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Abstract. We give a general description of the transition from qualita-
tive models of programming languages to quantitative ones, as a change
of base for enriched categories. This is induced by a monoidal functor
from the category of coherence spaces to the category of modules over
a complete semiring R. Using the properties of this functor, we charac-
terise the requirements for the change of base to preserve the structure
of a Lafont category (model of linear type theory with free exponen-
tial), and thus to give an adequate semantics of erratic PCF with scalar
weights from R. Moreover, this model comes with a meaning-preserving
functor from the original, qualitative one, which we may use to interpret
side-effects such as state. As an example, we show that the game seman-
tics of Idealized Algol bears a natural enrichment over the category of
coherence spaces, and thus gives rise by change of base to a R-weighted
model, which is fully abstract. We relate this to existing categories of
probabilistic games and slot games.

1 Introduction

Game semantics have been used to successfully describe intensional models of
a wide variety of programming language features. With some notable (gener-
ally ad-hoc) exceptions, these models are qualitative rather than quantitative in
character, possessing an order-theoretic structure which may be characterized as
a categorical enrichment over certain categories of domain (such as dI-domains,
qualitative domains and prime algebraic lattices). Our aim is to show that this
enriched category theory perspective may be used to systematically construct
quantitative models (and describe existing ones), using the notion of change of
base to vary the enrichment of the model, independently of its intensional struc-
ture. Specifically, we describe a monoidal functor from a category of coherence
spaces to the category of R-weighted relations, where R is a complete semi-
ring. The change of base induced by this functor allows a semantic translation
from a qualitative model, enriched over coherence spaces, to a quantitative one in
which program denotations are weighted with values in R corresponding to (e.g.)
measures of probability, security, resource usage, etcetera. We illustrate this by
example, showing that the well-known games model of Idealized Algol [1] bears
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a natural enrichment over coherence spaces, and describing the fully abstract
semantics of R-weighted Idealized Algol which we obtain from it by change of
base.

Related Work. The monoidal categories we use for enrichment are based on
existing, extensonal models of computation, and logic — on the qualitative side,
coherence spaces or qualitative domains [12]. On the quantitative side, we use
the category of weighted relations over a complete semiring R (equivalently, free
R-modules and linear functions). This was introduced as a model of linear logic
by Lamarche [21] and its computational properties studied in [20] via a semantics
of R-weighted PCF.

A more general categorical characterization of these quantitative models,
abstracting their key properties, was given in [18]: any model of intuitionistic
linear logic with a free exponential and (countably) infinite biproducts yields an
adequate model of PCF weighted over its internal semiring. To arrive at such
a category using the change of base, we need to show that it preserves the free
exponential. However, this is not an enriched functor: instead, we give conditions
under which the construction of the cofree commutative comonoid given in [22],
as a limit of symmetric tensor powers, is preserved.

Change of base thus provides a simple way to identify further examples of
this categorical model, with richer internal structure than sets and weighted rela-
tions. This will allow more language features such as side effects to be captured,
and also provide a way to attack the full abstraction problem for these models
(the weighted relational models for PCF are shown not to be fully abstract in
[20]). As an illustrative example we study the games model introduced in [1]. We
show that a strictly linear (rather than affine) version of this category of games
bears a natural enrichment over coherence spaces — as foreshadowed by in [5] by
a projection into a category of (ordered) coherence spaces. Previous quantitative
models based on this category of games include Danos and Harmer’s probabilistic
games [8], in which strategies are defined by attaching probabilities to positions
of the game, and Ghica’s slot games [11], which attach resource weightings to
positions in a rather different way — by introducing a class of moves which are
persistent when other moves are hidden during composition, allowing the cost of
computation to be made explicit. We show that both may be viewed as exam-
ples obtained by our change of base construction, and that the corresponding
programming languages (Algol weighted with probabilities, and resource costs)
may be subsumed into a version of Idealized Algol with weights from a complete
semiring, for which we describe a denotational semantics. Full abstraction for
this model follows from the result in [1] with very little effort.

1.1 Enriched Categories and Change of Base

Recall that if V is a monoidal category, then a V-category C is given by a
set of its objects, a V-object C(A,B) for each pair of C-objects A and B, and
V-morphisms compA,B,C : V(A,B) ⊗ V(B,C) → V(A,C) and idA : I → C(A,A)
for each A,B,C, satisfying the expected associativity and identity diagrams in V.
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Intensional semantics such as games models may be represented as V-
categories, where V captures some relations or operations on morphisms such
as partial orders or algebraic structures. This gives an extensional characteriza-
tion of the model which can be studied independently of the intensional aspect.
An example is the notion of change of base [7], which uses a monoidal functor
from V to W to transform any model in a V-category to a model in a W-category
satisfying the same equational theory.

More precisely, given monoidal categories V and W any monoidal functor
(F,m) : V → W induces a change of base which takes each V-category C to
the W-category F∗(C) over the same objects, with F∗(C)(A,B) = F (C(A,B)),
and composition and identity morphisms mC(A,B),C(B,C);F (compA,B,C) and
mI ;F (idA). A simple example is the change of base induced by the monoidal
functor V(I, ) : V → Set, which sends each V-category C to its underlying cate-
gory C0. Note change of base induced by the monoidal functor F comes with an
identity-on objects, F -on-morphisms functor F0 : C0 → F∗(C)0.

Change of base preserves enriched functors and natural transformations,
giving a 2-functor F∗ from the category of V-categories to the category of
W-categories. Thus, in particular, it preserves symmetric monoidal structure,
and symmetric monoidal closure (the existence of a natural V-isomorphism
C(A ⊗ B,C) ∼= C(A,B � C). A second example: if V is symmetric monoidal
closed, and therefore enriched over itself, then any monoidal functor F : V → W
induces a change of base to a W-enriched symmetric monoidal closed category.

2 Coherence Spaces and Weighted Relations

We will describe a monoidal functor from the category of coherence spaces and
stable, continuous linear functions to the category of sets and weighted rela-
tions (a.k.a. free R-modules). Examples of categories of intensional models which
may be enriched over coherence spaces or qualitative domains are common. For
instance any symmetric monoidal closed category with a monoidal functor into
the category of coherence spaces gives a coherence space enriched category as
noted above — examples include categories of hypercoherences [9], event struc-
tures [24], concrete data structures [4] and games [5]. (However, the enriched
category of games that we describe does not arise in this way.)

A coherence space [12] D is a pair (|D|, �� D) where |D| is a set of atoms (the
web), and �� D ⊆ |D| × |D| is a symmetric and reflexive relation (coherence).
A clique X of D is a set of its atoms which is pairwise coherent: d, d′ ∈ X =⇒
d �� Dd′.

The symmetric monoidal (closed) category CSpace has coherence spaces
as objects: morphisms from D to E are cliques of the coherence space D �
E, where |D � E| = |D| × |E| and (d, e)�� D�E(d′, e′) if d �� Dd′ implies
e�� Ee′ ∧ (d 	= d′ ∨ d = d′).

In other words, morphisms are certain relations between webs, and are com-
posed accordingly — if f : C → D and g : D → E then f ; g = {(c, e) ∈
|C| × |E| | ∃d ∈ D.(c, d) ∈ f ∧ (d, e) ∈ g}. Evidently, the identity relation is a
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clique. The tensor product of coherence spaces is the cartesian product of their
webs and coherence relations — i.e. |D⊗E| = |D|×|E|, with (d, e)�� D⊗E(d′, e′)
if and only if d�� Dd′ and e�� Ee′. The tensor unit is the singleton coherence
space {∗}.

The cliques of a coherence space E form an atomistic (Scott) domain, and the
morphisms of CSpace correspond to linear, continuous and stable morphisms
between the corresponding domains (i.e. preserving suprema of all directed and
bounded sets, and infima of finite bounded sets).

Complete Semirings and Weighted Relations. We now recall categories of
weighted relations, which will be used to characterise the structure of quan-
titative models. They are based on monoids with an infinitary “sum” operation.

Definition 1. A complete monoid is a pair (S,Σ) of a set S with a sum oper-
ation Σ on indexed families of elements of S, satisfying the axioms:

Partition Associativity. For any partitioning of the set I into {Ij | j ∈ J},
Σi∈Iai = Σj∈JΣi∈Ijai.

Unary Sum. Σi∈{j}ai = aj.

We write 0 for the sum of the empty family, which is a neutral element for the
sum by the above axioms.

Definition 2. A (commutative) complete semiring R is a tuple (|R|, Σ, ·, 1)
such that (|R|, Σ) is a complete monoid and (|R|, ·, 1) is a commutative monoid
which distributes over Σ — i.e. Σi∈I(a · bi) = a · Σi∈Ibi.

A R-module is a monoidal action (“scalar multiplication”) of (|R|, ·, 1) on a
complete monoid (S,Σ), which is distributive on both sides — i.e. (Σi∈Iai).v =
Σi∈Iai.v and a.Σi∈Ivi = Σi∈Ia.vi.

For any complete semiring the forgetful functor from the category of R-modules
and their homomorphisms into the category of sets has a left adjoint, which
sends a set X to the “free semimodule” RX , which is the set of functions from
X into R, with the sum and scalar product defined pointwise. Resolving this
adjunction gives a commutative monad R on the category of sets and thus
a co-Kleisli category SetR with symmetric monoidal structure (given by the
product of sets). Morphisms from X to Y in this category correspond both to
R-module homomorphisms from RX to RY , and also to R-weighted relations,
with which we will henceforth identify them: maps from X×Y into R, composed
by setting (f ; g)(x, z) = Σy∈Y f(x, y) · g(y, z). The symmetric monoidal action
on weighted relations is (f ⊗ g)((u, v), (x, y)) = f(u, x) · g(v, y).

Relations weighted with continuous semirings are discussed in [20], with
examples including any complete lattice, the natural or positive real numbers
completed with a greatest element ∞, and the so-called exotic semirings. Exam-
ples of complete but not continuous semiring weights are considered in [18].
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2.1 From Cliques to Weighted Relations

Note that composition of morphisms f : C → D and g : D → F in CSpace has
the following property, derived from stability.

Lemma 1. (c, e) ∈ f ; g if and only if there exists a unique d ∈ D such that
(c, d) ∈ f and (d, e) ∈ g.

Proof. Existence holds by definition. For uniqueness, suppose (c, d), (c, d′) ∈ f
and (d, e), (d′, e) ∈ g. Then d�� Dd′ and hence d = d′.

We define a functor ΦR : CSpace → SetR which sends each object to its
underlying set, and each morphism from D to E to its characteristic function —
i.e. ΦR(f)(c, d) = 1, if (c, d) ∈ f ; ΦR(f)(c, d) = 0, otherwise.

By definition, ΦR(idD) is the identity on |D| in SetR. Thus functoriality
follows from Lemma 1.

Lemma 2. ΦR(f);ΦR(g) = ΦR(f) : ΦR(g).

Proof. Suppose ΦR(f ; g)(c, e) = 1 — i.e. (c, e) ∈ f ; g. By Lemma 1 there
exists a unique d ∈ D such that (c, d) ∈ f and (d, e) ∈ g. Thus
ΦR(f)(c, d′).ΦR(f)(c, d′) = 1 if d = d′ and ΦR(f)(c, d′).ΦR(f)(c, d′) = 0 oth-
erwise. Hence ΦR(f);ΦR(g)(c, e) = Σd∈DΦR(f)(c, d).ΦR(g)(d, e) = 1.

Otherwise ΦR(f ; g)(c, e) = 0 — i.e. (c, e) 	∈ f ; g, so that for all d ∈ D,
either (c, d) 	∈ f or (d, e) 	∈ g and so ΦR(f)(c, d).ΦR(f)(c, d) = 0. Then
ΦR(f);ΦR(g)(c, e) = Σd∈DΦR(f)(c, d).ΦR(g)(d, e).

Evidently, ΦR is strict monoidal — ΦR(I) = I and ΦR(D⊗E) = ΦR(D)⊗ΦR(E),
and faithful. Thus, by change of base, for each ordered complete semiring R we
have a 2-functor ΦR

∗ from the category of (symmetric monoidal closed) CSpace-
categories to the category of (symmetric monoidal closed) SetR-categories, with
a faithful functor ΦR

0 : C0 → ΦR
∗ (C)0 for each CSpace-category C.

Remark 1. If R is idempotent (ai = a for all i ∈ I (non-empty) implies Σi∈Iai)
then functoriality no longer depends on Lemma 1 and thus the stability of mor-
phisms. Hence we may define a monoidal functor from the category of sets and
relations to the category of R-weighted relations which sends each relation to
its characteristic function, yielding a change of base from Rel-enriched to SetR
enriched categories whenever R is idempotent.

3 An Example: Games and History-Sensitive Strategies

We illustrate by describing an example of a family of quantitative games models
obtained by change of basis applied to a symmetric monoidal category of games
and “knowing” strategies enriched over coherence spaces. Its underlying category
is essentially the games model of Idealized Algol (IA) introduced by Abramsky
and McCusker in [1] and obtained by relaxing the innocence constraint on strate-
gies in the Hyland-Ong games model of PCF [14]. More precisely, we define a
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different “linear decomposition” of this model into a category in which mor-
phisms are truly linear, rather than affine. We also ignore the requirement of
even-prefix-closure on strategies — this does not change the denotation of pro-
grams in the model, nor its full abstraction property.

Definition 3. The arena for a game A is a labelled, bipartite directed acyclic
graph, given as a tuple (MA,M I

A,�A, λA) — where MA is a set of moves
(nodes), M I

A ⊆ MA is a specified set of initial moves (source nodes), �A⊆
MA ×(MA\M I

A) is the enabling (edge) relation and λA : MA → {O,P}×{Q,A}
is a function partitioning the moves between Player or Opponent, and labelling
them as either questions or answers, such that initial moves belong to Opponent
and each answer is enabled by a question.

A justified sequence s over A is a sequence over MA, together with a pointer from
each non-initial move b in s to some preceding move a in s such that a � b. The
set LA of legal sequences over A consists of alternating justified sequences s on A
which satisfy visibility and well-bracketing as defined in [1]. (Details are omitted
as nothing here depends on thiese particular conditions, which may be relaxed
or modified in various ways to model different combinations of computational
effects.) A game A is a pair (GA, PA) of an arena GA and a set of justified
sequences PA ⊆ LA. The key constructions are:

– A ⊗ B = (GA � GB , {s ∈ LA�B | s�A ∈ PA ∧ s�B ∈ PB}), where GA � GB is
the disjoint union of arenas — (MA + MB ,M I

A + M I
B ,�A + � BB , [λA, λB ]).

– A � B = (GA � GB , {s ∈ LA�B | s�A ∈ PA ∧s�B ∈ PB}), where GA � GB

is the graft of A onto the root nodes of B — MA + MB , inr(M I
B), (�A + �B)

∪ inr(M I
B) × inl(M I

A), [λA, λB ]).

3.1 Coherence Space Enrichment of Games

We will now define a CSpace-category of games, for which the underlying cat-
egory is similar to that described in [1] etc. The fact that the inclusion order
on strategies provides the latter with an enrichment over the category of cpos
and continuous functions was already used in [1], as in other games models, to
construct fixed points. Our results amount to showing that strategies form a
dI-domain under inclusion, and composition is a bilinear and stable function.
Enrichment of a category of games with coherence spaces, or similar categories,
is also implicit in earlier work, such as the definition in [5] of a monoidal functor
from a similar category of games into a category of ordered coherence spaces.
However, this depends on a number of particular features — notably the recon-
struction of a strategy on A � B from its projections on A and B, which is not
always possible, so CSpace-enrichment may be seen as a more general property.

For any game A let Coh(A) be the coherence space (PE
A , �� A), where PE

A

is the set of even-length sequences in PA and s�� At if their greatest common
prefix s � t is even length. A strategy on A is a morphism from I to Coh(A) in
CSpace, corresponding to a clique of Coh(A) — an even-branching subset of
PE

A . We define a CSpace-category in which objects are games, and the coherence
space of morphisms from A to B is Coh(A � B).
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Definition 4. For S ⊆ PA�B and T ⊆ PB�C , let S|T be the set of sequences
u on A+B +C such that u�A � B ∈ S and u�B � C ∈ T . Then compA,B,C =
{((r, s), t) ∈ |Coh(A � B)| × |Coh(B � C)| × |Coh(A � C)| | ∃u ∈ {r}|{s}.u�
A � C = t}.
The identity idA : I → CSpace(A � A) is the copycat strategy on A consisting
of the sequences on PA�A for which each even prefix projects to the same (legal)
sequence on both components.

Given strategies σ : I → Coh(A � B) and τ : I → Coh(B � C), let σ; τ
be the relational composition of σ ⊗ τ with compA,B,C . This corresponds to
the parallel composition plus hiding of strategies defined in [1], and so by well-
pointedness of CSpace, satisfies the diagrams for associativity and identity. So
it remains to show that comp is stable, for which we require a further key fact
about composition — for any t ∈ σ; τ , the “interaction sequence” in σ|τ which
restricts to t is unique. This is essentially a version of the “zipping lemma” of [2].

Lemma 3. compA,B,C is a clique of Coh(A � B) ⊗ Coh(B � C) �
Coh(A � C).

We define CSpace-enriched symmetric monoidal (closed) structure on G,
given by the operation ⊗ with unit I (the game over the empty arena, with
PI = {ε}) and the morphism tensorA,B,C,D = {((r, s), t) ∈ |Coh(A � C) ⊗
Coh(B � D)| × |Coh(A ⊗ B � C ⊗ D)| | r = t�A � C ∧ s = t�B � D}. This
corresponds to the action of ⊗ on the underlying category of games defined in [1],
giving associator, unitor and twist maps making the relevant diagrams commute.
The (natural) isomorphism Coh(A ⊗ B,C) ∼= Coh(A,B � C) in CSpace yields
symmetric monoidal closure.

Note that unlike [1] and many similar models, the underlying symetric
monoidal category of games is not affine — the unit for the tensor is not a ter-
minal object — there are two morphisms from I to itself, one empty, the other
containing the empty sequence. This is a necessary consequence of CSpace-
enrichment.

For any complete semiring R, change of base yields a symmetric monoidal
closed category GR � ΦR

∗ (G) enriched in SetR. Concretely, a morphism φ :
A → B in GR

0 is a R-weighted strategy — a map from even-length plays on
A � B into R. These are composed by setting

(φ;ψ)(t) = Σ{φ(u�A � B) · ψ(u�B � C) | u ∈ LA�B |LB→C ∧ u�A � C = t}
The tensor product of R-weighted strategies φ : A → C,ψ : B → D is (φ ⊗
ψ)(s) = φ(s�A � C) · ψ(s�B � D).

The faithful, identity-on-objects, monoidal functor ΦR
0 : G0 → GR

0 sends
each deterministic strategy σ : A → B to the R-weighted strategy σR with
ΦR
0 (σ)(s) = 1 if s ∈ σ and ΦR

0 (σ)(s) = 0 otherwise.
By choosing particular semirings we may relate this category to examples in

the literature. For instance, if R is the two-element Boolean ring then morphisms
in GR

0 correspond to sets of legal sequences — i.e. non-deterministic strategies,
as in the model of may-testing studied in [13,19].
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If R is the probability semiring, (R∞
+ , Σ, ·, 1), then R-weighted strategies

correspond precisely to the “probabilistic pre-strategies”, introduced by Danos
and Harmer [8]. These are refined further by imposing more specfic constraints,
although the precursor model is already fully abstract for Probabilistic Algol.

If R is the tropical semiring (N∞,
⋃

,+, 0) then GR
0 corresponds to a sequen-

tial version of Ghica’s category of slot games [10]. This was introduced as a
model quantifying resources used in stateful and concurrent computation, in a
presentation rather different to weighted strategies, but equivalent to it. Assum-
ing a distinguished token $©, which does not occur in the set of moves of any
arena, we may define a sequence with costs on the game A to be an interleaving
of a sequence s ∈ PA of A with a sequence of $© moves: a strategy-with-costs on
a A is a set of such sequences. Strategies with costs σ : A → B and τ : B → C
are composed by parallel composition with hiding of moves in B, so that all slot
moves of σ and τ propagate to σ; τ . Taking the weight of a sequence with costs
to be the number of slot moves it contains, this is equivalent to the notion of
composition for T-weighted strategies — i.e. the category of strategies with costs
is isomorphic to the category GT. The original category of slot games defined in
[10] is based on a category (an interleaving model of concurrency, without the
alternation condition) which does not, in fact enrich over the category of coher-
ence spaces but does enrich over the category of relations. Thus we may change
the base of this model only to free semimodules over an idempotent semiring —
of which the tropical semiring is an instance.

4 Additives and Exponentials

We now describe how this change of base can be used to obtain a quantitative
semantics of higher-order computation — specifically, an (intuitionistic) Lafont
category [16] (a symmetric monoidal closed category C with a “free exponential”)
with countable biproducts. This notion of categorical model was shown in [18] to
yield an adequate model of PCF extended with R-module structure, as described
in Sect. 5.

A category C has set-indexed biproducts if it has all set-indexed products and
coproducts, and these are naturally isomorphic — i.e. for any family J , there
is a natural isomorphism (which we may assume to be the identity) between
the J-indexed functors Πj∈J and

∐
j∈J . Any category with infinite biproducts

bears an enrichment over the category of complete monoids and their homo-
morphisms: Given a family of morphisms {fj : A → B | j ∈ J}, let Σj∈Jfj =
ΔJ

A;
⊕

j∈J fj ;∇J
A, where ΔA

J : A → ⊕
j∈J A and ∇J

A :
⊕

j∈J A → A are the
diagonal and co-diagonal. Jf C is a symmetric monoidal closed category, then the
tensor distributes over biproducts — i.e. (

⊕
i∈J Aj) ⊗ B =

⊕
j∈J(Aj ⊗ B), as

they are colimits. The complete monoid enrichment thus extends to the monoidal
structure — i.e. the tensor is an enriched functor. Moreover, the endomorphisms
on the unit I form a complete, commutative semiring RC = (C(I, I), Σ,⊗, I) —
the internal semiring of C.

Conversely, any complete monoid enriched category may be completed with
biproducts.
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Definition 5. If C is complete monoid enriched, let CΠ be the category in which
objects are set-indexed families of objects of C, and morphisms from {Ai | i ∈ I}
to {Bj | j ∈ J} are I × J-indexed sets of morphisms {fi,j : Ai → Bj | 〈i, j〉 ∈
I × J}, composed by setting (f ; g)ik = Σj∈J(fij ; gjk).

If C is a complete monoid enriched symmetric monoidal category, then we
may define the (distributive) tensor product on CΠ : {Ai |i ∈ I}⊗{Bj | j ∈ J} =
{Ai ⊗ Bj |〈i, j〉 ∈ I × J}, with (f ⊗ g)ikjl = fij ⊗ gkl.

Note that the biproduct completion of a complete commutative semiring R
(regarded as a one-object SMCC) is the category SetR.

4.1 The Cofree Commutative Comonoid

A cofree commutative comonoid on an object B in a symmetric monoidal
category C is an object (!B, δ, ε) in comon(C) (the category of commutative
commonoids and comonoid morphisms of C) with a (natural in A) isomor-
phism between C(A,B) and comon(C)(A, !B) for each commutative comonoid
(A, δA, εA). Thus C has (all) cofree commutative comonoids if and only if the
forgetful functor from comon(C) into C has a right adjoint. This (monoidal)
adjunction resolves a monoidal comonad (the free exponential) ! : C → C.

How can we relate the free exponential to change of base? In general, the
category of comonoids of a V-category is not itself V-enriched, so there is no
V-adjunction giving rise to a V-enriched free exponential. Moreover, although
the categories CSpace and SetR possess cofree commutative comonoids, these
are not preserved by ΦR (see discussion below). Instead, we describe properties of
a CSpace-enriched category which allow the construction of a free exponential
on the underlying categories, and their preservation by the functor ΦR

0 . These
are based on the existence of symmetric tensor powers:

Definition 6. A family of objects {Bi | i ∈ N} in a symmetric monoidal cate-
gory are symmetric tensor powers of B if:

– For each n there is a morphism eqn : Bn → B⊗n such that (Bn, eqn) is
an equalizer for the group G of automorphisms on B⊗n derived from the
permutations on {1, . . . , n}.

– These equalizers are preserved by the tensor product — i.e. (Bm ⊗ Bn, eqm ⊗
eqn) is an equalizer for the products of pairs of permutation automorphisms.

The category of coherence spaces has equalizers for any group G of automor-
phisms on an object D. Let ∼G be the equivalence relation on |D| induced by
G — i.e. d∼Gd′ if there exists g ∈ G with (d, d′) ∈ g. Then the equalizer for G
in CSpace is the coherence space consisting of those equivalence classes of ∼G

in which all members are coherent — {[d]G ∈ D/∼G | d∼Gd′ =⇒ d�� Dd′} —
with coherence [d]�� E [d′] if there exists d′′ ∈ |D| such that d∼Gd′′.

The category of sets and weighted relations also has equalizers for automor-
phism groups — in this case given by the set of all equivalence classes of ∼G.
Say that an automorphism group G : D ⇒ D in CSpace is coherent whenever
∼G ⊆ �� A.



From Qualitative to Quantitative Semantics 45

Proposition 1. ΦR preserves the equalizer of G if and only if it is coherent.

Note that unless �� D = |D|×|D|, the group of permutations on D⊗n in CSpace
is not coherent — e.g. if d 	�� Dd′ then (d, d′) 	�� A⊗2(d′, d). So ΦR does not preserve
symmetric tensor powers (and for essentially the same reason does notin general
preserve cofree commutative comonoids).

Given an automorphism group G : A ⇒ A in a CSpace-category, and object
B, let hB(G) = {hB(g) : C(B,A) → C(B,A) | g ∈ G} be the group of auto-
morphisms on C(A,B) in CSpace induced by Yoneda embedding. Say that G
is coherent if hB(G) is coherent for every B.

For instance, in our category of games the group of permutations on A⊗n is
coherent: an atom of Coh(B � A⊗n) is a justified sequence over MB � (MA ×
{1, . . . , n}), and the equivalence on these sequences induced by the permutation
isomorphisms on A⊗n is simply that induced by permuting the tags on moves
in A. This is coherent because it is Opponent who always plays the first move
with any given tag.

Proposition 2. ΦR
0 : C0 → CR

0 preserves equalizers for coherent groups.

Proof. Suppose (E, eq : E → A) is an equalizer for a group G : A ⇒ A.
Evidently, ΦR

0 (eq);ΦR
0 (g) = ΦR

0 (eq) for all g ∈ G so it remains to show the
universal property. Let B be any object of CR

0 (thus an object of C0). Then
hB(eq);hB(g) = hB(g) for all g ∈ G and for any f : I → C(B,A) in CSpace such
that f ;hB(g) = f for all g ∈ G, there exists a unique morphism u : I → C(B,E)
such that u;hB(eq) = f . Observe (by well-pointedness of CSpace) that this
implies that (hB(E), hB(eq)) is the equalizer for hB(G) in CSpace.

Thus (ΦR(hB(E)), ΦR(hB(eq))) is an equalizer for ΦR(hB(G)) in SetR, and
so for any f : B → E in ΦR

∗ (C), there exists a unique morphism u : B → E such
that u; eq = f as required.

If our SetR-enriched model possesses symmetric tensor powers and infinite,
distributive biproducts, this is sufficient to obtain the free exponential as the
biproduct of all symmetric tensor powers of B (the Lafont exponential) — i.e.
!B =

⊕
n∈N

Bn, which is equipped with commutative comonoid structure by
defining ε!B :!B → I = π0 and δ!B :!B →!B⊗!B = 〈πm+n; δm,n | m,n ∈ N〉,
where δm,n : Bm+n → Bm ⊗ Bn is the unique morphism such that eqm+n =
δm,n; (eqm ⊗ eqn).

Proposition 3. If C has symmetric tensor powers, then its biproduct completion
CΠ has symmetric tensor powers.

Proof. For A = {Ai | i ∈ I}, An = {AX | X ∈ Mn(I)}, where if X has support
i1, . . . , ik then AX = A

X(1)
i1

⊗ . . . ⊗ A
X(ik)
ik

.

Thus, given any CSpace-enriched category with symmetric tensor powers and
consistent permutation groups, we may obtain a Lafont category by changing
its base to SetR, and completing with biproducts. In the case of the CSpace-
category of games, G, we have already argued that the group of permutations
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on each tensor power A⊗n is consistent, and therefore change of base preserves
symmetric tensor powers, if they exist. One way to define them is by decomposing
the tensor product in G using the sequoid [6,17]. The sequoid A�B is the game
(GA � GB , {t ∈ PA⊗B | ∀s � t.s�B = ε =⇒ s�A = ε}) — i.e. it is a subgame
of A ⊗ B in which the first move (if any) is always in A. Let An be the n-fold
sequoid on A — i.e. A0 = I, An+1 = A � An, so that plays in A consist of n
interleaved plays of A, opened in a fixed order.

Proposition 4. An is an n-ary symmetric tensor power.

This is established using the categorical structure underlying the sequoid — it
is a monoidal action of C upon its subcategory of strict morphisms (strategies
on A � B such that every opening move in A is followed by a move in B) —
and the fact that the tensor decomposes into the sequoid (A⊗B is the cartesian
product of A � B and B � A).1

4.2 Preservation of Cofree Commutative Comonoids

In order to lift the functor between underlying categories which is implicit in the
change of base to a functor of CCCs between the co-Kleisli categories of the free
exponential (preserving the meaning of types and terms in the λ-calculus) it is
necessary for it to preserve cofree commutative comonoids. We give conditions
for this to hold based on the construction of the latter described in [22] — i.e.
(putting it in a nutshell) as the limit of the diagram:

I
p0← A•

p1← A2
• . . . Ai

•
pi← (A•)i+1 . . .

where A• is the product A × I (more precisely, the “free pointed object” on A)
and pi : (A × I)i+1 → (A × I)i is the unique morphism given by the universal
property of the symmetric tensor power such that pi; eqi : A•i+1 → •⊗i =
eqi+1; (A⊗i

• ⊗ πr).
This is a refinement of Lafont’s construction (in categories with biproducts,

the above limit is
⊕

i∈N
Ai). To show that it is preserved by ΦR

∗ , we make
the further assumption that for each pi there is a corresponding morphism ei :
Ai

• → Ai+1
• , forming an embedding projection (e-p) pair (ei, pi) : Ai � Bi — i.e.

ei; pi = idAi• and pi; ei ≤ idAi+1 .
Given an e-p pair from D to E in the category of coherence spaces (which

corresponds to a coherence preserving injection from |D| into |E|), define p• ⊆
|E•| × |D•| by {(inl(e), inl(d)) | (d, e) ∈ p} ∪ {(e, inr(∗)) | e = inr(∗)∨ 	 ∃d ∈
D.(d, e) ∈ p}.

CSpace has limits for any chain of such pairs D0

e0,p0

� D1

e1,p1

� . . . |⊔ D| =
{x ∈ Πi<ω|(Di)•| | ∃i.xi 	= inr(∗) ∧ ∀i ∈ ω.(xi+1, xi) ∈ (pi)•}, with x��

⊔
Dy if

xi ��yi for all i. This is also the limit for D0

ΦR(e0),Φ
R(p0)

� D1

ΦR(e1),Φ
R(p1)

� . . . in

1 This structure may all be be given in enriched form, and is therefore preserved by
change of base.
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SetR — i.e. ΦR preserves limits for all e-p chains. As in the case of equalizers,
we can use this fact, to show that they are preserved by ΦR

0 .

Proposition 5. If
⊔

A is a limit for the chain A0

e0,p0

� A1

e1,p1

� . . . in a

CSpace-category C, then it is a limit in CR for the chain A0

Φ(e0,p0)

� A1

ΦR(e1,p1)

�
. . .

Proof. The universal property is established as in Prop. 2 — for any B, C(B,
⊔

A)
is a limit in CSpace for the e-p chain C(B,A0) � C(B,A) � . . ., and thus
ΦR(C(B,

⊔
A)) is a limit for ΦR(C(B,A0)) � ΦR(C(B,A2)) � . . ., and hence⊔

A is a limit for A0 � A1 � . . . in CR.

Any cartesian product in C0 is a cartesian product in CR
0 (since ΦR preserves

products) and so in particular A × I is the free pointed object on A in CR
0 .

Hence, if ! is a limit for I
p0← A•

p1← . . . Ai
•

p2← . . . in C0 then it is a limit for

I
ΦR(p0)← A•

ΦR(p1)← . . . in CR
0 .

As we have observed, our category of games G0 has all symmetric tensor
powers. We also have an embedding-projection pair from An to An+1 for each
n — viz e0 = ⊥I,A, en+1 = A � en.

G does not have all products, however. In particular, the free pointed object
A× I does not exist in general — e.g. we may show that there is no object I × I
such that G(I, I × I) ∼= G(I, I) × G(I, I). However we may identify a full sub-
category of G (i.e. a collection of objects — the well-opened games) for which
products exist. A game A is well-opened if PA consists only of sequences con-
taining exactly one initial move. If A and B are well-opened then their product
A × B consists of the well-opened sequences in A ⊗ B. Moreover, if A is well-
opened then the free pointed object on A is (GA, PA ∪ε), and the limit !A for the
chain I

p0← A•
p1← . . . is the game consisting of all legal interleavings of sequences

in PA. Note also that if B is well opened then !A � B is well-opened. Hence
the “co-Kleisli” category G! in which objects are well-opened games, and mor-
phisms from A to B are morphisms from !A to B in G is Cartesian closed. This
is equivalent to the cartesian closed category of games constructed in [1], etc.
(less the even-prefix-closure condition on strategies). Since ΦR

0 (!A) is the cofree
commutative comonoid in GR

0 for each well-opened game, we have a cartesian
closed category of well-opened games and R-weighted strategies, GR

! with a
cartesian closed functor ΦR

! : G! → GR
! .

5 R-Weighted Idealized Algol

By the results in [1] we know that G! furnishes a semantics of Reynolds’ Idealized
Algol — an applied, simply-typed λ-calculus which may be considered as an
extension of PCF with integer state (conservative with respect to the operational
semantics). So applying the functor ΦR

0 : G0 → GR
0 gives us a semantics of

Idealized Algol in GR
! . Since the biproduct completion of GR

0 is an example of
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the categorical model described in [18] (a Lafont category with biproducts) we
also have a semantics of R-weighted PCF in GR

! . This agrees with the semantics
of Idealized Algol on their common part (the operations and constants of PCF)
and so we may combine both models, to give an interpretation of IAR — erratic
Idealized Algol with scalar weights from R. Moreover — unlike the weighted
relational semantics of PCFR— this model is fully abstract, a property it inherits
directly from the qualitative version.

Types of Idealized Algol are formed from ground types nat, com (commands)
and var (integer references). Terms are formed by extending the λ-calculus with
fixed points, with the following constants2:

– Arithmetic, conditionals: 0 : nat, succ, pred : nat → nat, Ifz : nat → nat.
– Imperative programming: seq : com → B → B (sequential composition) and
new : (var → B) → B (new variable declaration) where B ∈ {com, nat},
assn : nat → var → com, deref : var → nat, and mkvar : nat → (nat →
com) → var (“bad variable” construction).

– R-module structure — a nondeterministic choice operator or : B → B → B
and scalar multiplication scl(k) : B → B for each k ∈ R.

The operational semantics for IAR extends that given for PCFR [20], just as
Idealized Algol extends PCF. We define a labelled transition system in which
states are configurations — pairs (P,S) of a (ground-type) program and a store
(a sequence (a1, n1), . . . , (an, nk) of pairs of a location name and integer value).
Labels are elements of the monoid (u, a) ∈ {l, r}∗ ×R and actions take the form
E[M ], S u,a−→ E[M ′], S ′, where E[ ] is an evaluation context, given by the grammar:
E:: = [ ] | E M | succ E | pred E | Ifz E | seq E | assn E | (assn n) E | deref E

and M,S u,a−→ M ′,S ′ is an instance of one of the following rules:

(λx.M) N,S ε,1−→ M [N/x],S μx.M,S ε,1−→ M [μx.M/x],S
or,S l,1−→ λx.λy.x,S or,S r,1−→ λx.λy.y,S
seq skip,S ε,1−→ λx.x,S newm P,S ε,1−→ P a,S, (a,m)

(assn n) (mkvar M N),S ε,1−→ N n,S (assn n) a,S ε,1−→ skip,S[ai �→ n]

Ifz n + 1,S ε,1−→ λx.λy.y,S pred n + 1,S ε,1−→ n,S
deref(mkvar M N),S ε,1−→ M,S Ifz 0,S ε,1−→ λx.λy.x,S
deref a,S[(a, n)

ε,1−→ n,S scl(k),S ε,k−→ λx.x,S

The relation
u,a−→ is deterministic, and so we may define the weight in R of

each configuration with respect to a sequence u ∈ {l, r}∗ of branching choices:
wu(P,S) = a if P,S u1,a1−→ . . .

un,an−→ skip,S ′, where (u, a) = (u1 ·. . . un, a1 ·. . .·an),
wu(P,S ′) = 0 if there is no such sequence of reductions.

The total weight of a configuration in R is given by summing the weights
over all possible paths: w(P,S) � Σu∈{l,r}∗wu(P,S), and w(P ) = w(P, ).

2 We consider the variant of IA with active expressions and bad variables as in [1].
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From this notion of testing we derive a notion of equivalence: P ≈ Q if for
any closing compatible context C[ ] : com, w(C[P ]) = w(C[Q]).

As discussed in [20] for PCF, the computational meaning of IAR depends
on the choice of semiring — it may be regarded as a metalanguage for a family
of “resource-sensitive” imperative programming languages and their semantics.
The weighted games models discussed previously may be viewed as instances
of this. Probabilistic games [8] are used to interpret Idealized Algol extended
with a constant coin : nat which reduces to either 0 or 1, both with probability
0.5. Thus we may interpret probabilistic Algol inside IAR by defining coin �
(scl(0.5) 0) or (scl(0.5) 1).

Slot games are used to give an interpretation of Idealized Concurrent Algol
which is sound with respect to an operational semantics which keeps track of the
(time, memory, etc.) costs of evaluation as a natural number — each reduction
rule is decorated with such a cost, and the worst-case cost is assigned to each
program. Setting R to be the tropical semiring, we may define a translation
of non-deterministic IA into IAR which is sound with respect to this notion of
evaluation, by applying a weighting to each operation corresponding to the cost
of its evaluation.

5.1 Denotational Semantics

We interpret IAR in the category of games and R-weighted strategies by extend-
ing the semantics of PCFR [20] with the image under ΦR

0 of the semantics of
the types and constants of Idealized Algol defined in [1]. (We use the version in
which each game consists of only complete sequences, in which every question is
answered.) The types com, nat and var denote the (well-opened) games Σ (with
a single question and answer) N (with a single Opponent question and Player
answers for each value n ∈ N

3) and the product N × Σω, respectively. The
arrow type S → T denotes the well-opened game !�S� � �T �. Terms-in context
x1 : S1, . . . , x :n: Sn � M : T are interpreted as morphisms from �S1�× . . .×�Sn�
to �T � in GR

! . Each of the constants C : T of Idealized Algol denotes a strategy
in G!, and thus a R-weighted strategy in GR

! .
This leaves the interpretation of the fixed point operator, which takes a term

Γ, x : T � M : T to its fixed point Γ � μx.M : T . Semantically, this cor-
responds to a parameterised fixed point operator on our cartesian closed cat-
egory of games — a map taking each endomorphism f ∈ C(B × A,A) to a
morphism fixB(f) ∈ C!(B,A) satisfying fix(f) = 〈B, fix(f)〉; f . As G! is cpo-
enriched, this may defined as (parameterised) least fixedpoint. If R is not con-
tinuously ordered, then this construction is not available but we may adopt the
alternative, described in [18], based on the existence of a bifree algebra for the
free exponential in (GR

0 )Π — the object
⊕

X∈M
I, where M is the set of nested

finite multisets. This is sufficient (cf. [23]) to define a fixed point operator on the
co-Kleisli category GR

! .

3 In GR, N ∼=⊕i∈N
Σ.
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The computational adequacy property for our semantics states that the
weight for a program of type com computed by the operational semantics is
equal to the weight assigned by its denotation to the single well-opened sequence
(qa) in �com�. The proof of this follows closely that of [18], defining an equiva-
lent semantics which assigns precise resouce bounds to variables indicating how
many times they are called (and in the case of recursively defined variables, a
nested finite multiset representing their call-pattern), and proving soundness for
this by a nested multiset induction. The only further requirement is a set of
equations establishing the soundness of the reduction rules for the constants of
Idealized Algol: these were already established in [1] in proving soundness for
the semantics in G.

Proposition 6. For every program P : com, �P,S�(qa) = w(P,S).

Although full abstraction fails in the semantics of PCFR in SetR [18], it holds in
our model of IAR , following readily from the definability property for the game
semantics of Idealized Algol in G.

Theorem 1 [1]. For any finite strategy σ : �T � there exists a IA term Mσ : T
such that �Mσ�G = σ.

Thus, in particular, every atomic strategy on �T � (consisting of a single legal
sequence) is definable as a term of Idealized Algol (without fixed points), and
so any finitary strategy in GR (i.e. one for which finitely many sequences have
non-zero weight) is definable as a finite weighted sum of Idealized Algol terms.

Corollary 1 (Definability for IAR ). For any finitary R-weighted strategy
φ : �T � there exists a term Mφ : T such that �Mφ� = φ.

Corollary 2 (Full Abstraction for IAR ). M ≈ M ′ if and only if �M� = �M ′�

Proof. This closely follows the proof in the original model — e.g. for complete-
ness suppose �M� 	≈ �M ′�, and thus there exists a complete s ∈ P�T � such that
�M�(s) 	= �M ′�(s). By the definability property, the strategy φ : �T � → �com�
such that φ(t) = 1 if t = qsa (and 0 otherwise) denotes a term N : T → com
of Idealized Algol and thus �N m�R(qa) = �M�(s) and �N M ′�(qa) = �M ′�(s).
Hence by computational adequacy, w(N M ′) 	= w(N M ′) and so P 	≈ Q as
required.

This establishes that any inequivalent terms of IAR may be separated by a term
of Idealized Algol. So, for example, our model is fully abstract for Probabilistic
Algol.

6 Conclusions and Further Directions

We have described a general way of moving from qualitative intensional models
to quantitative ones, using the notion of change of base of an enriched category.
The only really essential properties that this uses from the original model of
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Idealized Algol are that strategies may be viewed as certain cliques in a coherence
space and that composition is a stable, linear function, ruling out interleaving
models of concurrency, except in the case of idempotent semirings. For the sake
of simplicity, we have sidestepped mention of causal order (e.g. prefix order in
games), which gives a finer characterization of strategy behaviour. For example,
we may enrich categories over event structures [24,25] (or dI-domains [3]) — thus
a monoidal functor adding weights to event structures may be used to change
their base.
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