
Family-Based Model Checking with mCRL2

Maurice H. ter Beek1(B), Erik P. de Vink2, and Tim A.C. Willemse2

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 TU/e, Eindhoven, The Netherlands

Abstract. Family-based model checking targets the simultaneous veri-
fication of multiple system variants, a technique to handle feature-based
variability that is intrinsic to software product lines (SPLs). We present
an approach for family-based verification based on the feature μ-calculus
μLf , which combines modalities with feature expressions. This logic
is interpreted over featured transition systems, a well-accepted model
of SPLs, which allows one to reason over the collective behavior of a
number of variants (a family of products). Via an embedding into the
modal μ-calculus with data, underpinned by the general-purpose mCRL2

toolset, off-the-shelf tool support for μLf becomes readily available. We
illustrate the feasibility of our approach on an SPL benchmark model
and show the runtime improvement that family-based model check-
ing with mCRL2 offers with respect to model checking the benchmark
product-by-product.

1 Introduction

Many software systems are configurable systems whose variants differ by the
features they provide, i.e. the functionality that is relevant for an end-user, and
are therefore referred to as software product lines (SPLs) or product families.
SPLs challenge existing formal methods and analysis tools by the potentially
high number of different products, each giving rise to a large behavioral state
space in general. SPLs are popular in the embedded and critical systems domain.
Therefore, analysis techniques for proving the correctness of SPL models are
widely studied (cf. [1] for a survey).

Because for larger SPL models enumerative product-by-product approaches
become unfeasible, dedicated family-based techniques have been developed,
exploiting variability in product families in terms of features (cf., e.g., [2–8]).
In this paper, we contribute to the field of family-based model checking. Over the
past decades, model checking has seen significant progress [9]. However, state-
space explosion remains an issue, amplified for SPL models by the accumulation
of possible variants and configurations. To mitigate these problems, family-based
model checking was proposed as a means to simultaneously verify multiple vari-
ants in a single run (cf. [1]). To make SPL models amenable to family-based
reasoning, feature-based variability was introduced in many behavioral models,
e.g. based on process calculi [2,10–12] and labeled transition systems (LTSs)
[3,13–15].
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 387–405, 2017.
DOI: 10.1007/978-3-662-54494-5 23

388 M.H. ter Beek et al.

Arguably the most widely used behavioral SPL models are featured transi-
tion systems (FTSs) [13]. An FTS compactly represents multiple behaviors in
a single transition system by exploiting transitions guarded by feature expres-
sions. A transition of a given product can be taken if the product fulfills the
feature expression associated with the transition. Thus, an FTS incorporates the
behavior of all eligible products, while individual behavior can be extracted as
LTSs. Properties of such models can be verified with dedicated SPL model check-
ers [16–18] or, to a certain degree, with single system model checkers [7,12,14].

As far as we know, none of the existing tools can verify modal μ-calculus
properties over FTSs in a family-based manner. However, there have been ear-
lier proposals for using the μ-calculus to analyze SPLs (cf., e.g., [2,10,12,19,20]).
In [19], for instance, mCRL2 and its toolset [21,22] were used for product-based
model checking. The flexibility of mCRL2’s data language allowed to model and
select valid product configurations and to model and check the behavior of indi-
vidually generated products. While the SPL models of [19] have an FTS-like
semantics, to actually perform family-based model checking also the supporting
logic must be able to handle the specificity of FTSs, viz. transitions labeled with
feature expressions. In [20], we generalized the approach that led to the feature-
oriented variants fLTL [13] and fCTL [14] of LTL and CTL to the modal μ-
calculus by defining μLf , a feature-oriented variant of μL with an FTS seman-
tics obtained by incorporating feature expressions. While μLf paves the way for
family-based model checking, so far the logic was without tool support, and it
remained unclear whether it could be used effectively to model check FTSs.

Contributions. In this paper, we show how to effectively perform family-based
model checking for μLf by exploiting the mCRL2 toolset as-is, i.e. avoiding the
implementation of a dedicated SPL-oriented verifier. We first show how to solve
the family-based model-checking problem via an embedding of μLf into mCRL2’s
modal μ-calculus with data. Then we define a partitioning procedure for μLf

that allows us to apply our results from [20]. Next, we evaluate our approach
by verifying a number of representative properties over an mCRL2 specification
of the minepump SPL benchmark model [8,13,23–25]. We verify typical linear-
time and branching-time properties. We also verify properties involving more
than one feature modality in a single formula, which is a novelty that allows
to check different behavior for different variants at once. Finally, we discuss the
improvement in runtime that results from using mCRL2 for family-based model
checking as opposed to product-based model checking.

Further Related Work. There is a growing body of research on customizing
model-checking techniques for SPLs. Like our FTS-based proposals [19,20], the
CCS-based proposals PL-CCS [2,10] and DeltaCCS [12] are grounded in the μ-
calculus. In [26], PL-CCS was proven to be less expressive (in terms of the sets
of definable products) than FTSs, while DeltaCCS allows only limited family-
based model checking (viz. verifying family-wide invariants for entire SPLs).
DeltaCCS does provide efficient incremental model checking, a technique that
improves product-based model checking by partially reusing verification results

Family-Based Model Checking with mCRL2 389

obtained for previously considered products. The state-of-the-art by the end of
2013 is summarized in [1], which also discusses type checking, static analysis,
and theorem proving tailored for SPLs, as well as software model checking.

In a broader perspective, also probabilistic model checking was applied to
SPLs recently, e.g. on feature-oriented (parametric) Markov chains [27–29] or
Markov decision processes [30], and via a feature-oriented extension of the input
language of the probabilistic model checker Prism [31], making the tool amenable
to (family-based) SPL model checking [32]. Most recently, also statistical model
checking was applied to SPLs [33,34], based on a probabilistic extension of the
feature-oriented process calculus of [11].

2 A Feature µ-Calculus µLf over FTSs

The μ-calculus is an extension of modal logic with fixpoint operators whose
formulas are interpreted over LTSs (cf. [35]). We fix a set of actions A, ranged
over by a, b, . . ., and a set of variables X, ranged over by X,Y,

Definition 1. The μ-calculus μL over A and X is given by

ϕ :: = ⊥ | � | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ | X | μX.ϕ | νX.ϕ

where for μX.ϕ and νX.ϕ all free occurrences of X in ϕ are in the scope of an even
number of negations (to guarantee well-definedness of the fixpoint semantics). �	
Next to the Boolean constants falsum and verum, μL contains the connectives ¬,
∨ and ∧ of propositional logic and the diamond and box operators 〈 〉 and [] of
modal logic. The least and greatest fixpoint operators μ and ν provide recursion
used for ‘finite’ and ‘infinite’ looping, respectively.

Definition 2. An LTS over A is a triple L = (S,→, s∗), with states from S,
transition relation → ⊆ S ×A× S, and initial state s∗ ∈ S. �	
Definition 3. Let L be an LTS with set of states S. Let sSet = 2S be the set
of state sets with typical element U and sEnv = X→ sSet the set of state-based
environments. The semantics [[·]]L : μL→ sEnv→ sSet is given by

[[⊥]]L(ε)=∅ [[〈a〉ϕ]]L(ε)={ s | ∃ t : s
a−→ t ∧ t∈[[ϕ]]L(ε) }

[[�]]L(ε)=S [[[a]ϕ]]L(ε)={ s | ∀t : s
a−→ t ⇒ t∈[[ϕ]]L(ε) }

[[¬ϕ]]L(ε)=S \ [[ϕ]]L(ε) [[X]]L(ε)=ε(X)
[[(ϕ ∨ ψ)]]L(ε)=[[ϕ]]L(ε) ∪ [[ψ]]L(ε) [[μX.ϕ]]L(ε)= lfp(λU.[[ϕ]]L(ε[U/X]))
[[(ϕ ∧ ψ)]]L(ε)=[[ϕ]]L(ε) ∩ [[ψ]]L(ε) [[νX.ϕ]]L(ε)=gfp(λU.[[ϕ]]L(ε[U/X]))

where ε[U/X], for ε ∈ sEnv, denotes the environment which yields ε(Y) for
variables Y different from the variable X and the set U ∈ sSet for X itself. �	

390 M.H. ter Beek et al.

As typical for model checking, we only consider closed μL-formulas whose inter-
pretation is independent of the environment. In such case we write [[ϕ]]L for the
interpretation of ϕ. Given a state s of an LTS L, we set s |=L ϕ iff s ∈ [[ϕ]]L.

We next fix a finite non-empty set F of features, with f as typical element.
Let B[F] denote the set of Boolean expressions over F . Elements χ and γ of B[F]
are referred to as feature expressions. A product is a set of features, and P
szdenotes the set of products, thus P ⊆ 2F, with p, q, . . . ranging over P. A
subset P ⊆ P is referred to as a family of products. A feature expression γ, as
Boolean expression over F , can be interpreted as a set of products Qγ , viz. the
products p for which the induced truth assignment (true for f ∈ p, false for f /∈ p)
validates γ. Reversely, for each family P ⊆ P we fix a feature expression γP to
represent it. The constant � denotes the feature expression that is always true.
We now recall FTSs from [13] as a model for SPLs, using the notation of [20].

Definition 4. An FTS over A and F is a triple F=(S, θ, s∗), with states from S,
transition constraint function θ : S ×A× S→B[F], and initial state s∗∈S. �	

For states s, t ∈ S, we write s
a|γ−−→F t if θ(s, a, t) = γ and γ �≡ ⊥. The projection

of an FTS F = (S, θ, s∗) onto a product p ∈ P is the LTS F |p = (S, →F |p, s∗)
over A with s

a−→F |p t iff p ∈ Qγ for a transition s
a|γ−−→F t of F .

Example 1. Let P be a product line of (four) coffee machines, with independent
features {$, e} representing the presence of a coin slot accepting dollars or euros.

s0 s1 s2

F

ins|�
std|�

ins|$

xxl|�
s0 s1 s2

F |p1

ins

std

ins

xxl

s0 s1 s2

F |p2

ins

std

xxl

FTS F models its family behavior, with actions to insert coins (ins) and to pour
standard (std) or extra large (xxl) coffee. Each coffee machine accepts either
dollars or euros. Extra large coffee is exclusively available for two dollars. LTSs
F |p1 and F |p2 model the behavior of products p1={$} and p2={e}. Note that
F |p2 lacks the transition from s1 to s2 that requires feature $. �	
In [20], we introduced μLf , an extension with features of the μ-calculus μL,
interpreted over FTSs rather than LTSs.

Definition 5. The feature μ-calculus μLf over A, F and X, is given by

ϕf :: = ⊥ | � | ¬ϕf | ϕf ∨ ψf | ϕf ∧ ψf | 〈a|χ〉ϕf | [a|χ]ϕf | X | μX.ϕf | νX.ϕf

where for μX.ϕf and νX.ϕf all free occurrences of X in ϕf are in the scope of
an even number of negations. �	
Also for μLf we mainly consider closed formulas. The logic μLf replaces the
binary operators 〈a〉ϕ and [a]ϕ of μL by ternary operators 〈a|χ〉ϕf and [a|χ]ϕf ,
respectively, where χ is a feature expression.

Family-Based Model Checking with mCRL2 391

A Product-Based Semantics. In [20], we gave a semantics �ϕf �F for closed μLf -
formulas ϕf with subsets of S ×P as denotations. We showed that this product-
based semantics can be characterized as follows

�ϕf �F = { (s, p) ∈ S × P | s ∈ [[pr(ϕf , p)]]F |p }
where the projection function pr : μLf × P → μL is given by

pr(⊥, p)=⊥ pr(�, p)=� pr(X, p)=X pr(¬ϕf , p)=¬pr(ϕf , p)
pr(ϕf ∨ ψf , p) = pr(ϕf , p) ∨ pr(ψf , p) pr(μX.ϕf , p) = μX.pr(ϕf , p)
pr(ϕf ∧ ψf , p) = pr(ϕf , p) ∧ pr(ψf , p) pr(νX.ϕf , p) = νX.pr(ϕf , p)

pr(〈a|χ〉ϕf , p) = if p∈Qχ then 〈a〉pr(ϕf , p) else ⊥ end
pr([a|χ]ϕf , p) = if p∈Qχ then [a]pr(ϕf , p) else � end

Thus, for a formula ϕf ∈ μLf and a product p ∈ P, a μL-formula pr(ϕf , p) is
obtained from ϕf , by replacing subformulas 〈a|χ〉ψf by ⊥ and [a|χ]ψf by �,
respectively, in case p /∈Qχ, while omitting χ otherwise. Formulas of μLf permit
reasoning about the behavior of products, as illustrated below.

Example 2. Formulas of μLf for Example 1 include the following.

(a) ϕf = 〈ins|�〉 ([ins|e]⊥ ∧ 〈std|�〉�) characterizes the family of products
P that can execute ins, after which ins cannot be executed by products
satisfying e, while std can be executed by all products of P .

(b) ψf = νX.μY.
(
([ins|e]Y∧[xxl|e]Y)∧[std|e]X

)
characterizes the (sub)family

of products which, when having feature e, action std occurs infinitely often
on all infinite runs over ins, xxl, and std. �	

In practice, we are often interested in deciding whether a family of products P
satisfies a formula ϕf . The semantics of μLf , however, does not allow for doing
so in a family-based manner as it is product-oriented. For that reason, we intro-
duced in [20] a second semantics [[·]]F for μLf (cf. Definition 6 below) providing a
stronger interpretation for the modalities to enable family-based reasoning. We
stress that this second, family-based interpretation was designed to specifically
support efficient model checking; the product-oriented � · �F remains the seman-
tic reference. The correspondence between the two interpretations was studied
in detail in [20]. We next summarize the most important results.

A Family-Based Semantics. In our family-based interpretation, the ternary oper-
ator 〈a|χ〉ϕf holds for a family P with respect to an FTS F in a state s, if all
products in P satisfy the feature expression χ and there is an a-transition, shared
among all products in P , that leads to a state where ϕf holds for P (i.e. the prod-
ucts in P can collectively execute a). The [a|χ]ϕf modality holds in a state of F
for a set of products P , if for each subset P ′ of P for which an a-transition is
possible, ϕf holds for P ′ in the target state of that a-transition. While under
the product-based interpretation � · �F of μLf , the two modalities in μLf are,
like in μL, each other’s dual, this is no longer the case under the family-based
interpretation [[·]]F below.

392 M.H. ter Beek et al.

Definition 6. Let F = (S, θ, s∗) be an FTS. Let sPSet = 2S×2P
be the set of

state-family pairs with typical element W and sPEnv=X→sPSet the set of state-
family environments. The semantics [[·]]F : μLf → sPEnv→sPSet is given by

[[⊥]]F (ζ)=∅ [[�]]F (ζ)=S × 2P

[[¬ϕf]]F (ζ)= (S × 2P) \ [[ϕf]]F (ζ) [[X]]F (ζ)= ζ(X)

[[(ϕf ∨ψf)]]F (ζ)= [[ϕf]]F (ζ) ∪ [[ψf]]F (ζ) [[μX.ϕf]]F (ζ)= lfp(λW.[[ϕf]]F (ζ[W/X]))

[[(ϕf ∧ψf)]]F (ζ)= [[ϕf]]F (ζ) ∩ [[ψf]]F (ζ) [[νX.ϕf]]F (ζ)= gfp(λW.[[ϕf]]F (ζ[W/X]))

[[〈a|χ〉ϕf]]F (ζ)= { (s, P) | P ⊆Qχ∧ ∃γ, t : s
a|γ−−→F t ∧P⊆Qγ ∧(t, P∩Qχ∩Qγ)∈[[ϕf]]F (ζ)}

[[[a|χ]ϕf]]F (ζ)= { (s, P) | ∀γ, t : s
a|γ−−→F t∧P∩Qχ∩Qγ �=∅ ⇒ (t, P∩Qχ∩Qγ)∈[[ϕf]]F (ζ) }

where ζ[W/X], for ζ ∈ sPEnv, denotes the environment which yields ζ(Y) for
variables Y different from X and the set W ∈ sPSet for X. �	
The interpretation of a closed μLf formula ϕf is independent of the environment
and we therefore again simply write [[ϕf]]F . Given a state s of an FTS F , and a
set of products P ⊆ P, we write s, P |=F ϕf iff (s, P) ∈ [[ϕf]]F .

The theorem below summarizes the main results of [20], relating the family-
based interpretation of μLf to the LTS semantics of μL (and by extension, μLf ’s
product-based interpretation).

Theorem 1. Let F be an FTS, and let P be a set of products.

(a) For each formula ϕf ∈ μLf , state s ∈ S, and individual product p ∈ P:
s, {p} |=F ϕf ⇐⇒ s |=F|p pr(ϕf , p).

(b) For negation-free formula ϕf ∈ μLf , state s ∈ S, and product family P ⊆ P:
s, P |=F ϕf =⇒ ∀p ∈ P : s |=F|p pr(ϕf , p) �	

Note that in general, s, P �|=F ϕf does not imply s �|=F|p pr(ϕf , p) for all products
in the family P . In the next section, we discuss how the above results can be
exploited for family-based model checking of μLf -formulas.

3 Family-Based Model Checking with mCRL2

In this section, we show how to obtain a decision procedure for s∗, P |=F ϕf via
a mapping into the first-order μ-calculus μLFO and solving the corresponding
model-checking problem. Our approach consists of two steps: (i) translation of
the μLf -formula at hand; (ii) translation of the FTS describing the family behav-
ior into an LTS with parametrized actions. Since μLFO is a fragment of the logic
from [36,37], we can use off-the-shelf tools such as the mCRL2 toolset [21,22] to
perform family-based model checking of properties expressed in μLf . We first
review μLFO before we proceed to describe the above translations.

Family-Based Model Checking with mCRL2 393

3.1 The First-Order µ-Calculus µLFO

The first-order μ-calculus with data of [36,37] is given in the context of a data
signature Σ = (S,O), with set of sorts S and set of operations O, and of a
set of ‘sorted’ actions A. μLFO is essentially a fragment of the logic of [36,37]
in which S is the single sort FExp, with typical elements β, χ, γ, representing
Boolean expressions over features and data variables taken from a set V, with
typical element v. In toolsets such as mCRL2, FExp can be formalized as an
abstract data type defining BDDs ranging over features (cf. [38]). We fix a set
of recursion variables X̃. Formulas ϕ ∈ μLFO are then given by

ϕ :: = ⊥ | � | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | γ1⇒γ2 | ∃υ.ϕ | ∀υ.ϕ |
〈a(υ)〉ϕ | [a(υ)]ϕ | X̃(γ) | μX̃(υX̃ :=γ).ϕ | νX̃(υX̃ :=γ).ϕ

where for μX̃(υX̃ :=γ).ϕ and νX̃(υX̃ :=γ).ϕ all free occurrences of X̃ in ϕ are in
the scope of an even number of negations, and each variable X̃ is bound at most
once. To each recursion variable X̃ a unique data variable υX̃ is associated, but
we often suppress this association and simply write μX̃(υ:=γ).ϕ and νX̃(υ:=γ).ϕ
instead. The language construct γ1⇒γ2 is used to express that the set of products
characterized by γ1 is a subset of those characterized by γ2.

We interpret μLFO over LTSs whose actions carry closed feature expressions.

Definition 7. A parametrized LTS over A and F is a triple (S,→, s∗) with states
from S, transition relation → ⊆ S ×A[F] × S where A[F] = { a(γ) | a ∈ A,
γ ∈ B[F] }, and initial state s∗ ∈ S. �	
In the presence of variables ranging over feature expressions, we distinguish two
sets of environments, viz. data environments θ∈VEnv = V→ 2P and recursion
variable environments ξ ∈XEnv = X̃→ 2P→ 2S. The semantics [[·]]FO is then of
type μLFO→XEnv→VEnv→ 2S . To comprehend our translation of μLf into
μLFO, we address the semantics for the non-trivial constructs of μLFO. The full
semantics can be found in [36,37].

[[∃υ.ϕ]]FO(ξ)(θ) =
⋃ { [[ϕ]]FO(ξ)(θ[Q/υ]) | Q ⊆ P }

[[〈a(υ)〉ϕ]]FO(ξ)(θ) = { s | ∃γ, t : s
a(γ)−−−→ t ∧ θ(υ) = Qγ ∧ t∈[[ϕ]]FO(ξ)(θ) }

[[μX̃(υ:=γ).ϕ]]FO(ξ)(θ) =
(
lfp(λπ:2P→2S .λQ.[[ϕ]]FO(ξ[π/X̃])(θ[Q/υ]))

)
(θ(γ))

For existential quantification, the data environment θ[Q/υ] assigns a family of
products Q to the data variable υ; the set of states that satisfy ∃υ.ϕ is then the
set of states satisfying ϕ for any possible assignment to data variable υ.

For the diamond modality, a state s is included in its semantics, if in the
parametrized LTS, state s admits a transition with parametrized action a(γ) to
a state t such that the set of products θ(υ) is exactly the set of products Qγ

associated with the feature expression γ of the transition, while the target state t
satisfies ϕ. Note that the set of products Qγ can be established independently
from the environment θ since γ is closed, i.e. variable-free.

394 M.H. ter Beek et al.

The least fixpoint construction is more involved compared to the correspond-
ing construct of μLf because of the parametrization. Here the semantics of the
least fixpoint is taken for the functional that fixes both the recursion variable X̃
and the data variable υ, with π and Q, respectively. Next, application to the
value of the initializing feature expression γ yields a set of states.

With respect to a parametrized LTS L, we put s |=L ϕ, for s ∈ S and
ϕ ∈ μLFO closed, if s ∈ [[ϕ]]FO(ξ0)(θ0) for some ξ0 ∈ XEnv and θ0 ∈ VEnv.

3.2 Translating the Family-Based Interpretation of µLf to µLFO

To model check a μLf -formula against an FTS, we effectively verify its corre-
sponding μLFO-formula against the parametrized LTS that is obtained as follows.

Definition 8. Let F = (S, θ, s∗) be an FTS over A and F. Take A[F] =
{ a(γ) | a∈A, γ ∈B[F]}. Define the parametrized LTS L(F) for F by L(F) =
(S,→, s∗) where → is defined by s

a(γ)−−−→ t iff θ(s, a, t) = γ and γ �≡ ⊥. �	
Thus, we use the parameter of an action as placeholder for the feature expression
that guards a transition, writing s

a(γ)−−−→ t.
Next, we define a translation tr that yields for a set of products P , represented

by a closed feature expression γP of sort FExp, and a μLf -formula ϕf , a μLFO-
formula tr(γP, ϕf). We provide an explanation of this transformation, guided by
the family-based semantics of μLf , afterwards (cf. Definition 6).

Definition 9. The translation function tr : FExp × μLf → μLFO is given by

tr(γ,⊥)=⊥ tr(γ,�)=�
tr(γ,¬ϕf)=¬tr(γ, ϕf) tr(γ,X)=X̃(γ)

tr(γ, ϕf ∨ψf)=tr(γ, ϕf)∨tr(γ, ψf) tr(γ, μX.ϕf)=μX̃(υ:=γ).tr(υ, ϕf)
tr(γ, ϕf ∧ψf)=tr(γ, ϕf)∧tr(γ, ψf) tr(γ, νX.ϕf)=νX̃(υ:=γ).tr(υ, ϕf)

tr(γ,〈a|χ〉ϕf) = (γ ⇒χ) ∧ ∃υ.〈a(υ)〉((γ ⇒ υ) ∧ tr(γ∧χ∧υ, ϕf))
tr(γ, [a|χ]ϕf) = ∀υ.[a(υ)]((γ∧χ∧υ ⇒⊥) ∨ tr(γ∧χ∧υ, ϕf)) �	

Logical constants and propositional connectives are translated as expected. The
feature expression γ in our translation symbolically represents the set of products
that collectively can reach a given state in our parametrized LTS. Note that this
expression is ‘updated’ only in our translation of the modal operators and passed
on otherwise. For the 〈·|·〉-operator, the existence of a feature expression β in
Definition 6 with an a|β-transition is captured by the existentially quantified
data variable υ: a state s in a parametrized LTS satisfies ∃υ.〈a(υ)〉((γ ⇒ υ) ∧
tr(γ∧χ∧υ, ϕf)) only when a transition from s exists labeled with a parametrized
action a(β) such that for υ matching β, also γ ⇒ υ and tr(γ∧χ∧υ, ϕf) hold. Like-
wise, for the [·|·]-operator, the universal quantification over feature expressions
guarding transitions is captured by a universally quantified data variable υ that
is passed as a parameter to the action a. The formula (γ∧χ∧υ ⇒⊥) expresses
that the corresponding product families are disjoint.

Family-Based Model Checking with mCRL2 395

We utilize the data variables associated to recursion variables in tr(γ,X) to
pass the feature expression γ to the recursion variable X̃. A similar mechanism
applies to the fixpoint constructions. Thus, we assign γ to the data variable υ
associated with X̃, signified by the bindings μX̃(υ:=γ) and νX̃(υ:=γ), and use
the data variable in the translation of the remaining subformula, i.e. tr(υ, ϕf).

Next, we state the correctness of the translation.

Theorem 2. Let F be an FTS and let P be a set of products. For each μLf -
formula ϕf , state s ∈ S and product family P ⊆ P, it holds that

s, P |=F ϕf ⇐⇒ s |=L(F) tr(γP, ϕf)

Proof. (Sketch) The proof relies on the claim that, for state s, product family P ,
data environment θ, and feature expression γ such that θ(γ) = P , we have

(s, P) ∈ [[ϕf]]F (ζ) ⇐⇒ s ∈ [[tr(γ, ϕf)]]FO(ξ)(θ)

for environments ζ ∈ sPEnv, and ξ ∈ XEnv such that (s, P) ∈ ζ(X) iff
s ∈ ξ(X̃)(P) for all X ∈ X. The claim is shown by structural induction, exploit-
ing iteration for the fixpoint constructions. From the claim the theorem follows
directly. �	
As a consequence of the above theorem we can model check a μLf -formula over an
FTS by model checking the corresponding μLFO-formula over the corresponding
parametrized LTS.

Example 3. From Examples 1 and 2, recall FTS F of family
P and μLf -formula ψf stating that for products with e,
action std occurs infinitely often on all infinite runs over
{ins, xxl, std}. Take the corresponding parametrized LTS
L(F). Clearly, ψf holds in state s0 for all products without
both features e and $. mCRL2 can verify this, as deciding s0 , P ′ |=F ψf for the fam-
ily P ′ = {∅, {e}, {$}} translates to model checking s̄0 |=L(F) tr(γP , ψf), where
tr(γP , ψf) is the μLFO-formula

νX̃(υx :=γP).μỸ (υy :=υx).
(∀υ.[ins(υ)]

(
(υy∧ e∧ υ ⇒⊥) ∨ Ỹ (υy∧ e∧ υ)

) ∧
∀υ.[xxl(υ)]

(
(υy∧ e∧ υ ⇒⊥) ∨ Ỹ (υy∧ e∧ υ)

) ∧
∀υ.[std(υ)]

(
(υy∧ e∧ υ ⇒⊥) ∨ X̃(υy∧ e∧ υ)

))

Note the passing of γP via the respective assignments υx :=γP and υy :=υx. �	

396 M.H. ter Beek et al.

4 Family-Based Partitioning for µLf

With Theorem 2 in place we are in a position where family-based model-checking
a system can be performed using a standard μ-calculus model checker. The final
issue we face is to find, given a formula ϕf ∈μLf and a family of products P , the
subfamily of P whose products satisfy ϕf , as well as the subfamily whose pro-
ducts do not satisfy ϕf . Thus, given a negation-free formula ϕf and a family of
products P , we are interested in computing a partitioning (P⊕ , P�) of P such
that

∀p ∈ P⊕ : s∗, p |=F|p pr(ϕf , p) and ∀p ∈ P� : s∗, p �|=F|p pr(ϕf , p) (1)

Rather than establishing this product-by-product, we are after a procedure that
decides Property (1) in a family-based manner.

The previous section provides a sound decision procedure for s∗ , P |=F ϕf . If
the procedure returns true for the family P , we are done: Theorem 1 guarantees
that the property holds for all products of P , i.e. s∗ |=F|p pr(ϕf , p) for all p ∈ P .
If, on the other hand, the decision procedure for s∗, P |=F ϕf returns false and
P is not a singleton family, we cannot draw a conclusion for any of the products.
However, in view of Lemma 1 below, we can run the decision procedure to decide
s∗, P |=F ϕc

f , where ϕc
f is the complement of ϕf . Formally, for negation-free μLf -

formula ϕf , the formula ϕc
f is defined inductively by

⊥c = � (ϕf ∨ ψf)c = ϕc
f ∧ ψc

f (μX.ϕf)c = νX.ϕc
f

�c = ⊥ (ϕf ∧ ψf)c = ϕc
f ∨ ψc

f (νX.ϕf)c = μX.ϕc
f

Xc = X (〈a|χ〉ϕf)c = [a|χ]ϕc
f ([a|χ]ϕf)c = 〈a|χ〉ϕc

f

We have the following result.

Lemma 1. For each negation-free formula ϕf and set of products P , it holds
that s∗, P |=F ϕc

f implies s∗ �|=F|p pr(ϕf , p) for all p ∈ P .

Proof. Let ϕf ∈ μLf be closed and negation-free, and let P be a family of
products. For closed and negation-free ψf ∈ μLf , state s, and product p,

s |=F|p pr(ψc
f , p) ⇐⇒ s |=F|p ¬pr(ψf , p) (2)

a fact readily proven by induction on ψf . Assume s∗, P |=F ϕc
f . Observe, if ϕf

is negation-free then so is ϕc
f . Hence, by Theorem 1, s∗ |=F|p pr(ϕc

f , p) for every
p ∈ P . By Equivalence (2) we find s∗ �|=F|p pr(ϕf , p) for all p ∈ P . �	
On the lemma we base the straightforward partition procedure fbp(P,ϕf) of
Algorithm 1 for computing (P⊕ , P�) for a product family P such that each prod-
uct in P⊕ satisfies the μLf -formula ϕf , while each product in P� fails ϕf .

Family-Based Model Checking with mCRL2 397

Algorithm 1. Family-Based Partitioning
1: function fbp(P, ϕf)
2: if s∗, P |=F ϕf then return (P, ∅)
3: else
4: if s∗, P |=F ϕc

f then return (∅, P)
5: else partition P into (P1, P2)
6: (P+

1 , P−
1) ← fbp(P1, ϕf)

7: (P+
2 , P−

2) ← fbp(P2, ϕf)
8: return (P+

1 ∪ P+
2 , P−

1 ∪ P−
2)

9: end if
10: end if
11: end function

Theorem 3. For closed and negation-free ϕf , procedure fbp(P,ϕf) terminates
and returns a partitioning (P⊕, P�) of P satisfying Property (1).

Proof. Observe that the algorithm can be called at most 2|P | times as each call
is performed on a strictly smaller subset of P . Therefore, the algorithm termi-
nates iff the procedure for deciding s∗, P |=F ϕf terminates. The correctness of
the resulting partitioning (P⊕ , P�) follows by a straightforward induction, using
Theorem 1 and Lemma 1. �	
Example 4. Applying the algorithm to the FTS of Example 1 and the formula ψf

of Example 2, running fbp(�, ψf), we find s0,� �|=F ψf and s0,� �|=F ψc
f . Split-

ting the family in sets e ∧ $ and ¬(e ∧ $) and recursively running fbp(e ∧ $, ψf),
returns the partition (⊥, e∧ $), since we have s0 , e∧ $ |=F ψc

f , and subsequently
running fbp(¬(e∧$), ψf) returns (¬(e∧$),⊥) since s0 ,¬(e∧$) |=F ψf . Therefore
fbp(�, ψf) returns the partition (¬(e ∧ $), e∧ $). �	
Clearly, repeatedly splitting families into subfamilies may lead to an exponential
blow-up, in the worst case ultimately yielding a product-based analysis. Exam-
ples can be synthesized achieving this. However, in the SPL setting, an obvious
strategy to partition a family P is to split along a feature f, i.e. in the algorithm
set P1 = { p ∈ P | f ∈ p } and P2 = { p ∈ P | f /∈ p }. In general, the order of
subsequent features f will influence the number of split-ups needed. Fortunately,
candidate features for splitting along may be distilled from the structure of the
system and from specific domain knowledge. The experiments reported in the
next section confirm this. As we will see, with an appropriate decomposition a
low number of splittings will do.

5 Case Study

In this section, we report on our experiments to use the mCRL2 toolset to per-
form product-based and family-based model checking of an SPL model of the
minepump from [39], making use of the logics and translations discussed above.

398 M.H. ter Beek et al.

The SPL minepump model was first introduced in [4] as a reformulation of the
configurable software system controlling a pump for mine drainage. The purpose
of the minepump is to pump water out of a mine shaft, for which a controller
operates a pump that may not start nor continue running in the presence of
a dangerously high level of methane gas. Therefore, it communicates with a
number of sensors measuring the water and methane levels. Here, we consider
the model as used in [13] that consists of 7 independent optional features for
a total of 27 = 128 variants. These features concern command types, methane
detection, and water levels, abbreviated as Ct, Cp, Ma, Mq, L�, Ln, and Lh.

The minepump model of [13] is distributed with the ProVeLines SPL
toolset [18] (http://projects.info.unamur.be/fts/provelines/). We first manually
translated the fPROMELA model to a parametrized LTS encoded in mCRL2.1 For
our model checking we considered twelve properties expressed in μLf . The first
six are μ-calculus versions of LTL properties of [13] (four of which are analyzed
also in [8]). The others are CTL-like properties. Following the approach described
in this paper, the formulas were translated into μLFO and model checked over
the mCRL2 model representing a parametrized LTS. The properties, results, and
runtimes are summarized in Table 1. All our experiments were run on a standard
Macbook Pro using revision 14493 of the mCRL2 toolset.

Family-Based Model Checking. For each of the twelve properties, we provide its
intuitive meaning, its specification in μLf , and the result of model checking the
property (indicating also the number of products for which the result holds).
This concerns the first three columns of Table 1.2, 3 In the remaining columns,
we report the runtimes (in seconds) needed to verify the properties with mCRL2,
both product-based (one-by-one, abbreviated to ‘one’) and family-based (all-in-
one, abbreviated to ‘all’). We report the internal time as measured by the tools.
We immediately notice that family-based model checking with mCRL2 compares
rather favorably to product-based model checking.

Next we discuss the verification of the properties listed in Table 1. Absence
of deadlock turns out to be one of the more involved formulas to check family-
wise for the case of the minepump. This is because in search for the truth
value of the formula, all reachable states need to be visited. The μL-formula
[true∗]〈true〉�, translates to the μLf -formula [true∗ |�]〈true|�〉�. The main
complication arises from the fact that for each non-empty set of products P that
can reach a state s in the FTS, the family-based semantics of 〈true|�〉� requires
that there is a transition from s shared among all P . A partitioning of the set of
all products that is too coarse leads to a trace indicating a violation of the μLf -
formula. Next, the trace can be analyzed with the mCRL2 toolset to identify a
suitable decomposition into subfamilies.
1 The mCRL2 code is distributed with the mCRL2 toolset (svn revision 14493).
2 For a compact presentation of formulas in Table 1 we allow regular expressions in

the modalities as syntactic sugar, as done in [22,37].
3 Standard μ-calculus formulas in μL can be seen as μLf -formulas by adjoining the

feature expression � to every modality, i.e. replacing each ‘diamond’ modality 〈a〉
by 〈a|�〉 and each ‘box’ modality [a] by [a|�].

http://projects.info.unamur.be/fts/provelines/

Family-Based Model Checking with mCRL2 399

Table 1. Minepump properties and results (true/false) and runtimes (in seconds) of
both product-based (one-by-one) and family-based (all-in-one) verification with mCRL2

For the minepump we identified 12 subfamilies, whose sets of trajectories
are pairwise independent (i.e. for any two distinct subfamilies there exists a
complete path possible for all products in one family, but not for all products
in the other, and vice versa). These are the product sets characterized by the
feature expressions Ct ∧ C̃p ∧ M̃a ∧ M̃q, where f̃ = f,¬f, yielding eight families,
and four further families yielded by the product sets given by ¬Ct ∧ C̃p ∧ M̃a.
As we shall see below, the combinations of features mentioned turn up in the
analysis of other properties as well, which shows that the analysis of deadlock
freedom (property ϕ1) is a fruitful investigation.

Since no specific feature setting is involved in performing levelMsg infinitely
often (for a stable and acceptable water level), property ϕ2 can be refuted for the
complete family of products at once by proving its complement. Also property ϕ3,
seemingly more complex, can be refuted via its complement, requiring a decom-
position in subfamilies given by the four Boolean combinations of Cp and Ma.

400 M.H. ter Beek et al.

The properties discussed so far cover general system aspects: absence of dead-
lock, future execution of an action, and fairness between subsystems. In contrast,
property ϕ4 is specific to the minepump model. The property, modeled as a
fluent [40], states that every computation involving pumpStart has, after a while,
a finite number of alternations of starting and subsequent stopping the pump
(fluent pumpStart.(¬pumpStop)∗.pumpStop), after which it is never again
started, and after starting the pump (fluent true∗.pumpStart) it is inevitably
switched off. This property does not hold for all eligible products. However, a
decomposition into a subfamily of 96 products given by ¬(Ct∧Lh), i.e. products
missing Ct or Lh, and in two subfamilies Ct ∧Mq ∧ Lh and Ct ∧ ¬Mq ∧ Lh, of
32 products in total, does the job. The products in the first family satisfy ϕ4,
whereas products in the second and third family do not.

More involved system properties are ϕ5 and ϕ6, mixing starting and stop-
ping of the pump with the rising and dropping of the methane level. Property ϕ5

considers the rising of methane after the pump started but did not stop (fluent
pumpStart.(¬pumpStop)∗.methaneRise) and, symmetrically, starting the pump
after the methane level rose (fluentmethaneRise.(¬methaneLower)∗.pumpStart).
Formula ϕ6 is a refinement of formula ϕ5, restricting it to fair computations. For
property ϕ5, family-based model checking is achieved using the same decomposi-
tion of the product space, with the same outcome, as for property ϕ4. For prop-
erty ϕ6, because of the fairness requirement, the number of satisfying products
increases from 96 to 112. This can be checked for all 112 products at once. To
identify the violating products, we consider ϕ6’s complement ϕc

6 which is proven
to hold for the family Ct ∧ ¬Ma ∧ Lh of 16 products as a whole.

An important liveness property for circuit design, the so-called reset property
AGEF reset , is expressible in CTL, but not in LTL (cf., e.g., [41]). For our case
study, ϕ7 is such a reset property. It states that from any state the controller
can, possibly after a finite number of steps, receive a message. Thus, it can
always return to the initial state. The μL-formula [true∗] 〈true∗.receiveMsg〉�
can be verified using the same split-up in subfamilies that was used before for
absence of deadlock (ϕ1). A typical safety property is property ϕ8, expressing
that the pump is not started as long as water levels are low. It holds for all
products, which can be verified for all product families at once. The third CTL-
type property ϕ9 states that when the level of methane rises, it inevitably drops
again. It holds for no products. Refuting ϕ9 can also be done for all product
families at once.

Finally, we have verified feature-rich μLf -formulas. Properties ϕ10 and ϕ11

focus on the family of products featuring Ct by means of the modalities
[true∗ |Ct] and 〈true∗. pumpStart |Ct〉. However, by definition of pr, for prod-
ucts without feature Ct, property ϕ10 translates into ⊥ of μL. Since a formula
[R∗|χ]ϕ is to be read as νX.[R|χ]X ∧ ϕ, we have that property ϕ11, for prod-
ucts without Ct, coincides with νX.[true|Ct] ∧ ⊥. Apparently, comparing ϕ10

and ϕ11, four more products with Ct (viz. those without any Cp, L�, or Ma) fail
to meet the stronger ϕ11. Finally, property ϕ12 holds for all products. Note that
the first conjunct [highLevel |Ct ∧Ma ∧ Lh] 〈true∗. pumpStart | �〉� is trivially
true for products without any Ct, Ma, or Lh due to the box modality, while the

Family-Based Model Checking with mCRL2 401

second conjunct [pumpStart | ¬Lh] ⊥ holds trivially for products that include Lh.
Model checking this property requires a decomposition into two subfamilies, viz.
the set of products with the feature Mq and the set of products without.

Family-Based Partitioning. The results from the case study underline that
family-based model checking has the potential to outperform product-based
model checking. Next, we explore the requirements for a successful implementa-
tion of family-based partitioning using off-the-shelf technology.

Figure 1 (left) shows the runtimes (in seconds) associated with the model-
checking problems of lines 2 and 4 of Algorithm1 for deadlock freedom (prop-
erty ϕ1). The total time needed to run this algorithm, given the refinement strat-
egy indicated in Fig. 1, is 27.9 s. Observe that checking all leaves takes 8.4 s.4 We
see similar figures for other properties we verified.

Fig. 1. Execution of Algorithm 1 for deadlock freedom (property ϕ1) and the initial
product family �, using an optimal partitioning strategy (depicted on the left) vs. using
an ‘unproductive’ refinement strategy, splitting Ln and ¬Ln and following the optimal
strategy afterwards (excerpt depicted on the right). The characterized family described
at each node is the conjunction of the features along the path from the root to that
node. Total computation time for the optimal strategy: 27.9 s; total computation time
for the 12 leaves (i.e. all Mq, ¬Mq, and ¬Ct nodes): 8.4 s. Total computation time for
partitioning using the ‘unproductive’ strategy: 45.0 s.

We draw two further conclusions from our experiments. First, as expected,
refining a family of products with respect to non-relevant features can have a
negative effect on runtime. For instance, partitioning with respect to a single
non-essential feature Ln at an early stage, cf. Fig. 1 (right), while following an
optimal splitting otherwise, increases the runtime to 45 s; i.e. an additional 60%.
Second, as illustrated by Fig. 1 (left), even for ‘productive’ refinements, model
checking a property for a large family of products can consume a disproportionate
amount of time. For instance, the three top nodes together account for almost
8 s, a quarter of the time spent on all model-checking problems combined.
4 The additional overhead of approximately 6 s compared to the 2.07 s we reported in

Table 1 is due to the fact that there we could inspect the model once for all possible
families, whereas here we must inspect the model once per family.

402 M.H. ter Beek et al.

We conclude that the performance of SPL verification using a general-purpose
model checker for family-based partitioning crucially depends on the initial par-
titioning of products and the ‘quality’ of the refinements of families of products
in the algorithm. This suggests that one must invest in: (i) determining heuris-
tics for finding a good initial partitioning of a family of products, (ii) extract-
ing information from the failed model-checking problems that facilitates an
informed/productive split-up of the family of products in line 5 of Algorithm1. In
particular for the μ-calculus, the second challenge may be difficult, since easily-
interpretable feedback from its model checkers is generally missing so far.

6 Concluding Remarks and Future Work

We have showed how the feature μ-calculus μLf can be embedded in μLFO, a
logic accepted by toolsets such as mCRL2. Through this embedding, we obtain
a family-based model-checking procedure for verifying μ-calculus properties of
SPLs, and similar systems with variability, using off-the-shelf verifiers. Moreover,
as our experiments indicate, the resulting family-based model-checking approach
trumps the product-based model-checking approach of [19].

The efficiency of computing a partitioning of a product family from which
we can read which products satisfy which formula, strongly depends on the
adopted strategy for splitting product families and may constitute a bottleneck
in practice. We leave it for future research to find heuristics to guide this splitting.
One possibility may be to deduce an effective strategy from the lattice of product
families that can be obtained by exploring the FTS model and keeping track of
(the largest) product families that are capable of reaching states. This lattice may
even allow for determining a proper partitioning a priori. Another potentially
promising direction is to split product families using information that is obtained
from counterexamples. Indeed, in our product-based and family-based model-
checking experiments we used counterexamples to find suitable subfamilies of
products by splitting with respect to feature expressions on transitions that
led to the violations. We must note, however, that this was largely a manual
activity which required a fair share of tool experience. More generally, we note
that constructing and interpreting counterexamples for the modal μ-calculus is
notoriously difficult, as such counterexamples are not necessarily linear.

Finally, we believe that for particular properties specific insight regarding the
model under study is required to quickly identify a successful split-up. We liken
this to the approach taken in [8], where the theory of Galois connections is used
to establish suitable abstractions of the minepump model prior to model checking
with SPIN; we quote “Given sufficient knowledge of the system and the property,
we can easily tailor an abstraction for analyzing the system more effectively”.
It is indeed common in SPL engineering to assume substantial understanding
of the SPL under scrutiny, in particular of its commonalities and variability as
documented in variability models like feature diagrams.

Family-Based Model Checking with mCRL2 403

Acknowledgements. Maurice ter Beek was supported by the EU FP7 project
QUANTICOL (600708). The authors are grateful to Franco Mazzanti for his help with
the minepump model. Finally, we thank the anonymous referees for their suggestions,
which helped improve the presentation of this paper.

References

1. Thüm, T., et al.: A classification and survey of analysis strategies for software
product lines. ACM Comput. Surv. 47(1), 1–45 (2014)

2. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68863-1 8

3. Lauenroth, K., Pohl, K., Töhning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: ASE, pp. 269–280. IEEE (2009)

4. Classen, A., et al.: Model checking lots of systems: efficient verification of temporal
properties in software product lines. In: ICSE, pp. 335–344. ACM (2010)

5. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 193–207. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 15

6. Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verification
of software product lines. In: GPCE, pp. 11–20. ACM (2012)

7. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-based
analysis of software product lines. In: SPLC, pp. 432–439. ACM (2015)

8. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Cham (2015). doi:10.
1007/978-3-319-23404-5 18

9. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. C. ACM 52(11), 74–84 (2009)

10. Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts
of software product lines. In: SPLC, pp. 203–212. IEEE (2008)

11. ter Beek, M.H., Lluch Lafuente, A., Petrocchi, M.: Combining declarative and
procedural views in the specification and analysis of product families. In: SPLC,
vol. 2, pp. 10–17. ACM (2013)

12. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: Incremental model checking
delta-oriented software product lines. J. Log. Algebr. Meth. Program. 85(1), 245–
267 (2016)

13. Classen, A., et al.: Featured transition systems: foundations for verifying
variability-intensive systems and their application to LTL model checking. IEEE
Trans. Softw. Eng. 39(8), 1069–1089 (2013)

14. Classen, A., et al.: Formal semantics, modular specification, and symbolic verifica-
tion of product-line behaviour. Sci. Comput. Program. 80(B), 416–439 (2014)

15. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016)

16. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 36

17. Classen, A., et al.: Model checking software product lines with SNIP. Int. J. Softw.
Tools Technol. Transf. 14(5), 589–612 (2012)

http://dx.doi.org/10.1007/978-3-540-68863-1_8
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-642-32759-9_36

404 M.H. ter Beek et al.

18. Cordy, A., et al.: ProVeLines: a product line of verifiers for software product lines.
In: SPLC, vol. 2, pp. 141–146. ACM (2013)

19. ter Beek, M.H., de Vink, E.P.: Using mCRL2 for the analysis of software product
lines. In: FormaliSE, pp. 31–37. IEEE (2014)

20. ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Towards a feature mu-calculus
targeting SPL verification. In: FMSPLE, EPTCS, vol. 206, pp. 61–75 (2016)

21. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

22. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

23. Kim, C.H.P., et al.: SPLat: lightweight dynamic analysis for reducing combinatorics
in testing configurable systems. In: ESEC/FSE, pp. 257–267. ACM (2013)

24. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer,
D.: Facilitating reuse in multi-goal test-suite generation for software product lines.
In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 84–99. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 6

25. Lity, S., Morbach, T., Thüm, T., Schaefer, I.: Applying incremental model slicing
to product-line regression testing. In: Kapitsaki, G.M., Santana de Almeida, E.
(eds.) ICSR 2016. LNCS, vol. 9679, pp. 3–19. Springer, Cham (2016). doi:10.1007/
978-3-319-35122-3 1

26. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software
product lines: expressiveness and testing pre-orders. Sci. Comput. Program. 123,
42–60 (2016)

27. Ghezzi, C., Sharifloo, A.: Model-based verification of quantitative non-functional
properties for software product lines. Inform. Softw. Technol. 55(3), 508–524 (2013)

28. Varshosaz, M., Khosravi, R.: Discrete time markov chain families: modeling and
verification of probabilistic software product lines. In: SPLC, vol. 2, pp. 34–41.
ACM (2013)

29. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: HASE, pp. 173–180. IEEE (2015)

30. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. In: Chiba, S., Tanter, É., Ernst, E., Hirschfeld, R. (eds.) Transac-
tions on Aspect-Oriented Software Development XII. LNCS, vol. 8989, pp. 180–220.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46734-3 5

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

32. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and
analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49665-7 17

33. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
SPLC, pp. 11–15. ACM (2015)

34. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model check-
ing for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9952, pp. 114–133. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2 8

35. Bradfield, J.C., Stirling, C.: Modal logics and μ-calculi: an introduction. In: Hand-
book of Process Algebra, Chap. 4, pp. 293–330. Elsevier (2001)

http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-662-46675-9_6
http://dx.doi.org/10.1007/978-3-319-35122-3_1
http://dx.doi.org/10.1007/978-3-319-35122-3_1
http://dx.doi.org/10.1007/978-3-662-46734-3_5
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-662-49665-7_17
http://dx.doi.org/10.1007/978-3-319-47166-2_8

Family-Based Model Checking with mCRL2 405

36. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Haeberer, A.M. (ed.) AMAST 1999. LNCS, vol. 1548, pp.
74–90. Springer, Heidelberg (1998). doi:10.1007/3-540-49253-4 8

37. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput.
Program. 56(3), 251–273 (2005)

38. Zantema, H., van de Pol, J.C.: A rewriting approach to binary decision diagrams.
J. Log. Algebr. Program. 49(1–2), 61–86 (2001)

39. Kramer, J., Magee, J., Sloman, M., Lister, A.: CONIC: an integrated approach to
distributed computer control systems. IEE Proc. E 130(1), 1–10 (1983)

40. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: ESEC/FSE, pp. 257–266. ACM (2003)

41. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

http://dx.doi.org/10.1007/3-540-49253-4_8

	Family-Based Model Checking with mCRL2
	1 Introduction
	2 A Feature -Calculus -1mu L -1mu f over FTSs
	3 Family-Based Model Checking with mCRL2
	3.1 The First-Order -Calculus -1mu L -0.5mu FO
	3.2 Translating the Family-Based Interpretation of -1mu L -1mu f to -1mu L -0.5mu FO

	4 Family-Based Partitioning for -1mu L -1mu f
	5 Case Study
	6 Concluding Remarks and Future Work
	References

