for all kK > 0. A run ¢ on input sequence w € Z* produces an infinite word
Mw) = (6(qo),%0),(6(q1),41).... The language of a Moore transducer M is
L(M) = {M(w)|lw € I}, i.e., the infinite words generated by a sequence of
inputs and the corresponding outputs over runs of M. A Moore transducer M is
said to satisfy an LTL expression ¢ if £L(M) C L(¢); in this case we also say that
M is a model of ¢ and we denote it as M | ¢. A GR(1) property ¢ is said to
be realizable if there exists an M (representing a controller) such that M [ ¢.

Given a specification (¢, ¢S) that is unrealizable, we say that ¢° C ¢°
is minimally unfulfillable w.r.t. to ¢€ iff the removal of any guarantee g € ¢
makes (¢¢,p°\{g}) realizable [13]. Furthermore, an assumption a € ¢¢ is said
to be unhelpful w.r.t. ¢° if VS C ¢°. (¢, pS) is realizable « (¢€\{a}, ¢°) is
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realizable. It is said to be helpful otherwise. Given a set of minimally unfulfillable
guarantees ¢° w.r.t. ¢F, let ¢ C ¢€ be a set of helpful assumptions for ¢°; the
specification (p®, ) is called an unrealizable core [13].

If a specification ¢ over ¥V = X U )Y is unrealizable, an unrealizable core
(¢%,0°) and an environment strategy (called a counterstrategy) can be
computed [13,23]. A counterstrategy is defined as a Moore transducer
(S, 5init, 2¥, 2% p, §) that satisfies o€ and violates ¢S [4]. It describes the inputs
produced by an admissible environment in response to the output configuration
yielded by the controller in order to force the violation of ¢. The runs of a coun-
terstrategy are called plays. The terms ‘counterstrategy’ and ‘play’ come from
the game-theoretic algorithms used to reason about realizability [3,9,23]. The
transition function p depends only on a subset of the output variables )’ C )
[23]. We define a labelling function X : S — 2¥YY" over states in the counter-
strategy in this way: a propositional variable is in X' (s) if it is asserted in all
the incoming transitions of s, while \'(s) is arbitrary for any s with no incoming
transitions.

Interpolants. Craig interpolation was originally defined for first-order logic
[16] and later for propositional logic [24]. No interpolation theorems have been
proved for the general LTL. Extensions have been proposed recently for LTL
fragments [20,22]. However these do not include GR(1) formulae and therefore
are not applicable in our case. We use interpolation for propositional logic.
Formally, given an unsatisfiable conjunction of formulae o A 3, a Craig inter-
polant [ is a formula that is implied by «, is unsatisfiable in conjunction with
B, and is defined on the common alphabet of o and 3. We write £, to denote
the set of variables that occur in a formula ¢ (also called the alphabet of ¢).

Definition 1 (Interpolant [24]). Let a and 8 be two logical formulae such
that their conjunction a A B is unsatisfiable. Then there exists a third formula
I, called interpolant of a and (3, such that, « — I, I — -3 and L1 C L, N Lg.

An interpolant can be considered as an over-approximation of « that is still
unsatisfiable in conjunction with 3. As stated in Craig’s interpolation theorem,
although an interpolant always exists, it is not unique. Several efficient algo-
rithms have been proposed for interpolation in propositional logics. The result-
ing interpolant depends on the internal strategies of these algorithms (e.g., SAT
solvers, theorem provers). Our approach is based on McMillan’s interpolation
algorithm described in [30] and implemented in MathSAT [14]. In brief, the
algorithm considers a proof by resolution for the unsatisfiability of a A 3.

4 Approach Overview

The general procedure is based on a sequence of realizability checks and coun-
terstrategy computations, in the spirit of [3,27]. A specification (¢, ¢°) is first
checked for realizability. If it is unrealizable, a counterstrategy C' and an unreal-
izable core (p%, %) are computed. The counterstrategy constitutes an example
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of environment behaviours that force the violation of the guarantees of S:
therefore, the assumptions ¢¢ are refined by adding a GR(1) formula which is
inconsistent with the counterstrategy. A set of such formulae ¥ is automati-
cally computed by interpolating (a) the description of an environment behav-
iour in the counterstrategy, given by the assumptions and a sequence of state
labellings in the counterstrategy; and () the guarantees, and by negating the
interpolant. A formula v; € ¥ is added to the original set of assumptions ¢¢ and
the procedure repeats the above steps recursively until realizability is achieved.
Algorithm 1 describes this procedure schematically.

Algorithm 1. CounterstrategyGuidedRefinement procedure

Data: ¢, assumptions

Data: ¢%, guarantees

Result: {1;}, set of alternative assumption refinements such that (Z)g ANy — QSS
is realizable for every i

1 if Satisfiable(¢° — ¢°) € not Realizable(¢® — ¢°) then
2 (¢%,¢%,C) := Counterstrategy (¢, ¢°);

3 ¥ := InterpolationBasedSynthesis(¢°, ¢°, C);

4 foreach v¢; € ¥ do

5 foreach v € CounterstrategyGuided Refinement(¢° Ay, ¢°) do
6 ‘ refinements.add (s A ¥}) ;

7 end

8 end

9 return refinements;
10 else if Satisfiable(¢® — ¢°) & Realizable(¢® — ¢°) then
11 ‘ return {true};
12 else
13 | return {false};

The function InterpolationBasedSynthesis constitutes the core of our
proposal (see Algorithm 2). It takes as inputs an unrealizable core and a coun-
terstrategy and executes the computation of ¥ via interpolation. We give the
details in the following section.

5 Interpolation-Based Synthesis

Each execution of InterpolationBasedSynthesis involves extracting tempo-
ral formulae that are satisfied by a single play of a counterstrategy (henceforth
called counterplay), and obtaining refinements from its negation. It is sufficient
to exclude a single counterplay of a counterstrategy to eliminate the entire coun-
terstrategy from models of the assumption. Reasoning about counterplays has
also some advantages, which are discussed in Sect.8. For the purpose of this
paper, we assume that the procedure ExtractCounterplay (line 1) extracts a
counterplay m¢o at random and consider metrics for selecting one in future work.
A counterplay representing the violation of an initial condition or an invariant
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Algorithm 2. InterpolationBasedSynthesis(¢?, ¢, C)

Data: ¢, environment assumptions (in an unrealizable core)
Data: go‘s, system guarantees (in an unrealizable core)

Data: C, counterstrategy

Result: ¥, alternative assumptions eliminating the counterstrategy

1 mc := ExtractCounterplay(C);

2 u = 0

3 TCu ‘= TC;

4 Yy = 0;

5 stopping_condition := true;

6 repeat

7 [[7C,u, ©5]]:= TranslateCounterplay Assumptions(mc ., ©°);
8 [[¢5]] := TranslateGuarantees(mc,.,p°);

o | I.:= Interpolate([[rc.., 5]}, [loS]);
10 if I, == false or I, is not fully-separable then
11 v = {false};
12 stopping_condition = true;
13 else

14 T (I,) := TranslateInterpolant(nc ., I.);
15 ¥ .= ExtractDisjuncts(—7 (1,,));

16 if mc .y s looping then

17 if ¥ # ¥, 4 then

18 Wold = LT/

19 u = u-+1;
20 mc,u = UnrollCounterplay (mc,u);
21 stopping_condition:= false;
22 else
23 stopping-condition := true;
24 end
25 end
26 end

27 until stopping_condition;
28 return V¥;

guarantee is finite, while that of a fairness guarantee violation ends in a loop
[28]. We call the latter a looping counterplay, and the loop an ending loop.

We distinguish four types of states that may appear in 7¢: (a) the initial state
Sinit — [sinitY. (b) the failing state in a finite counterplay S/ = {sf@i!} (c)
looping states that include the states in ending loop, S0P = {s'°7 .. lmp}
(d) transient states including all states between the initial state and the first
failing state or loop state (exclusive) Sens = {girans . glransi With this

classification, a finite counterplay has the form sinitstrans  gtransgfail, whilgt

a looping counterplay has the form s girans  gtrans (stoor .. lO(’p )“. The for-

mulae in the next subsection also refer to a fifth set of states, called unrolled
states, which represent replicates of looping states, and to the unrolling degree u.
They are explored in Sect.5.2. Each state in 7¢ is labelled with variables from
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the set X U)’ defined in Sect. 3. The value of u is initialized to 0, and thus 7¢
equates to w¢ (lines 2-3).

The extraction of the counterplay occurs at the start of every call of the
synthesis phase. The remaining steps described in this section are iteratively
executed when the extracted counterplay is looping, and only once otherwise. In
the former case, we will refer to the iteration as the inner-cycle, to distinguish
it from the counterstrategy-guided refinement cycle.

5.1 Candidate Assumptions Computation

Refinements of environment assumptions are computed in four steps: (i) produc-
tion of two inconsistent Boolean formulae from the counterplay and the unrealiz-
able core, (i¢) interpolation between the two Boolean formulae, (4) translation
of the interpolant into LTL, and (4v) negation of the translated interpolant.

Step (1) is executed by the functions TranslateCounterplay Assumptions
and TranslateGuarantees (lines 7-8). The procedure employs the translation
scheme in [7] for bounded model checking: it ensures that the obtained Boolean
formula is satisfiable if and only if the play taken into account satisfies the
LTL formula. The inclusion of assumptions in the counterplay translation is
important in yielding an interpolant in the shared alphabet of assumptions and
guarantees that explains why the assumptions violate the guarantees. Given a
GR(1) formula in ¢? over V and a counterplay m¢ ., with state space S, € S, its
translation is a Boolean formula over the domain V(S ) obtained by replicating
every variable p € V for every state s € S;; we denote by p(s) the replica of
p corresponding to state s, and by V(s) the subset of V(S;) containing all the
variables referring to state s. This step produces two formulae:

— [[7c.us ¢%]], which is a conjunction between the assumptions translation [[¢£]]
over mc, and a formula representing the valuation of every s € S; in mc y;
the latter is a conjunctive formula containing a literal p(s) (resp. —p(s)) for
every p € X UY’ that is true (resp. false) in N (s) (see end of Sect. 3);

— [[¢S]] which is the guarantees translation over mc,,,.

The translations [[¢¢]] and [[pS]] are given in the extended version of this work
[11]. Since by definition a counterplay 7o satisfies the assumptions and violates
the guarantees, the formula [[mc ., ¢5]] A [[¢S]] is unsatisfiable by construction.
Therefore, there exists an interpolant for [[rc ., ¢5]] and [[¢3]].

Step (i2) consists of the function Interpolate (line 9). The returned inter-
polant I, is an over-approximation of [[7c ., ¢f]] which by definition implies
the negation of [[¢S]]: it can be interpreted as a cause of the guarantees not
being satisfied by the counterplay, and as such a characterization of a set of
counterplays not satisfying the guarantees.

From such interpolant the procedure aims at extracting a set of refinements
that fit the GR(1) format. In order to do this, the Boolean to temporal transla-
tion requires the interpolant to adhere a specific structure. This is embodied in
the notion of full-separability. To formally define full-separability, we need first
to define state-separability and I/O-separability.
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Definition 2 (State-separable interpolant). An interpolant I, is said to be
state-separable iff it can be expressed as

A B.(V(s)) (1)

SES,

where B,(V(s)) is a Boolean formula either equal to true or expressed over vari-
ables in V(s) only.

We will refer to each B,(V(s)) as a state component of the interpolant. In par-
ticular, a state component is equal to true if I, does not use any variables from
s. State-separability intuitively means that the subformulae of the interpolant
involving a single state are linked by conjunctions. This means that in any model
of the interpolant each state component must be itself true.

Definition 3 (I/O-separable Boolean expression). A Boolean expression
B,(V(s)) is said to be I/O-separable if it can be written as a conjunction of two
subformulae containing only input and output variables respectively:

B,(V(s)) = B, x(X(s)) A By y(V(s)) (2)

We call B, »(X(s)) and B, (Y(s)) the projections of B (V(s)) onto X' and
Y respectively. Any model of an I/O-separable Boolean expression satisfies the
projections separately. We can now define full-separability of an interpolant.

Definition 4 (Fully-separable interpolant). An interpolant is called fully-
separable if it is state-separable and each of its state components is I/0O-
separable.

An example of a fully-separable interpolant over X = {a,b},Y = {c,d}
and states S = {sg,s1} is (a(so0) V b(s0)) A ¢(s0) A —b(s1); a non-fully-separable
interpolant, instead, is a(so) V a(s1), since literals referring to different states are
linked via a disjunction.

Remark 1. A particular class of fully-separable interpolants is that of fully con-
junctive interpolants, where no disjunctions appear. Whether or not the result-
ing interpolant is conjunctive depends on the order in which the interpolation
algorithm [30] chooses the root clauses for building the unsatisfiability proof.
A sufficient condition for obtaining a fully-conjunctive interpolant is that such
root clauses be single literals from [[rc ., ¢¢]], and that the pivot variable in
each resolution step belong to the shared alphabet of [[7¢ ., ¢S]] and [[¢Z]]. (see
[11,30] for details on the interpolation algorithm used).

Step (#i2) consists of the function TranslateInterpolant (line 14). It con-
verts a fully-separable interpolant I, = A cg B,(V(s)) into the LTL formula
T(L) =B (X) A [\ F(BaV) A Byee (4.2 (X)) A
SES,
|steor|

u 3)
FG \/ <B§OOP(V)A /\B;f:”"(V))
j=1 r=1
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where the expression B{'(X) is a shorthand for B inie 2 (X), B;-OOP(V) for
lewp (V) and B} (V) for Bgunr (V). Formula (3) is formed from the single state
i g

components of I,, by replacing the variables in V(s) with the corresponding vari-
ables in V and by projecting the components onto the input variables where
required by the GR(1) template. The translation consists of three units: a sub-
formula describing the initial state, a conjunction of F formulae each containing
two consecutive state components, and an FG formula; this unit consists of a
disjunction over all the looping states, where each disjunct j groups the state
components of all the replicas of state s'°°.

Formula (3) is guaranteed to hold in the counterplay m¢. Intuitively, since
I, is fully-separable by construction, [[7c ., ¢%]] implies each state component
and its projections onto X and )’. A state component B,(V(s)) corresponds
to a formula B (V) satisfied by state s of the counterplay. Therefore, since the
initial state satisfies B (V), 7 satisfies B (X); since there are two consecu-
tive states s and succ (s) that satisfy B,(V(s)) and B,(V(succ (s))) respectively,

¢ satisfies F (BS(V) N B (XX)). Finally, for the FG subformula, it is

sufficient to observe that the looping state j satisfies the formula obtained from
the state components referring to sé and s}7": since the counterplay remains
indefinitely in the looping state, there is a sufﬁx of it where such formula is
true for at least one j. Based on these considerations, we prove the following
soundness property.

succ (s),X

Theorem 1. Let o be a counterplay and ¢f a set of assumptions satisfied in
7c, such that their Boolean translation [[mc.u, ¢S] implies L., and let I, be a
fully-separable interpolant. Then we = T (I,).

The proof is in the extended version [11]. In the case a fully-separable inter-
polant is not generated from which 7(I,) can be constructed, the algorithm
returns false as its candidate assumption. Otherwise, the approach proceeds to
step (iv) (function ExtractDisjuncts, line 15) producing the candidate refine-
ments by negating (3) and extracting the disjuncts in the resulting formula:

ﬁB%m \/ G- ( /\Bsucc( )X(XX)>
SESy
|steor| (4)
GF /\ = ( ZOOp /\ Bunr )
j=1

Each disjunct above is a GR(1) candidate assumption which, by Theorem 1,
ensures the exclusion of the counterplay m¢ from the models of the assumptions.

5.2 Equivalence Checking and Unrolling

The equivalence checking of the produced candidates and the unrolling of the
counterplay (lines 17-24) are only executed in case of a looping counterplay.
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Thus in each iteration of the inner-cycle, our procedure checks whether the
synthesized assumptions are equivalent to the assumptions ),y computed in
the previous iteration. If not, the looping part of the counterplay is unrolled
once (UnrollCounterplay, line 20) and the steps in Sect. 5.1-5.2 are repeated.
If the equivalence condition is met, the synthesis procedure returns the last set
of computed candidates as output.

Counterplay unrolling consists in making the first traversals of looping states
explicit. It is achieved by augmenting a counterplay with replicates of the loop-
ing states. The number of unrollings is referred to as the unrolling degree wu.

Each unrolling yields a new set of states S""" = {s{{",..., Shit s ST s s

s¢m™} An unrolled looping counterplay has the form s™™strans glrans
1 ! . .

SPT s s s (517 sy ?P)@ . Unrolling has two possible effects

on the computed interpolant: on one hand, it can introduce new state compo-
nents in the interpolant, which yield new invariant refinements according to (4);
on the other hand, the interpolant can express a more specific characterization of
looping states, which corresponds to a weaker fairness refinement in (4). These
effects are both observed in our evaluation (see Sect. 7).

6 Convergence

Our procedure is guaranteed to terminate after a finite number of recursive calls.
We discuss below the case of all computed interpolants being fully-separable. If
not, the procedure terminates with a trivial assumption refinement false.

Theorem 2. Given a satisfiable but unrealizable specification (¢, ¢°) Algo-
rithm 1 terminates with a realizable specification (¢, ¢).

To prove this, it is sufficient to show that both the recursion in Algorithm 1
and the iteration over unrollings in Algorithm 2 reach the respective termina-
tion conditions. In the following arguments, we will refer to the recursion tree
of Algorithm 1. Each node is associated with the candidate assumption tested
in one specific call of CounterstrategyGuidedRefinements. The root corre-
sponds to the initial assumption; every internal node symbolizes an unrealizable
assumptions refinement; the children of an internal node correspond to the alter-
native refinements that rule out the relevant counterstrategy. The leaves repre-
sent alternative realizable assumption refinements returned by the algorithm.
We will show that this tree has finite depth and breadth.

Let us consider the number of children ne of an internal node (the subscript
C indicates the counterstrategy computed in that internal node). It consists of
the maximum number of refinements that are generated from a single counter-
strategy. Assuming that the maximum unrolling degree is finite (we will see that
later in this section), denoted uc prax, the maximum number of refinements
generated from C' can be computed by counting the maximum number of dis-
juncts in (4). Suppose Sy, 4x| denotes the number of distinct states in the
unrolled counterplay, then ng < |Syg ,,4x| + 2: we count one initial condition,
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one fairness condition and [Sy. ,, x| invariants. Given that every node has a
finite number of children, the breadth of each level in the tree is also finite.

We now consider the depth. The algorithm keeps refining a computed
assumption until the property becomes realizable (in case the returned refine-
ment is false, then the property is realizable, and therefore the algorithm reaches
a true leaf). Given the soundness property, at each step every refinement excludes
the latest computed counterstrategy; since this counterstrategy satisfies all the
previously computed refinements by definition, the new refinement cannot be
equivalent to any of the previous refinements along the same branch.

For the above reason, the depth d of the recursion tree is limited by the max-
imum number of existing GR(1) refinements modulo logical equivalence. The

maximum number of initial conditions is dinst,mrax = 22‘)(', that is the num-
ber of all distinct Boolean expressions over the input variables. The maximum
number of invariants is dipe,max = 22|v|+2w; this corresponds to the maxi-
mum number of distinct By that can be present in the expression (4) times the

number of distinct Bgyce (), x - Finally, the maximum number of distinct fairness

assumptions is dfqir prax = 921! Therefore, the total depth d is bounded by the
sum of these three quantities: d < dyprax = dinit,max + dinv,max + dfair max.

Given the above, we conclude that the recursion tree is finite. This gives us
a worst-case upper bound on the depth d of the recursion, which has a doubly
exponential growth over |V| — a general observation of counterstrategy-guided
assumptions refinement strategies. It remains to show that the inner-cycle ter-
minates in finite time. As mentioned in Sect.5.2, each iteration can provide
additional or weaker refinements with respect to the previous iteration. The ter-
mination condition holds when the current iteration does not yield new refine-
ments with respect to the previous one. This is reached in the worst case after
all distinct GR(1) refinements are generated. The computation is the same as
the one for d: uc,max = dyax-

7 Evaluation

We apply our approach to two benchmarks presented in [3,9,23]: a lift controller
and ARM’s AMBA-AHB protocol. The requirements analysis tool RATSY [§]
is used to check unrealizability and compute counterstrategies. The SAT solver
MathSAT [10,14] is used to compute interpolants. We implemented a translation
module for GR(1) specifications and randomly extracted plays into a proposi-
tional logic format executable by MathSAT. For each case study, we report the
maximum depth and breadth of the recursion tree, and an interpretation of some
interesting refinements that are computed. Details are available at [1].

Table 1 provides a summary of both case studies. The columns In and Out
contain the number of input and output variables in the specification alpha-
bet respectively; A and G contain the number of assumptions and guarantees
respectively; MaxPlay contains the maximum number of states in a counterplay
among all the counterplays used in the refinement process; MlaxUnr reports the
maximum unrolling degree reached in any step of the approach before reaching
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the termination condition; TreeDepth corresponds to the depth of the recursion
tree; MlaxAltRef is the maximum number of alternative refinements computed
to rule out any single counterstrategy (it corresponds to the maximum number
of children of an internal node in the recursion tree); #Ref shows the total
number of refinement sets computed that make the property realizable.

Table 1. Summary of refinement results on benchmarks

Specification | In | Out | A | G | MaxPlay | MaxUnr | TreeDepth | MaxAltRef | #Ref
Lift 3 |3 7T 112 |2 2 1 3 3
AMBAO02 7 116 |10/66 |4 2 3 6 17
AMBAO04 11123 16|97 |7 1 2 2 8
AMBAO08 1936 | 28157 |18 1 7 2 80

7.1 Lift Controller

This case study (also used for controller synthesis problems [3,9]) involves the
specification of a system comprising a lift controller. The lift moves between three
floors. The environment consists of three buttons, whose states can be pressed or
unpressed; the corresponding state is represented by three binary input variables
{b1,ba,b3}. The controller’s state consists of three output variables {fi, f2, f3}
which indicate at which floor the lift is. The assumptions are:

1. ‘me‘t = =by A —bgy A —bs
2. <‘0(137i = G(bl N fz — X_‘bz)
3. (p;i = G(bz AN _‘fi — sz)

for i € {1,2,3}. They state that the buttons are not pressed in the initial state
(1); a pressed button transits to a non-pressed state when the lift arrives at the
corresponding floor (2); and the button remains in the pressed state until the
lift arrives at that floor (3). The guarantees are:

L @i =fAfaN—f3

2. 97 = G(=(fi A fa) A=(fa A f3) A=(fi A f3))

3. 51 =G(fi = (Xf1VXf2))

4. @55 = G(fa = (Xf1 VX faVXf3))

5. 953 =G(fs = (Xf2VXf3))

6. 05 =G(((LiAXf2)V(faAXS3)V (faAXSf1)V (fsAXf2)) = (b1 Vb2V b3))
7. (pii = GF(bl — fz)

8. ¢35, =GFfi

for i € {1,2,3}. They state that the lift starts from floor 1 (1); it can never be
in two floors at the same time (2); it can move only between consecutive states
(3-5), and moves only when at least a button is pressed (6); plays in which the
environment keeps a button b; pressed infinitely and the lift never reaches the
corresponding f; are forbidden (7); and that the lift is required to visit all the
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floors infinitely often (8). Given this specification, the fairness guarantee can be
satisfied if the environment sets one of its b; to 1 at least once.

The specification is unrealizable, since when the buttons (environment) stay
indefinitely unpressed, the lift (controller) cannot move and therefore ¢3 , and
5 3 are violated. The unrealizable core consists of the whole set of assumptions
and the guarantees ©;,,;;, ¢5 1, ¢3 and @3 5. From this core, RATSY computes the
counterstrategy m¢ in Fig. 1, which consists of a unique play. After translating
the unrealizable core over the counterplay, the interpolant is Iy = —b1(sp) A
=2 (s0) A —b3(so), which corresponds to the GR(1) refinement —by A —bg A —bs.
The first unrolling is performed yielding the interpolant I3 = —b1(sg) A—ba(s0) A
—bs3(s0) A =bi(s7717) A —ba(s1717) A —bz(s17i"). By translating and negating this
interpolant, we obtain the alternative refinements

1. b1 V by V b3
2. G(_'b1 A —by A —bg — X(bl V by V bg))
3. GF(b; V by V b3)

Notice that unrolling results in an interpolant containing an additional state
component, thus allowing for more alternative refinements (see Sect. 5.2). More-
over, the new state component refers to an unrolled state, from which a new fair-
ness refinement that is not inferable from I is synthesized. The second unrolling
produces equivalent refinements, and thereby the inner-cycle terminates.

Fig. 1. Lift counterstrategy produced by RATSY. The labelling \’ is shown in each
state. In this case the lift position plays no role in the environment’s choice of next
state, therefore )’ = 0.

Every candidate refinement computed by our approach is helpful. Moreover,
each one solves the unrealizability problem for the original specification. Refine-
ment (1) does this in a trivial way, since it contradicts the initial assumption
contained in the specification. Notice that all the computed refinements force at
least one of the buttons to be pressed at some point in any play of the environ-
ment. This corresponds to the refinement produced by the approach in [3].

7.2 AMBA-AHB Protocol

The Advanced High-performance Bus (AHB) is part of the Advanced Microcon-
troller Bus Architecture (AMBA) specification. It is an open-source communica-
tion protocol for on-chip devices through a shared bus. Devices are divided into
masters, which initiate a communication, and slaves, which respond to requests.
Multiple masters can request the bus simultaneously, but only one at a time can
communicate through it. Masters and slaves constitute the environment, while
the system is the bus arbiter implementing the protocol. The specification of the
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AHB protocol is provided with RATSY. It is a GR(1) description of the protocol
in [6], and formalized in [9]. We consider specifications for two, four and eight
masters (AMBAO02, AMBAO04, AMBAOS respectively) which are realizable. To
evaluate our approach, we remove the assumption GFhready as done in [3,27].

In all the variants, our approach was able to produce refinements that were
semantically related to the removed assumption. In the AMBAO2 case, one of
the refinements is the invariant G (hready VvV Xhready), which forces hready to be
true at least every two steps. The other refinements in all the AMBAOx variants
involve the variable hmaster, which indicates the master that currently owns the
bus. These refinements force hmaster to change infinitely often. This corresponds
to having hready equal to true infinitely often, since hready must be true at any
ownership switch according to the protocol [9].

The approach was further tested by extracting different counterplays from the
same counterstrategy in the AMBAOQ2 case. Every refinement produced within
each synthesis call was helpful. We compared our results to those obtainable
through [3,27] when variables not contained in the interpolant are provided as
input. The refinements GF (—hburstl) and GF hlock0 (which are possible outputs
of [3,27] if the user chooses the corresponding templates/variables) remove the
first counterstrategy; however neither is helpful, since even after their addition
the corresponding set of minimally unfulfillable guarantees is still unrealizable.

8 Discussion

Targeting Unrealizable Cores. The evaluation shows that our approach
automatically selects variables that need to be constrained in order to reach
realizability. In particular, all the intermediate refinements eliminate precisely a
cause of unrealizability, consisting of the set of minimally unfulfillable guaran-
tees from which a counterstrategy has been computed. We note that the returned
variables in the AMBAOQ2 example (hready and hbusreql) are a subset of the vari-
ables that the authors in [3] suggest to use in order to instantiate the refinement
templates.

Helpfulness of intermediate refinements is a desirable condition for reducing
the convergence rate of the algorithm. When this holds, then the expected tree
depth d (see Sect.6) is reduced to O(ng), where ng is the number of minimally
unfulfillable subsets of guarantees. The application of our approach on the case
studies consistently supports the attainment of this condition.

Number of Unrollings. We further define an upper bound to the number
of unrollings needed to reach the termination condition as of Sect.5.2. Every
unrolling iteration produces an interpolant which is either the same as the pre-
vious iteration, or contains the description of one more state in the counterplay.
In the worst case, without unrolling the interpolant describes just the initial
state; after the first unrolling it contains a state component for the first tran-
sient state s{™"%; it is iteratively strengthened by one more state component
until it describes all the transient states and the first replica of the unrolled

states s7" for each j. In the following unrolling step, the interpolant contains
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the component of s{"", which is such that \'(s{%y") = \'(s{{"): interpolation pro-
duces an equivalent refinement to the previous step, and therefore the procedure
terminates. The maximum number of unrollings before reaching the termination
condition is: uc,prax = |S| where |S| is the number of states in 7¢.

Comparison with Existing Approaches. Our approach extracts weaker
refinements that those of [3]. The reason is that [3] uses templates that are
true over all paths of a counterstrategy, while our approach requires them to
be true in a single counterplay. More specifically, an invariant template used in

[3] has the form G—¢qV X /\q,eNmt(q) —|q’), where ¢ and ¢’ indicate states in

a counterstrategy and Next(q) is the set of successor states of ¢; our approach
extracts invariants of the form G-¢qV ¢’ for a ¢’ € Next(q), which is implied
by the former one, provided that they use the same variables set for ¢ and ¢'.

We notice that in principle our approach may generate assumptions
containing only output variables. This happens if some state component in
the interpolant contains only output variables. Those are valid GR(1) formu-
lae according to the definition, although hardly interpretable as constraints on
the environment. Existing approaches circumvent the problem by allowing only
input variables in their refinements [3,4]: however, in this way valid assumptions
are also excluded. In our AMBAO4 case study, one of the computed assump-
tions was G((—hmaster0 A hbusreql) — X(—hbusreql)), where hmaster0 € )
and hbusreql € X. This assumption would not have been computed with that
restriction.

9 Conclusions

We presented an interpolation-based approach for synthesizing weak environ-
ment assumptions for GR(1) specifications. Our approach exploits the infor-
mation in counterstrategies and unrealizable cores to compute assumptions
that directly target the cause of unrealizability. Compared to closely related
approaches [3,27], our algorithm does not require the user to provide the set of
variables upon which the assumptions are constructed. The case study appli-
cations show that our approach implicitly performs a variable selection that
targets an unrealizable core, allowing for a quicker convergence to a realizable
specification.

The final set of refinements is influenced by the choice of counterplay. We are
investigating in our current work the effect of and criteria over the counterplay
selection particularly on the full-separability of interpolants. Furthermore, since
interpolants are over-approximations of the counterplays, the final specification
is an under-approximation. In future work, we will explore the use of witnesses
(winning strategies for the system) to counteract this effect. Finally, the applica-
bility of our approach depends on the separability properties of the computed
interpolants: further investigation is needed to characterize the conditions under
which an interpolation algorithm returns fully-separable interpolants.
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