
Unifying Guarded and Unguarded Iteration

Sergey Goncharov1(B), Lutz Schröder1, Christoph Rauch1, and Maciej Piróg2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
sergey.goncharov@fau.de

2 Department of Computer Science, KU Leuven, Leuven, Belgium

Abstract. Models of iterated computation, such as (completely) itera-
tive monads, often depend on a notion of guardedness, which guarantees
unique solvability of recursive equations and requires roughly that recur-
sive calls happen only under certain guarding operations. On the other
hand, many models of iteration do admit unguarded iteration. Solutions
are then no longer unique, and in general not even determined as least
or greatest fixpoints, being instead governed by quasi-equational axioms.
Monads that support unguarded iteration in this sense are called (com-
plete) Elgot monads. Here, we propose to equip monads with an abstract
notion of guardedness and then require solvability of abstractly guarded
recursive equations; examples of such abstractly guarded pre-iterative
monads include both iterative monads and Elgot monads, the latter by
deeming any recursive definition to be abstractly guarded. Our main
result is then that Elgot monads are precisely the iteration-congruent
retracts of abstractly guarded iterative monads, the latter being defined
as admitting unique solutions of abstractly guarded recursive equations;
in other words, models of unguarded iteration come about by quotienting
models of guarded iteration.

1 Introduction

In recursion theory, notions of guardedness traditionally play a central role.
Guardedness typically means that recursive calls must be in the scope of cer-
tain guarding operations, a condition aimed, among other things, at ensuring
progress. The paradigmatic case are recursive definitions in process algebra,
which are usually called guarded if recursive calls occur only under action pre-
fixing [6]. A more abstract example are completely iterative theories [11] and
monads [19], where, in the latter setting, a recursive definition is guarded if it
factors through a given ideal of the monad. Guarded recursive definitions typ-
ically have unique solutions; e.g. the unique solution of the guarded recursive
definition

X = a.X

is the process that keeps performing the action a.
For unguarded recursive definitions, the picture is, of course, different.

E.g. to obtain the denotational semantics of an unproductive while loop
while true do skip characterized by circular operational behavior

while true do skip → skip;while true do skip → while true do skip

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 517–533, 2017.
DOI: 10.1007/978-3-662-54458-7 30

518 S. Goncharov et al.

one will select one of many solutions of this trivial equation, e.g. the least solution
in a domain-theoretic semantics.

Sometimes, however, one has a selection among non-unique solutions of
unguarded recursive equations that is not determined order-theoretically, i.e.
by picking least or greatest fixpoints. One example arises from coinductive
resumptions [16,25,26]. In the paradigm of monad-based encapsulation of side-
effects [21], coinductive resumptions over a base effect encapsulated by a
monad T form a coinductive resumption transform monad T ν given by

T νX = νγ. T (X + γ) (1)

– that is, a computation over X performs a step with effects from T , and then
returns either a value from X or a resumption that, when resumed, proceeds
similarly, possibly ad infinitum. We generally restrict to monads T for which (1)
exists for all X (although many of our results do not depend on this assump-
tion). Functors (or monads) T for which this holds are called iteratable [1]. Most
computationally relevant monads are iteratable (notable exceptions in the cate-
gory of sets are the powerset monad and the continuation monad). Notice that
one has a natural delay map T νX → T νX that converts a computation into
a resumption, i.e. prefixes it with a delay step. In fact, for T = id, T ν is pre-
cisely Capretta’s partiality monad [8], also called the delay monad. It is not in
general possible to equip T νX with a domain structure that would allow for
selecting least or greatest solutions of unguarded recursive definitions over T ν .
However, one can select solutions in a coherent way, that is, such that a range of
natural quasi-equational axioms is satisfied, making T ν into a (complete) Elgot
monad [2,15].

In the current work we aim to unify theories of guarded and unguarded iter-
ation. To this end, we introduce a notion of abstractly guarded monads, that is,
monads T equipped with a distinguished class of abstractly guarded equation
morphisms satisfying some natural closure properties (Sect. 3). The notion of
abstract guardedness can be instantiated in various ways, e.g. with the class
of immediately terminating ‘recursive’ definitions, with the class of guarded
morphisms in a completely iterative monad, or with the class of all equation
morphisms. We call an abstractly guarded monad pre-iterative if all abstractly
guarded equation morphisms have a solution, and iterative if these solutions are
unique. Then completely iterative monads are iterative abstractly guarded mon-
ads in this sense, and (complete) Elgot monads are pre-iterative, where we deem
every equation morphism to be abstractly guarded in the latter case.

The quasi-equational axioms of Elgot monads are easily seen to be satisfied
when fixpoints are unique, i.e. in iterative abstractly guarded monads, and more-
over stable under iteration-congruent retractions in a fairly obvious sense. Our
first main result (Sect. 5, Theorem 22) states that the converse holds as well, i.e.
a monad T is a complete Elgot monad iff T is an iteration-congruent retract of
an iterative abstractly guarded monad – specifically of T ν as in (1). As a slogan,

monad-based models of unguarded recursion arise by quotienting models
of guarded recursion.

Unifying Guarded and Unguarded Iteration 519

Our second main result (Theorem 26) is an algebraic characterization of complete
Elgot monads: We show that the construction (−)ν mapping a monad T to T ν

as in (1) is a monad on the category of monads (modulo existence of T ν), and
complete Elgot monads are precisely those (−)ν-algebras T that cancel the delay
map on T ν , i.e. interpret the delay operation as identity.

As an illustration of these results, we show (Sect. 6) that sandwiching a
complete Elgot monad between adjoint functors again yields a complete Elgot
monad, in analogy to a corresponding result for completely iterative monads [26].
Specifically, we prove a sandwich theorem for iterative abstractly guarded mon-
ads and transfer it to complete Elgot monads using our first main result. For
illustration, we then relate iteration in ultrametric spaces using Escardó’s metric
lifting monad [12] to iteration in pointed cpo’s, by noting that the correspond-
ing monads on sets obtained using our sandwich theorems are related by an
iteration-congruent retraction in the sense of our first main result.

2 Preliminaries

We work in a category C with finite coproducts. We fix the notation ini : Xi →
X1 + . . . + Xn for the i-th injection. A morphism σ : Y → X is a summand of
X, which we denote σ : Y X, if there is σ′ : X ′ → X such that X is a
coproduct of Y and X ′ with σ and σ′ being coproduct injections. The morphism
σ′ is called a (coproduct) complement of σ and by definition is also a summand.
We are not assuming that C is extensive, and coproduct complements are not
in general uniquely determined.

A monad T over C can be given in a form of a Kleisli triple (T, η, --�) where
T is an endomap over the objects |C| of C, the unit η is a family of morphisms
(ηX : X → TX)X∈|C|, Kleisli lifting (--)� is a family of maps : Hom(X,TY) →
Hom(TX, TY), and the monad laws are satisfied:

η� = id, f�η = f, (f�g)� = f�g�.

The standard (equivalent) categorical definition [18] of T as an endofunctor
with natural transformation unit η : Id → T and multiplication μ : TT → T
can be recovered by taking Tf = (η f)�, μ = id�. (We adopt the convention that
monads and their functor parts are denoted by the same letter, with the former
in blackboard bold.) We call morphisms X → TY Kleisli morphisms and view
them as a high level abstraction of sequential programs with T encapsulating the
underlying computational effect as proposed by Moggi [22], with X representing
the input type and Y the output type. A more traditional use of monads in
semantics is due to Lawvere [17], who identified finitary monads on Set with
algebraic theories, hence objects TX can be viewed as sets of terms of the theory
over free variables from X, the unit as the operation of casting a variable to a
term, and Kleisli composition as substitution. We informally refer to this use of
monads as algebraic monads.

A(n F -)coalgebra is a pair (X, f : X → FX) where X ∈ |C| and F : C → C
is an endofunctor. Coalgebras form a category, with morphisms (X, f) → (Y, g)

520 S. Goncharov et al.

being C-morphisms h : X → Y such that (Fh) f = gh. A final object of this
category is called a final coalgebra, and we denote it by (νF, out : νF → FνF) if
it exists. For brevity, we will be cavalier about existence of final coalgebras and
silently assume they exist when we need them; that is, we hide sanity conditions
on the involved functors, such as accessibility. By definition, νF comes with
coiteration as a definition principle (dual to the iteration principle for algebras):
given a coalgebra (X, f : X → FX) there is a unique morphism (coit f) : X →
νF such that

out (coit f) = F (coit f) f.

This implies that out is an isomorphism (Lambek’s lemma) and that coit out = id
(see [29] for more details about coalgebras for coiteration).

We generally drop sub- and superscripts, e.g. on natural transformations,
whenever this improves readability.

3 Guarded Monads

The notion of guardedness is paramount in process algebra: typically one consid-
ers systems of mutually recursive process definitions of the form xi = ti, and a
variable xi is said to be guarded in tj if it occurs in tj only in subterms of the form
a.s where a.(--) is action prefixing. A standard categorical approach is to replace
the set of terms over variables X by an object TX where T is a monad. We then
can model separate variables by partitioning X into a sum X1 + . . . + Xn and
thus talk about guardedness of a morphism f : X → T (X1+ . . .+Xn) in any Xi,
meaning that every variable from Xi is guarded in f . Since Kleisli morphisms can
be thought of as abstract programs we can therefore speak about guardedness
of a program in a certain portion of the output type, e.g. Xi X1 + . . . + Xn.
One way to capture guardedness categorically is to identify the operations of T
that serve as guards by distinguishing a suitable subobject of T; e.g. the defini-
tion of completely iterative monad [19] follows this approach. For our purposes,
we require a yet more general notion where we just distinguish some Kleisli
morphisms as being guarded in certain output variables. This is formalized as
follows.

Definition 1 ((Abstractly) guarded monad). We call a monad T

(abstractly) guarded if it is equipped with a notion of (abstract) guardedness, i.e.
with a relation between morphisms f : X → TY and summands of Y (by putting
the word ‘abstract’ in brackets we mean that we will often omit it later). We call
f : X → TY (abstractly) σ-guarded if f and σ : Y ′ Y are in this relation,
and then write f : X →σ TY . Abstract guardedness is required to be closed
under the rules in Fig. 1. In rule (wkn), σ and θ are composable summands.

Given guarded monads T, S, a monad morphism α : T → S is (abstractly)
guarded if whenever f : X →σ TY then αf : X →σ SY .

Intuitively, (trv) says that if a program does not output anything via a sum-
mand of the output type then it is guarded in that summand. Rule (wkn) is a

Unifying Guarded and Unguarded Iteration 521

Fig. 1. Axioms of guardedness.

weakening principle: if a program is guarded in some summand then it is guarded
in any subsummand of that summand. Rule (cmp) asserts that guardedness is
preserved by composition: if the unguarded part of the output of a program is
postcomposed with a σ-guarded program then the result is σ-guarded, no matter
how the guarded part is transformed. Finally, rule (sum) says that putting two
guarded equation systems side by side again produces a guarded system. The
rules are designed so as to enable a reformulation of the classical laws of iteration
w.r.t. abstract guardedness, as we shall see in Sect. 5.

We write f : X →i1,...,ik T (X1 + . . . + Xn) as a shorthand for f : X →σ

T (X1 + . . . + Xn) with σ = [ini1 , . . . , inik] : Xi1 + . . . + Xik X1 + . . . + Xn.
More generally, we sometimes need to refer to components of some Xij . This
amounts to replacing the corresponding ij with a sequence of pairs ijnj,m, and
inij with inij [innj,1 , . . . , innj,kj

], so, e.g. we write f : X →12,2 T ((Y + Z) + Z)
to mean that f is [in1 in2, in2]-guarded. Where coproducts Y + Z etc. appear
in the rules, we mean any coproduct, not just some selected coproduct. We
defined the notion of guardedness as a certain relation over Kleisli morphisms
and summands. Clearly, the largest such relation is the one declaring all Kleisli
morphisms to be σ-guarded for all σ. We call monads equipped with this notion
of guardedness totally guarded. It turns out that for every monad we also have
a least guardedness relation.

Definition 2. Let T be a monad. A morphism f : X → TY is trivially σ-
guarded for σ : Z Y if f factors through Tσ′ for a coproduct complement σ′

of σ.

Proposition 3. Let T be a monad. Then taking the abstractly guarded mor-
phisms to be the trivially guarded morphisms is the least guardedness relation
making T into a guarded monad.

We call a guarded monad trivially guarded if all its abstractly guarded morphisms
are trivially guarded. As we see, the notion of abstract guardedness can vary on
a large spectrum from trivial guardedness to total guardedness, thus somewhat
detaching abstract guardedness from the original intuition. It is for this reason
that we introduced the qualifier abstract into the terminology; for brevity, we
will omit this qualifier in the sequel in contexts where no confusion is likely,
speaking only of guarded monads, guarded morphisms etc.

522 S. Goncharov et al.

Remark 4. Although by (wkn), f : X →1,2 T (Y + Z) implies both f : X →1

T (Y + Z) and f : X →2 T (Y + Z), the converse is not required to be true, and
in fact can fail even for trivial guardedness. This is witnessed by the following
simple counterexample. Let T be the algebraic monad given by taking TX to be
the free commutative semigroup over X satisfying the additional law x + y = x.
Now the term x + y ∈ T (X + Y) (seen as a morphism 1 → T (X + Y)) with
x ∈ X and y ∈ Y is both in1-guarded and in2-guarded, being equivalent both to
y and to x. But it is not id-guarded, because it does not factor through T∅ = ∅.
As usual, guardedness serves to identify systems of equations that admit solu-
tions according to some global principle:

Definition 5 (Guarded (pre-)iterative monad). Given f : X →2 T (Y +X),
we say that f† : X → TY is a solution of f if f† satisfies the fixpoint identity
f† = [η, f†]�f . A guarded monad T is guarded pre-iterative if it is equipped with
an iteration operator that assigns to every in2-guarded morphism f : X →2

T (Y + X) a solution f† of f . If every such f has a unique solution, we call T
guarded iterative.

We can readily check that the iteration operator preserves guardedness.

Proposition 6. Let T be a guarded pre-iterative monad, let σ : Y ′ Y , and
let f : X →σ+id T (Y + X). Then f† : X →σ TY .

In trivially guarded monads, there is effectively nothing to iterate, so we have

Proposition 7. Every trivially guarded monad is guarded iterative.

Guardedness in Completely Iterative Monads. One instance of our notion
of abstract guardedness is found in completely iterative monads [19], which are
based on idealised monads. To make this precise, we need to recall some defin-
itions. First, a module over a monad T on C is a pair (M, --◦), where M is an
endomap over the objects of C, while the lifting --◦ is a map Hom(X,TY) →
Hom(MX,MY) such that the following laws are satisfied:

η◦ = id, g◦f◦ = (g�f)◦.

Note that M extends to an endofunctor by taking Mf = (ηf)◦. Next, a module-
to-monad morphism is a natural transformation ξ : M → T that satisfies
ξf◦ = f�ξ. We call the triple (T,M, --◦, ξ) an idealised monad ; when no con-
fusion is likely, we refer to these data just as T. Following [19], we can then
define guardedness as follows:

Definition 8. Given an idealised monad T as above, a morphism f : X →
T (Y + X) is guarded if it factors via [η in1, ξ] : Y + M(Y + X) → T (Y + X).
Then, T is a completely iterative monad if every such guarded f has a unique
solution.

Unifying Guarded and Unguarded Iteration 523

It turns out that this notion of guardedness is not an instance of our notion of
abstract guardedness. Fortunately, we can fix this by noticing that completely
iterative monads actually support iteration for a wider class of morphisms:

Definition 9. Let (T,M, --◦, ξ) be an idealised monad. Given σ : Z Y , we
say that a morphism f : X → TY is weakly σ-guarded if it factors through
[ησ′, ξ]� : T (Y ′ + MY) → TY for a complement σ′ : Y ′ Y of σ.

Since a morphism that factors as [η in1, ξ]f can be rewritten as [η in1, ξ]�ηf , every
guarded morphism in an idealised monad is also weakly guarded.

Theorem 10. Let (T,M, --◦, ξ) be an idealised monad. Then the following hold.

1. T becomes abstractly guarded when equipped with weak guardedness as the
notion of abstract guardedness.

2. If T is completely iterative, then every weakly in2-guarded morphism f : X →
T (Y + X) has a unique solution.

That is, completely iterative monads are abstractly guarded iterative monads
w.r.t. weak guardedness.

4 Parametrizing Guardedness

Uustalu [28] defines a parametrized monad to be a functor from a category C
to the category of monads over C. We need a minor adaptation of this notion
where we allow parameters from a different category than C, and simultaneously
introduce a guarded version of parametrized monads:

Definition 11 (Parametrized guarded monad). A parametrized (guarded)
monad is a functor from a category D to the category of (guarded) monads
and (guarded) monad morphisms over C. Alternatively (by uncurrying), it is
a bifunctor # : C × D → C such that for any X ∈ |D|, --#X : C → C is a
(guarded) monad, and for every f : X → Y , id # f : Z # X → Z # Y is the
Z-component of a (guarded) monad morphism --#f : --#X → --#Y .

A parametrized (guarded) monad morphism between guarded monads qua
functors into the category of monads over C is a natural transformation that is
componentwise a monad morphism. In uncurried notation, given parametrized
monads #, #̂ : C×D → C a natural transformation α : # → #̂ is a parametrized
(guarded) monad morphism if for each X ∈ |D|, α--,X : --#X → -- #̂X is a
(guarded) monad morphism.

Guardedness of the monad morphisms --#f means explicitly that g : Z →σ

V # X implies (id# f) g : Z →σ V # Y .

Example 12. For the purposes of the present work, the most important exam-
ple (taken from [28]) is # = T (-- +Σ --) : C × C → C where T is a (non-
parametrized) monad on C and Σ is an endofunctor on C. Informally, T cap-
tures a computational effect, e.g. nondeterminism for T being powerset, and Σ

524 S. Goncharov et al.

captures a signature of actions, e.g. ΣX = A×X, as in process algebra. Specif-
ically, taking A = 1 we obtain X # Y = T (X + Y); in this case, we have only
one guard, which can be interpreted as a delay. The second argument of # can
thus be thought of as designated for guarded recursion.

Incidentally, our modification of parametrized monads also covers Atkey’s
parametrized monads [5], which are certain functors S× Sop ×C → C forming
a monad in the third argument. The first and the second arguments serve, e.g.,
to parametrize the computational effect of interest with initial and final states
of different types.

Theorem 13. Let # : C× (C×D) → C be a parametrized monad, with unit η
and Kleisli lifting (−)�. Then

X #ν Y = νγ.X # (γ, Y)

defines a parametrized monad #ν : C×D → C whose unit and Kleisli lifting we
denote ην and --�, respectively. Moreover,

1. If # is guarded then so is #ν with guardedness defined as follows: given σ :
Y ′ Y , f : X → Y #ν Z is σ-guarded if outf : X → Y # (Y #ν Z,Z) is
σ-guarded.

2. If # is pre-iterative under an iteration operator --† then so is #ν with the
iteration operator --‡ defined as follows:

(
f : X →2 (Y + X) #ν Z

)‡ = coit
(
[η, (outf)†]�out

)
ην in2

3. If # is iterative then so is #ν under the definition from the previous clause.

Example 14. We spell out one instance of Theorem 13 in case D = 1 and
= T (-- + --) where T = (T, η, --�) is a monad. Then #ν is isomorphically a
monad T

ν on C with T νX = νγ. T (X + γ), unit ην = η in1 and Kleisli star
(f : X → T νY)� being uniquely determined by the equation

outf� = [outf, η in2f
�]�out.

If T is pre-iterative then so is T
ν with iteration

(f : X → T ν(Y + X))‡ = coit
(
[η in2, (T [in1 + id, in1 in2]out f)†]�out

)
ην in2.

Example 15. Theorem 13 shows that our notion of guardedness extends along
the applications of the final coalgebra transformer # �→ #ν on parametrized
monads. This can be used to capture existing notions of guardedness as follows.
Consider X # Y = T (X + (1 + A) × Y) where T is some monad. In Set, 1 + A
can be thought of as consisting of a set A of visible actions and a silent action τ .
In process algebra we standardly consider a process definition to be guarded if
every recursive call is preceded by a visible action from A. In our framework this
can be reconstructed as follows. The obvious isomorphism

νγ. T (X + (1 + A) × γ) ∼= νγ′. νγ. T (X + γ + A × γ′)

Unifying Guarded and Unguarded Iteration 525

involves two more parametrized monads: T (-- + -- +A× --) : C×C×C → C and
νγ. T (-- +γ + A × --) : C×C → C. By taking the latter to be trivially guarded
and then defining guardedness for νγ′. νγ. T (X + γ +A× γ′) using Theorem 13,
we arrive precisely at the notion we expected for the isomorphic monad #ν .

5 Complete Elgot Monads and Iteration Congruences

Besides the fixpoint identity we are interested in the following classical properties
of the iteration operator, which we refer to as the iteration laws [7,10,27]:

– naturality: g�f† = ([(T in1) g, η in2]� f)† for f : X →2 T (Y + X), g : Y → TZ;
– dinaturality: ([η in1, h]� g)† = [η, ([η in1, g]� h)†]� g for g : X →2 T (Y + Z) and

h : Z → T (Y + X) or g : X → T (Y + Z) and h : Z →2 T (Y + X);
– codiagonal: (T [id, in2] f)† = f†† for f : X →12,2 T ((Y + X) + X);
– uniformity: f h = T (id + h) g implies f† h = g† for f : X →2 T (Y + X),

g : Z →2 T (Y + Z) and h : Z → X.

The axioms are summarized in graphical form in Fig. 2, and then become quite
intuitive. The two versions of the dinaturality axiom correspond to the alterna-
tive sets of guardedness assumptions mentioned above. We indicate the scope
of the iteration operator by a shaded box and guardedness by bullets at the
outputs of a morphism.

A guarded pre-iterative monad is called a complete Elgot monad if it is totally
guarded and satisfies all iteration laws. In the sequel we shorten ‘complete Elgot
monads’ to ‘Elgot monads’ (to be distinguished from Elgot monads in the sense
of [2], which have solutions only for morphisms with finitely presentable domain).

In general, the fact that the iteration laws are correctly formulated relies on
the axioms for guardedness. E.g., in the dinaturality axiom it suffices to assume
that g : X → T (Y + Z) is in2-guarded and this implies that both [η in1, h]� g
and [η in1, g]� h are in2-guarded by (cmp) and (trv), and additionally (sum)
in the latter case. Symmetrically, it suffices to make the analogous assumption
about h. In the codiagonal axiom, it follows from the assumption f : X →12,2

T ((Y +X)+X) by (cmp) that T [id, in2] f is in2-guarded and by Proposition 6
that f† is in2-guarded. Indeed, the axioms for guarded monads are designed
precisely to enable the formulation of the iteration laws.

We show that for guarded iterative monads all iteration laws are automatic.
Prior to that, we show that dinaturality follows from the others (thus generalizing
the corresponding observation made recently [13,15]).

Proposition 16. Any guarded pre-iterative monad satisfying naturality, codi-
agonal and uniformity also satisfies dinaturality, as well as the Bekić identity

[
T [id + in1, in2]� f, T [id + in1, in2]� g

]† = [h†, [η, h†]�g†]

where f : X →12,2 T ((Y + X) + Z), g : Z →12,2 T ((Y + X) + Z), and h =
[η, g†]�f : X →2 T (Y + X).

526 S. Goncharov et al.

Fixpoint:

f
X

X

Y

= f f
X

X

X

Y Y

Naturality:

f gX

X

Y Z

= f gX

X

Y Z

Dinaturality 1:

g h
X

X

Y

Z

Y

= g h g

X

Y

Z

Z

Y

X

Y

Dinaturality 2:

g h
X

X

Y

Z

Y

= g h g

X

Y

Z

Z

Y

X

Y

Codiagonal:

g
X

Y

X
X

= g
X

Y

XX

Uniformity:

h f
Z X

Y

X

g h
Z

Z

Y

X

h f
Z X

Y

X

g
Z

Z

Y

Fig. 2. Axioms of guarded iteration.

Unifying Guarded and Unguarded Iteration 527

The proof of the following result runs in accordance with the original ideas of
Elgot [10] for iterative theories, except that, by Proposition 16, dinaturality is
now replaced by uniformity.

Theorem 17. Every guarded iterative monad validates naturality, dinaturality,
codiagonal and uniformity.

We now proceed to introduce key properties of morphisms of guarded monads
that allow for transferring pre-iterativity and the iteration laws, respectively.

Definition 18 (Guarded retraction). Let T and S be guarded monads. We
call a monad morphism ρ : T → S a guarded retraction if there is a family of
morphisms (υX : SX → TX)X∈|C| (not necessarily natural in X!) such that

1. for every f : X →σ SY , we have υY f : X →σ TY ,
2. ρXυX = id for all X ∈ |C|.
Theorem 19. Let ρ : T → S be a guarded retraction, witnessed by υ : S → T,
and suppose that (T, --†) is guarded pre-iterative. Then S is guarded pre-iterative
with the iteration operator (--)‡ given by f‡ = ρ (υf)†.

Definition 20 (Iteration congruence). Let T be a guarded pre-iterative
monad and let S be a monad. We call a monad morphism ρ : T → S an iteration
congruence if for every pair of morphisms f, g : X →2 T (Y + X),

ρf = ρg =⇒ ρf† = ρg†. (2)

If ρ is moreover a guarded retraction, we call ρ an iteration-congruent retraction.

Theorem 21. Under the premises of Theorem 19, assume moreover that ρ is an
iteration-congruent retraction. Then any property out of naturality, dinaturality,
codiagonal, and uniformity that is satisfied by T is also satisfied by S.

Proof (Sketch). The crucial observation is that under our assumptions, (2) is
equivalent to the condition that for all f : X →2 T (Y + X),

ρ (υρ f)† = ρf†. (3)

Indeed, (2) =⇒ (3), for ρυρ f = ρ f and therefore ρ(υρ f)† = ρ f† and
conversely, assuming (3) both for f and for g, and ρf = ρg, we obtain that
ρf† = ρ(υρ f)† = ρ(υρ g)† = ρg†. Using (3), the claim is established routinely. �	
Recall from the introduction that a monad S is iteratable if its coinductive
resumption transform S

ν exists. We make S
ν into a guarded monad by applying

Theorem 13 to S as a trivially guarded monad; explicitly: f : X → Sν(Y + X)
is guarded iff out f = S(in1 + id) g for some g : X → S(Y + Sν(Y + X)). We are
now set to prove our first main result, which states that every iteratable Elgot
monad can be obtained by quotienting a guarded iterative monad; that is, every
choice of solutions that obeys the iteration laws arises by quotienting a more
fine-grained model in which solutions are uniquely determined:

528 S. Goncharov et al.

Theorem 22. A totally guarded iteratable monad S is an Elgot monad iff there
is a guarded iterative monad T and an iteration-congruent retraction ρ : T → S.
Specifically, every iteratable Elgot monad S is an iteration-congruent retract of
its coinductive resumption transform S

ν .

Proof (Sketch). Direction (⇐) immediately follows from Theorems 17 and 21.
In order to prove (⇒), we show that S = (S, η, --�, --†) is an iteration-congruent

retract of Sν = (νγ. S(-- +γ), ην , --�, --‡). Let υX = out-1η in2 out
-1(S in1) and

ρX =
(
SνX

out−−−→ S(X + TX)
)†

.

Clearly, υf is σ-guarded for every f : X → SY and it is easy to verify that υ is
left inverse to ρ by using the fixpoint identity for --† twice.

Naturality of ρ is proved straightforwardly from naturality of --†. The remain-
ing calculations showing that ρ is a monad morphism and moreover an iteration
congruence make heavy use of the Elgot monad laws. �	
The notions of guarded retraction and iteration congruence straightforwardly
extend to parametrized monads. We then can take the claims of Theorem 13
further.

Theorem 23. Let #, #̂ : C × (C × D) → C be guarded parametrized monads
and let ρ : # → #̂ be an iteration-congruent retraction. By Theorem 13, #ν =
--#(γ, --) and #̂ν = -- #̂(γ, --) are also parametrized guarded monads. Then ρν :
#ν → #̂ν , with components

ρν
X,Y = coit

(
νγ.X # (γ, Y)

ρout−−−−→ X #̂ (νγ.X # (γ, Y), Y)
)
,

is again an iteration-congruent retraction.

Theorems 22 and 23 jointly provide a simple and structured way of showing
that Elgotness extends along the parametrized monad transformer # �→ #̂:
If --#X is Elgot then by Theorem 22 there is an iteration-congruent retraction
ρ : νγ. -- +γ#X → --#X; by Theorem 23, it gives rise to an iteration-congruent
retraction

ρν : νγ′. νγ. -- +γ # (γ′,X) → νγ′. --#(γ′,X)

and by Theorem 22, the right-hand side is again Elgot. We have thus proved.

Corollary 24. Given a parametrized monad # and X ∈ |C|, if --#X is Elgot
then so is --#νX = νγ. --#(γ,X).

This yields a more general and simpler proof of one of the main results in [15].

Example 25. By instantiating # in Corollary 24 with Pω(-- +A × --) : Set ×
Set → Set where Pω is the countable powerset monad, we obtain νγ.Pω(X+A×
γ), which can be viewed as a semantic domain for countably branching processes
that possibly terminate with results in X and are taken modulo strong bisimi-
larity. The simple fact that Pω is Elgot [15] implies that so is νγ.Pω(X +A×γ).

Unifying Guarded and Unguarded Iteration 529

This justifies the use of systems of possibly unguarded recursive process algebra
equations (as done, e.g., in [6]). It is worth noting that the iteration operator
of the transformed monad is neither least nor unique. It arises by introducing
an additional delay action that guards all recursive calls and then eliminating
these delays from the unique solution of the new recursive definition; the delay
elimination is the effect of ρν in Theorem 23.

Theorem 22 characterizes iteratable Elgot monads as iteration-congruent
retracts of their (--)ν-transforms. We take this perspective further as follows. Let
us call T strongly iteratable if every T ν...ν exists. Consider the functor T �→ T

ν

on the category of strongly iteratable monads over C. This is itself a monad:
the unit η is the natural transformation with components ηX = out-1(T in1) :
TX → T νX and the multiplication μ : T νν → T ν has components

μX = coit
(
T [id, in2 out-1]out out : T ννX → T (X + T ννX)

)
.

For every T we define the delay transformation � = out-1η in2 : T ν → T ν . This
leads to our second main result:

Theorem 26. The category of strongly iteratable Elgot monads over C is iso-
morphic to the full subcategory of the category of (--)ν-algebras for strongly iter-
atable S consisting of the (--)ν-algebras (Sν , ρ : Sν → S) satisfying ρ� = ρ.

Proof (Sketch). To show that every strongly iteratable Elgot monad is a (--)ν-
algebra, one has to check the equations ρη = id and ρμ = ρρν where ρν =
coit (ρ out) : Sνν → Sν . The first equation follows relatively easily. The second
one is shown along the following lines:

ρμ
(i)== ρ[η, (� out)‡]�out (ii)== ρ

(
out-1S(in1 + ην in2)ρout

)‡ (iii)== ρρν .

Here, (i) and (iii) only amount to equivalent transformations of μ and ρν , respec-
tively, while (ii) makes crucial use of the fact that ρ is an iteration congruence,
as implied by Theorem 22.

For the converse implication, we start with a (--)ν-algebra and verify the
Elgot monad laws for the iteration operator f† = ρ(coit f). �	
Remark 27. The delay cancellation condition ρ� = ρ is essential, as can be
seen on a simple example. Let Mon(C)ν be the category of (--)ν-algebras and let
Mon(C)ν� be its subcategory figuring in Theorem 26. Since the identity functor
is the initial monad, the initial object of Mon(C)ν is Capretta’s delay monad [8]
D = νγ. (-- +γ). On the other hand, the initial object of Mon(C)ν� (if it exists)
is the initial Elgot monad L, which on C = Set is the maybe monad (--) + 1.

If C = Set, then DX = (X × N + 1) does turn out to be Elgot [14] (but
applying Theorem 26 to D qua Elgot monad yields a different (--)ν-algebra struc-
ture than the initial one), and L is, in this case, a retract of D in Mon(C)ν�.
The situation is more intricate in categories with a non-classical internal logic,
for which D is mainly intended. We believe that in such a setting, neither is D

Elgot in general, nor is L the maybe monad. However, there will still be a unique
(--)ν-algebra morphism D → L in Mon(C)ν .

530 S. Goncharov et al.

6 A Sandwich Theorem for Elgot Monads

As an application of Theorem 22, we show that sandwiching an Elgot monad
between adjoint functors again yields an Elgot monad. A similar result has been
shown for completely iterative monads [26]; this result generalizes straightfor-
wardly to guarded iterative monads:

Theorem 28. Let F : C → D and U : D → C be a pair of adjoint functors
with the associated natural isomorphism Φ : D(FX, Y) → C(X,UY), and let T
be a guarded iterative monad on D. Then the monad induced on the composite
functor UTF is guarded iterative, with the guardedness relation defined by taking
f : X →σ UTFY if and only if Φ−1f : FX →σ TFY , and the unique solutions
given by f �→ Φ((Φ−1f)†).

Now, to obtain a similar result for Elgot monads, we can easily combine
Theorems 22 and 28 without having to verify the equational properties by hand.

Theorem 29. With an adjunction as in Theorem 28, let S be an Elgot monad
on D. Then, the monad induced on the composition USF is an Elgot monad.

Proof (Sketch). By Theorem 22, there exists a guarded iterative monad T and an
iteration-congruent retraction ρ : T → S. By Theorem 28, the monad induced on
UTF is guarded iterative. Again by Theorem 22, it suffices to show that UρF :
UTF → USF is an iteration-congruent retraction, which is straightforward. �	
Example 30 (From Metric to CPO-based Iteration). As an example
exhibiting sandwiching as well as the setting of Theorem 22, we compare two iter-
ation operators on Set that arise from different fixed-point theorems: Banach’s,
for complete metric spaces, and Kleene’s, for complete partial orders, respec-
tively. We obtain the first operator by sandwiching Escardo’s metric lifting
monad S [12] in the adjunction between sets and bounded complete ultrametric
spaces (which forgets the metric in one direction and takes discrete spaces in the
other), obtaining a monad S̄ on Set. Given a bounded complete metric space
(X, d), S(X, d) is a metric on the set (X×N)∪{⊥}. As we show in the appendix,
S is guarded iterative if we define f : (X, d) → S(Y, d′) to be σ-guarded if k > 0
whenever f(x) = (σ(y), k). By Theorem 28, S̄ is also guarded iterative (of course,
this can also be shown directly). The second monad arises by sandwiching the
identity monad on cpos with bottom in the adjunction between sets and cpos
with bottom that forgets the ordering in one direction and adjoins bottom in
the other, obtaining an Elgot monad L on Set according to Theorem 29. The
latter is unsurprising, of course, as L is just the maybe monad LX = X + 1.

The monad S̄ keeps track of the number of steps needed to obtain the final
result. We have an evident extensional collapse map ρ : S̄ → L, which just
forgets the number of steps. One can show that ρ is in fact an iteration-congruent
retraction, so we obtain precisely the situation of Theorem 22.

Unifying Guarded and Unguarded Iteration 531

7 Related Work

Alternatively to our guardedness relation on Kleisli morphisms, guardedness
can be formalized using type constructors [23] or, categorically, functors, as in
guarded fixpoint categories [20]; the latter cover also total guardedness, like we
do. Our approach is slightly more fine-grained, and in particular natively sup-
ports the two variants of the dinaturality axiom (Fig. 2), which, e.g., in guarded
fixpoint categories require additional assumptions [20, Proposition 3.15] akin to
the one we discuss in Remark 4.

A result that resembles our Theorem 26, due to Adámek et al. [3], states
roughly that if C is locally finitely presentable and hyperextensive (e.g. C = Set)
then the finitary Elgot monads are the algebras for a monad on the category
of endofunctors given by H �→ LH = ργ. (-- +1 + Hγ) where ρ takes rational
fixpoints (i.e. final coalgebras among those where every point generates a finite
subcoalgebra). Besides Theorem 26 making fewer assumptions on C, the key
difference is that, precisely by dint of this result, LH is already an Elgot monad;
contrastingly, we characterize Elgot monads as quotients of guarded iterative
monads, i.e. of monads where guarded recursive definitions have unique fixpoints.

8 Conclusions and Further Work

We have given a unified account of monad-based guarded and unguarded iter-
ation by axiomatizing the notion of guardedness to cover standard definitions
of guardedness, and additionally, as a corner case, what we call total guard-
edness, i.e. the situation when all morphisms are declared to be guarded. We
thus obtain a common umbrella for guarded iterative monads, i.e. monads with
unique iterates of guarded morphisms, and Elgot monads, i.e. totally guarded
monads satisfying Elgot’s classical laws of iteration. We reinforce the view that
the latter constitute a canonical model for monad-based unguarded iteration by
establishing the following equivalent characterizations: provided requisite final
coalgebras exist, a monad T is Elgot iff

– it satisfies the quasi-equational theory of iteration [2,15] (definition);
– it is an iteration-congruent retract of a guarded iterative monad (Theorem 22);
– it is an algebra (T, ρ) of the monad T �→ νγ. T (X + γ) in the category of

monads satisfying a natural delay cancellation condition (Theorem 26).

In future work, we aim to investigate further applications of this machinery, in
particular to examples which did not fit previous formalizations. One prospec-
tive target is suggested by the work of Nakata and Uustalu [24], who give a
coinductive big-step trace semantics for a while-language. We conjecture that
this work has an implicit guarded iterative monad TR under the hood, for which
guardedness cannot be defined using the standard argument based on a final
coalgebra structure of the monad because TR is not a final coalgebra.

In type theory, there is growing interest in forming an extensional quotient
of the delay monad [4,9]. It is shown in [9] that under certain reasonable con-
ditions, a suitable collapse of the delay monad by removing delays is again a

532 S. Goncharov et al.

monad; however, the proof is already quite complex, and proving directly that
the collapse is in fact an Elgot monad, as one would be inclined to expect, seems
daunting. We expect that Theorem 26 may shed light on this issue. A natural
question that arises in this regard is whether the subcategory of (--)ν-algebras
figuring in the theorem is reflexive. A positive answer would provide a means
of constructing canonical quotients of (--)ν-algebras (such as the delay monad)
with the results automatically being Elgot monads.

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. Theoret. Comput. Sci. 300(1–3), 1–45 (2003)

2. Adámek, J., Milius, S., Velebil, J.: Equational properties of iterative monads. Inf.
Comput. 208, 1306–1348 (2010)

3. Adámek, J., Milius, S., Velebil, J.: Elgot theories: a new perspective of the equa-
tional properties of iteration. Math. Struct. Comput. Sci. 21, 417–480 (2011)

4. Altenkirch, T., Danielsson, N.: Partiality, revisited. In: Types for Proofs and Pro-
grams, TYPES 2016 (2016)

5. Atkey, R.: Parameterised notions of computation. J. Funct. Prog. 19, 335 (2009)
6. Bergstra, J., Ponse, A., Smolka, S. (eds.): Handbook of Process Algebra. Elsevier,

Amsterdam (2001)
7. Bloom, S., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes.

Springer, Heidelberg (1993)
8. Capretta, V.: General recursion via coinductive types. Log. Meth. Comput. Sci.

1(2), 1–28 (2005)
9. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisim-

ilarity. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol.
9399, pp. 110–125. Springer, Cham (2015). doi:10.1007/978-3-319-25150-9 8

10. Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E.,
Shepherdson, J.C. (eds.) Logic Colloquium 1973. Studies in Logic and the Foun-
dations of Mathematics, vol. 80, pp. 175–230. Elsevier, Amsterdam (1975)

11. Elgot, C., Bloom, S., Tindell, R.: On the algebraic atructure of rooted trees. J.
Comput. Syst. Sci. 16, 362–399 (1978)

12. Escardó, M.H.: A metric model of PCF. In: Realizability Semantics and Applica-
tions (1999)

13. Ésik, Z., Goncharov, S.: Some remarks on Conway and iteration theories. CoRR,
abs/1603.00838 (2016)

14. Goncharov, S., Milius, S., Rauch, C.: Complete Elgot monads and coalgebraic
resumptions. In: Mathematical Foundations of Programming Semantics, MFPS
2016. ENTCS (2016)

15. Goncharov, S., Rauch, C., Schröder, L.: Unguarded recursion on coinductive
resumptions. In: Mathematical Foundations of Programming Semantics, MFPS
2015. ENTCS (2015)

16. Goncharov, S., Schröder, L.: A coinductive calculus for asynchronous side-effecting
processes. Inf. Comput. 231, 204–232 (2013)

17. Lawvere, W.: Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci.
USA 50, 869–872 (1963)

18. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

http://dx.doi.org/10.1007/978-3-319-25150-9_8

Unifying Guarded and Unguarded Iteration 533

19. Milius, S.: Completely iterative algebras and completely iterative monads. Inf.
Comput. 196, 1–41 (2005)

20. Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded (co-
)recursion. Fund. Inform. 150, 407–449 (2017)

21. Moggi, E.: A modular approach to denotational semantics. In: Pitt, D.H., Curien,
P.-L., Abramsky, S., Pitts, A.M., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1991.
LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991). doi:10.1007/BFb0013462

22. Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991)
23. Nakano, H.: A modality for recursion. In: Logic in Computer Science, LICS 2000,

pp. 255–266. IEEE Computer Society (2000)
24. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step

semantics of while. Log. Meth. Comput. Sci. 11(1), 1–32 (2015)
25. Piróg, M., Gibbons, J.: The coinductive resumption monad. In: Mathematical

Foundations of Programming Semantics, MFPS 2014. ENTCS, vol. 308, pp. 273–
288 (2014)

26. Piróg, M., Gibbons, J.: Monads for behaviour. In: Mathematical Foundations of
Programming Semantics, MFPS 2013. ENTCS, vol. 298, pp. 309–324 (2015)

27. Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators.
In: Logic in Computer Science, LICS 2000, pp. 30–41 (2000)

28. Uustalu, T.: Generalizing substitution. ITA 37, 315–336 (2003)
29. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,

categorically. Informatica 10(1), 5–26 (1999). Lithuanian Academy of Sciences

http://dx.doi.org/10.1007/BFb0013462

	Unifying Guarded and Unguarded Iteration
	1 Introduction
	2 Preliminaries
	3 Guarded Monads
	4 Parametrizing Guardedness
	5 Complete Elgot Monads and Iteration Congruences
	6 A Sandwich Theorem for Elgot Monads
	7 Related Work
	8 Conclusions and Further Work
	References

