
The Paths to Choreography Extraction

Lúıs Cruz-Filipe(B), Kim S. Larsen, and Fabrizio Montesi

University of Southern Denmark, Odense, Denmark
{lcf,kslarsen,fmontesi}@imada.sdu.dk

Abstract. Choreographies are global descriptions of interactions among
concurrent components, most notably used in the settings of verifica-
tion and synthesis of correct-by-construction software. They require a
top-down approach: programmers first write choreographies, and then
use them to verify or synthesize their programs. However, most software
does not come with choreographies yet, which prevents their application.
To attack this problem, previous work investigated choreography extrac-
tion, which automatically constructs a choreography that describes the
behavior of a given set of programs or protocol specifications.

We propose a new extraction methodology that improves on the state
of the art: we can deal with programs that are equipped with state and
internal computation; time complexity is dramatically better; and we
capture programs that work by exploiting asynchronous communication.

1 Introduction

Choreographies are global descriptions of interactions among components. They
have been used as a basis for different models and tools that aim at tackling
the complexity of modern software, where separate units – such as processes,
objects, and threads – interact to reach a common goal [3,25].

Two lines of research are of particular interest. In choreography specifications,
choreographies specify interaction protocols, e.g., multiparty session types [17].
In choreographic programming [20], choreographies are programs that define the
behavior of concurrent algorithms [13] and/or distributed systems [5,6,14]. The
key feature of these works is EndPoint Projection (EPP), a procedure that trans-
lates choreographies to correct endpoint behaviors in lower-level models. For
choreography specifications, EPP generates the local specifications of each par-
ticipant; these specifications can then be used for verification, to check whether
some programs implement their role in the protocol correctly and will thus inter-
act without problems at runtime [17]. In choreographic programming, instead,
EPP generates correct-by-construction implementations in a model of executable
code (program synthesis), typically given in terms of a process calculus [6].

Montesi was supported by CRC (Choreographies for Reliable and efficient Commu-
nication software), grant DFF–4005-00304 from the Danish Council for Independent
Research. Cruz-Filipe and Larsen were supported in part by the Danish Council for
Independent Research, Natural Sciences, grant DFF-1323-00247.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 424–440, 2017.
DOI: 10.1007/978-3-662-54458-7 25

The Paths to Choreography Extraction 425

EPP implements a top-down development methodology: developers first
write choreographies and then use the output mechanically generated by EPP.
However, there are scenarios where this methodology is not applicable; for
example:

– Analysis or integration of legacy software: either code developed previously,
or new code written in a technology without support for choreographies.

– Updates: endpoint programs generated by EPP can later be updated locally
(e.g., for configuration or optimizations). Since the original choreography is
not automatically updated, rerunning EPP loses these changes.

To attack these issues, previous work investigated a procedure to infer chore-
ographies from arbitrary endpoint descriptions. We call this procedure choreogra-
phy extraction. To the best of our knowledge, the current reference for extracting
choreography specifications is [19], where graphical choreographies that represent
protocol specifications are extracted from communicating automata [4]. Instead,
the state of the art for extraction in choreographic programming is [7], where
extraction takes terminating processes typed using a fragment of linear logic as
input. We advance both lines of work in several aspects, described below.

1.1 Contributions

Extraction for synchronous systems. We define an extraction procedure that
applies directly to both choreography specifications and choreographic program-
ming, by working with representative models. We focus on the more difficult case
of choreographic programming, and then show how our approach can be applied
to other settings in Sect. 6. First we define an extraction algorithm for processes
with synchronous communications (Sect. 4), which showcases the key elements of
our construction: building a choreography corresponds to finding paths in a graph
that represents the abstract execution of the input processes. Our extraction also
helps in debugging: if extraction detects a potential deadlock, we pinpoint it with
a special term (1). This is the first extraction procedure for choreographic pro-
gramming that can deal with procedures and infinite behavior [7].

Asynchrony. We extend our development to asynchronous communication
(Sect. 5). The key novelty is that we can extract a new class of behaviors where
processes progress because of asynchronous communication. The simplest exam-
ple of this class is a two-way exchange: a network of two processes where each
process starts by sending a value to the other, and then consumes the received
value. This network is deadlocked under a synchronous semantics, violating the
state-of-the-art requirements for extraction [19]. Capturing these behaviors is
challenging for two reasons: there is no choreography language capable of repre-
senting them; and the extraction algorithms presented so far require the behav-
iors of processes to be representable also under a synchronous interpretation.
We overcome both limitations with a new choreography primitive for multiparty
asynchronous exchange and a look-ahead mechanism for asynchronous actions
in extraction.

426 L. Cruz-Filipe et al.

Efficiency. We show that our extraction has exponential worst-case time com-
plexity in both the synchronous and the asynchronous cases (Sects. 4 and 5,
respectively), unlike the factorial case of [19], even though we can capture a new
class of behaviors. In particular, we need only one phase of exponential com-
plexity, while [19] uses multiple phases applied in sequence. The authors of [19]
detail only the complexities of their first two phases: the first has exponential
complexity (but in a quantity larger than ours), while the second has factorial
complexity in a function exponential in the size of the input. Our better time
complexity stems from the design of our process language, which does not allow
non-deterministic receives from different channels, and careful algorithm craft-
ing. Despite the restriction, we can still model interesting examples thanks to
asynchronous exchange. In Sect. 5, we present a novel formulation of the alter-
nating 2-bit protocol, which is given in [15] and used in [19] as a motivating
example. Our formulation is simpler and does not require threads as in [19].

2 Related Work

Choreographic Programming. The state of the art for extraction in choreographic
programming is [7], where synchronous processes with finite behavior are typed
using the multiplicative-additive fragment of linear logic. Our approach is signif-
icantly more expressive, bringing support for recursion and asynchronous com-
munication. Also, the proof theory in [7] requires that there are no cycles in the
structure of connections among processes. We do not have this limitation.

Choreography Specifications. To the best of our knowledge, the state of the art
for extracting choreography specifications is [19], which captures more behaviors
than previous works with similar objectives [18,22].

Extraction in [19] is more restrictive wrt. to asynchrony, requiring all process
traces and choices to be represented in the synchronous transition system of
the network. Thus, networks that are safe because of asynchronous communica-
tion are not extracted in [19]. Instead, our extraction can deal with programs
that use multiparty asynchronous exchange, where multiple processes exchange
values by exploiting asynchronous communication. As a consequence, we can
extract the alternating 2-bit protocol implemented via asynchronous exchange
in Sect. 5, which is deadlocked under a synchronous semantics and thus cannot
be extracted in [19]. Our extraction is the first capturing systems that are not
correctly approximated by synchronous semantics (cf. [2]). A precise characteri-
zation of the class of extractable systems is thus an interesting future direction.

To circumvent the limitation that asynchronous exchange is not supported,
choreographies in [19] support local concurrency: processes can have internal
threads. This opens up for an alternative formulation of the alternating 2-bit
protocol, where the two participants use two threads each. However, these chore-
ographies are harder to read. As an example, compare our choreography for the
alternating 2-bit protocol in Sect. 5 to that obtained with the automata in [19]
(given in [15], Protocol 7 in Example 2.1). Our formulation is a simple recursive

The Paths to Choreography Extraction 427

procedure with two exchanges, whereas the control flow in [15] is rather intri-
cate and uses three different operators (fork, join, and merge) at different places
to compose two separate loops. In our opinion, our choreographies follow the
principles of structured programming to a greater extent, and are simpler; also
because coordination happens only through communication.

More interestingly than readability, local concurrency makes the complex-
ity of extraction blow up factorially [19]: process threads are represented using
non-determinism between different actions in communicating automata. Deter-
mining whether the non-deterministic behavior of these automata is extractable
takes (super-)factorial time (factorial time in the size of a graph similar to our
AES, cf. Definition 2)! Thus, asynchronous exchange supports a more efficient
way of capturing an interesting class of behaviors. Nevertheless, we believe that
developing efficient extractions of local concurrency may be useful future work.

3 Core Choreographies and Stateful Processes

We review the languages of Core Choreographies (CC) and Stateful Processes
(SP), from [11], which respectively model choreographies and endpoint programs.
We introduce labels in the reduction semantics for these calculi to formalize the
link between choreographies and their process implementations as a bisimilarity.

C ::= 0 | η; C | if p <-
=q thenC1 elseC2 | def X = C2 inC1 | X

η ::= p.e -> q | p -> q[l] e ::= v | ∗ | . . .

Fig. 1. Core Choreographies, Syntax.

Core Choreographies (CC). The syntax of CC is given in Fig. 1. A choreography
C describes the behavior of a set of processes (p, q, . . .) running concurrently.
Each process has an internal memory cell storing a local value (the value of
the process). Term 0 is the terminated choreography (omitted in examples).
Term η;C reads “the system executes η and proceeds as C”. An interaction
η is either: a value communication p.e -> q, where process p evaluates e and
sends the result to process q, which stores it in its memory cell, replacing its
previous value; or a selection p -> q[l], where p selects l among the branches
offered by q. We abstract from the concrete language of expressions e, which
models internal computation and is orthogonal to our development, assuming
only that: expressions can contain values v and the placeholder ∗, which refers
to the value of the process evaluating them; and evaluating expressions always
terminates and returns a value. In a conditional if p

<-
= q thenC1 elseC2, p checks

if its value is equal to q’s to decide whether the system proceeds as C1 or C2.
Term def X = C2 inC1 defines a procedure X with body C2, which can be called
in C1 and C2 by using term X.

428 L. Cruz-Filipe et al.

e[σ(p)/∗] ↓ v

p.e -> q; C, σ
p.v -> q−−−−−→ C, σ[q �→ v]

�C|Com�
p -> q[l]; C, σ

p -> q[l]−−−−−→ C, σ
�C|Sel�

σ(p) = σ(q)

if p
<-
=q thenC1 elseC2, σ

p
<-
=q:then−−−−−→ C1, σ

�C|Then� pn(η) ∩ pn(η′) = ∅
η; η′
 η′; η

�C|Eta-Eta�

Fig. 2. Core choreographies, semantics and structural precongruence (selected rules).

The semantics of CC is given in terms of labeled reductions C, σ
λ−→ C ′, σ′;

the main reduction rules are given in Fig. 2. Reductions are also closed under
context (procedure definitions) and under a structural precongruence �, allow-
ing procedure calls to be unfolded and non-interfering actions to be executed
in any order. The most interesting rule for � is rule �C|Eta-Eta�, which swaps
communications between disjoint sets of processes (modeling concurrency). The
total function σ maps each process name to the value it stores. Labels λ tell
us which action has been performed, which helps stating our later results. In
rule �C|Com�, v is the value obtained by evaluating (↓) the expression e, with ∗
replaced by the value of the sender p, σ(p). In the reductum, σ is updated such
that the receiver q stores v. Rule �C|Sel� does not alter σ: selections model invok-
ing a method/operation available at the receiver. Rules �C|Then� and �C|Else�
(omitted) model conditionals in the standard way. Function pn(C) returns all
the process names that appear in C, and C ≡ C ′ means C � C ′ and C ′ � C.

Example 1. We define a simple choreography for client authentication. We write
p -> c, s[l] as a shortcut for p -> c[l]; p -> s[l].

def X =
(
c.pwd -> a; if a

<-
= s then (a -> c, s[ok]; s.t -> c) else (a -> c, s[ko];X)

)
inX

In this choreography, a client process c sends a password to an authentication
process a, which checks if the password matches that contained in the server-
side process s. If the password is correct, a notifies c and s, and s sends an
authentication token t to c. Otherwise, a notifies c and s that authentication
failed, and a new attempt is made (by recursively invoking X). 	

Stateful Processes. The calculus SP models concurrent/distributed implementa-
tions. Thus, unlike in CC, actions are now distributed among processes.

The syntax of SP is given in Fig. 3. Networks N are parallel compositions of
processes p� B, read “process p has behavior B”. An output term q!〈e〉;B sends
the result of evaluating e to q, and then proceeds as B. Outputs are meant to

B ::= q!〈e〉; B | p?; B | q ⊕ l; B | p&{li : Bi}i∈I | N ::= p � B | 0 | N |N
| 0 | if ∗ <-

=q thenB1 elseB2 | def X = B2 inB1 | X

Fig. 3. Stateful processes, syntax.

The Paths to Choreography Extraction 429

e[σ(p)/∗] ↓ v

p � q!〈e〉; B1 | q � p?; B2, σ
p.v -> q−−−−−→ p � B1 | q � B2, σ[q �→ v]

�S|Com�

j ∈ I

p � q ⊕ lj ; B | q � p&{li : Bi}i∈I , σ
p -> q[l]−−−−−→ p � B | q � Bj , σ

�S|Sel�

e[σ(q)/∗] ↓ σ(p)

p � if ∗ <-
=q thenB1 elseB2 | q � p!〈e〉; B′, σ

p
<-
=q:then−−−−−→ p � B1 | q � B′, σ

�S|Then�

Fig. 4. Stateful processes, semantics (selected rules).

synchronize with input terms at the target process, i.e., p?;B, which receives
a value from p to be stored locally and then proceeds as B. Term q ⊕ l;B
sends the selection of the branch labeled l to q. Branches are offered by the
receiver with term p&{li : Bi}i∈I , which offers a choice among the labels li to
p. When one of these labels is selected, the respective behavior Bi is run. Term
if ∗ <-

= q thenB1 elseB2 communicates with process q to check whether it stores
the same value as the process running this behavior, in order to choose between
the continuations B1 and B2. Terms def X = B2 inB1 and X are procedure
definition and call, respectively.

The semantics of SP is given by labeled reductions N,σ
λ−→ N ′, σ′, with labels

λ as in CC.1 Figure 4 shows the key rules (see the appendix for the complete set).
Two processes can synchronize when they refer to each other. In rule �S|Com�,
an output at p directed at q synchronizes with the dual input action at q –
intention to receive from p; in the reductum, q’s value is updated. The reduction
receives the same label as the equivalent communication term in CC. The other
rules shown are similar. The omitted rules are standard, and close the semantics
under parallel composition, structural precongruence, and procedure definitions.

Example 2. The following network implements the choreography in Example 1.

c � def X = a!〈pwd〉; a&{ok : s?, ko : X} inX

| a � def X = c?; if ∗<-
= s then (c ⊕ ok; s ⊕ ok) else (c ⊕ ko; s ⊕ ko;X) inX

| s � def X = a!〈∗〉; a&{ok : c!〈t〉, ko : X} inX

EndPoint Projection (EPP). As shown in [11], there exists a partial function
[[·]] : CC → SP, called EndPoint Projection (EPP), that produces correct imple-
mentations of choreographies. EPP produces a parallel composition of processes,
one for each process name in the original choreography: [[C]] =

∏
p∈pn(C) p� [[C]]p.

The rules for computing [[C]] project the local action performed by the process
of interest. For example, [[p.e -> q]]p = q!〈e〉 and [[p.e -> q]]q = p?.

1 Deviating from [11], we model process values using σ as for CC, for simplicity.

430 L. Cruz-Filipe et al.

The network presented in Example 2 is exactly the EPP of the choreography
in Example 1. Observe that the projection of the conditional in the original
choreography for the processes c and s is a branching that supports all the
possible choices made by process a in its projected conditional. Producing these
branching terms is possible only if, whenever there is a conditional at a process
(a in our example), all other processes receive a label that tells them which
branch such a process has chosen. (In case the behaviors of the other processes
are the same in both cases, producing branching terms is not necessary.) When
this cannot be done for a choreography C, the EPP for C is undefined, and we
say that C is unprojectable. Conversely, C is projectable if [[C]] is defined.

In the remainder, we relate choreographies to network implementations via a
strong labeled reduction bisimilarity ∼. Bisimilarity is defined as usual [24]: it is
the union of all bisimulation relations R, which in our case relate choreographies
to networks. A relation R is one such bisimulation if whenever CRN we have
that, for all σ: (i) C, σ

λ−→ C ′, σ′ implies N,σ
λ−→ N ′, σ′ for some N ′ with C ′RN ′;

(ii) N,σ
λ−→ N ′, σ′ implies C, σ

λ−→ C ′, σ′ for some C ′ with C ′RN ′.

Theorem 1 (adapted from [11]). If C is projectable, then C ∼ [[C]].

4 Extraction from SP

The finite case. We first investigate finite SP, the fragment of SP without recur-
sive definitions, which we use to discuss the intuition behind our extraction.

Definition 1. We define a rewriting relation � on the language of CC extended
with terms ([N]), where N is a network in finite SP, as the transitive closure of:

N ≡ 0
([N]) � 0

N ≡ p � q!〈e〉;Np | q � p?;Nq |N ′

([N]) � p.e -> q; ([Np |Nq |N ′])
N ≡ p � q ⊕ lk;Np | q � p&{l1 : Nq1 , . . . , ln : Nqn} |N ′

([N]) � p -> q[lk]; ([Np |Nqk |N ′])

N ≡ p � if ∗<-
= q thenNp1 elseNp2 | q � p!〈e〉;Nq |N ′

([N]) � if p
<-
= q then ([Np1 |Nq |N ′]) else ([Np2 |Nq |N ′])

no other rule applies
([N]) � 1

A network N in finite SP extracts to a choreography C if ([N]) � C.

The last rule guarantees that every network is extractable. Extraction uses
structural precongruence (namely, commutativity and associativity of parallel
composition) to find matching actions. For finite SP, this is not a problem (the
set of networks equivalent to a given one is finite), but it makes extraction
nondeterministic, e.g., the network p � q!〈e〉 | q � p? | r � s!〈e′〉 | s � r? extracts both
to p.e -> q; r.e′ -> s and r.e′ -> s; p.e -> q. These choreographies are equivalent
by Rule �C|Eta-Eta� (Fig. 2). This holds in general, as stated below.

Lemma 1. If ([N]) � C1 and ([N]) � C2, then C1 ≡ C2.

The Paths to Choreography Extraction 431

p � q!〈e〉; B1 | q � p?; B2
p.e -> q−−−−−→ p � B1 | q � B2

�S|Com�

p � if ∗ <-
=q thenB1 elseB2 | q � p!〈e〉; B′ p

<-
=q:then−−−−−→ p � B1 | q � B′

�S|Then�

Fig. 5. Stateful Processes, Abstract Semantics (selected rules).

There is one important design option to consider: what to do with actions that
cannot be matched, i.e., processes that will deadlock. There are two alternatives:
restrict extraction to lock-free networks (networks where all processes eventually
progress, in the sense of [8]); or extract stuck processes to a new choreography
term 1, with the same semantics as 0. We choose the latter option for debugging
reasons. Specifically, practical applications of extraction may annotate 1 with
the code of the deadlocked processes, giving the programmer a chance to see
exactly where the system is unsafe, and attempt at fixing it manually. Better
yet: since the code to unlock deadlocked processes in process calculi can be
efficiently synthesized [8], our method may be integrated with the technique
in [8] to suggest an automatic system repair.

Remark 1. If ([N]) � C and C does not contain 1, then N is lock-free. However,
even if C contains 1, N may still be lock-free: the code causing the deadlock
may be dead code in a conditional branch that is never chosen during execution.

Extraction is sound: it yields a choreography that is bisimilar to the original
network. Also, for finite SP, it behaves as an inverse of EPP.

Theorem 2. Let N be in finite SP. If ([N]) � C, then C ∼ N . Furthermore, if
N = [[C ′]] for some C ′, then ([N]) � C ′.

As we show later, the second part of this theorem does not hold in the presence
of recursive definitions.

We now restate extraction in terms of a particular graph, which is the hall-
mark of our development: when we add recursion to SP, we can no longer define
extraction as a set of rewriting rules. We first introduce a new abstract seman-
tics for networks, N

α−→ N ′, defined as in Fig. 4 except for the rules for value
communication and conditionals, which are replaced by those in Fig. 5 (we omit
the obvious rule �S|Else�). In particular, conditionals are now nondeterministic.
Labels α are like λ but may now contain expressions (see the new rule �S|Com�);
in all other rules, λ is replaced by α. We write N

α̃−→∗ N ′ for N
α1−−→ · · · αn−−→ N ′.

Definition 2. Given a network N , the Abstract Execution Space (AES) of N
is the directed graph obtained by considering all possible abstract reduction paths
from N . Its vertices are all the networks N ′ such that N

α̃−→∗ N ′, and there is an
edge between two vertices N1 and N2 labeled α if N1

α−→ N2.
A Symbolic Execution Graph (SEG) for N is a subgraph of its AES that

contains N and such that each vertex N ′ �� 0 has either one outgoing edge
labeled by an η or two outgoing edges labeled p

<-
= q : then and p

<-
= q : else.

432 L. Cruz-Filipe et al.

Intuitively, the AES of N represents all possible evolutions of N (each evolu-
tion is a path in this graph). A SEG fixes the order of execution of actions, but
still abstracts from the state (and thus considers both branches of conditionals).
For networks in finite SP, these graphs are finite.

Given a network N , there is a one-to-one correspondence between SEGs for
N and choreographies C such that ([N]) � C. Indeed, given a SEG we can
extract a choreography as follows. We start from the initial vertex, labeled N . If
there is an outgoing edge with label η to N ′, we add η to the choreography and
continue from N ′. If there are two outgoing edges with labels p

<-
= q : then and

p
<-
= q : else to N1 and N2, respectively, we extract a conditional whose branches

are the choreographies extracted by continuing exploration from N1 and N2,
respectively. When we reach a leaf, we extract 0 or 1, according to whether its
label is equivalent to 0 or not. Conversely, we can build a SEG from a particular
rewriting of ([N]) by following the choreography actions one at a time.

Treating recursive definitions. We now extend extraction to networks with recur-
sive definitions, using SEGs. We need to be careful with the definition of the AES,
since including all possible (abstract) executions now may make it infinite (due
to recursion unfolding), and thus extraction may not terminate. To avoid this,
we only allow recursive definitions to be unfolded (once) if they occur at the
head of a process involved in a reduction. With this restriction, we can define
the AES and SEGs for a network as in the finite case. These graphs may now
contain cycles: a network may evolve into the same term after a few reductions.

Example 3. Consider the following network.

p � def X = q!〈∗〉; q&{l : q!〈∗〉;X,r : 0} in q!〈∗〉;X
| q � def Y = p?; p?; if ∗ <-

= r then p ⊕ l;Y else p ⊕ r;0 inY | r � def Z = q!〈∗〉;Z inZ

This network generates the AES in Fig. 6, which is also its SEG. 	

Fig. 6. The AES and SEG for the network in Example 3.

The Paths to Choreography Extraction 433

The key insight is that the definitions of recursive procedures are extracted
from the loops in the SEG, rather than from the recursive definitions in the
source network. This construction typically yields mutually recursive definitions,
motivating a small change to CC that does not add expressivity: we replace the
constructor def X = C2 inC1 by top-level procedure definitions, in the style
of [12]. A choreography now becomes a pair 〈D, C〉, where D = {Xi = Ci} and
all procedure calls in either C or the Ci are to some Xi defined in D.

Definition 3. The choreography extracted from a SEG is defined as follows.
We annotate each node that has more than one incoming edge with a unique
procedure identifier. Then, for every node annotated with an identifier, say X, we
replace each of its incoming edges with an edge to a new leaf node that contains a
special term X (so now the node annotated with X has no incoming edges). This
eliminates all loops in the SEG, allowing us to reuse the extraction procedure for
the non-recursive case to extract the desired pair 〈D, C〉. We get C by extraction
starting from the initial network. Then, for each node that we annotated with an
X, we extract a choreographic procedure X in D that has as body the choreography
extracted from the graph that starts from that annotated node. Any new leaf node
containing a special term X is extracted as a procedure call X.

Example 4. Consider the SEG in Fig. 3. To extract a choreography, we annotate
the topmost node with a procedure identifier X and replace the incoming edge
to that node with an edge to a new leaf X. We thus extract X to be

p.∗q; p.∗ -> q; if q
<-
= r then q -> p[l];X else q -> p[r];1

and the extracted choreography itself is simply X. The body of X is not pro-
jectable (the branches for r are not mergeable, cf. [11]), but it faithfully describes
the behavior of the original network. 	

The procedure in Definition 3 always terminates, but sometimes it yields
choreographies that starve some processes. As an example, the network

p � def X = q!〈∗〉;X inX | q � def Y = p?;Y inY (1)
| r � def Z = s!〈∗〉;Z inZ | s � def W = r?;W inW

has two SEGs, which extract to the choreographies def X = p.∗ -> q;X inX and
def X = r.∗ -> s;X inX, none of which captures all the behaviors of N .

To avoid this problem, we change the definitions of AES and SEGs slightly.
We annotate all procedure calls in networks with either ◦ or •. The node in the
AES corresponding to the initial network has all procedure calls annotated with
◦. There is an edge from N to N ′ with label α if N

α−→ N ′ and the procedure
calls in N ′ are annotated as follows.

– If executing α does not require unfolding procedure calls, then all calls in N ′

are annotated as in N .
– If executing α requires unfolding procedure calls, then we annotate all the

calls in N ′ introduced by these unfoldings with •. If N ′ now has all procedure
calls annotated with •, we change all annotations to ◦.

434 L. Cruz-Filipe et al.

We then require loops in a SEG to contain a node where every procedure
call is annotated with ◦. This ensures that every procedure call is unfolded at
least once before returning to the same node. This holds even if p� X unfolds to
a behavior that calls different procedures, but not X: in order to return to the
same node, the newly invoked procedures themselves need to be unfolded.

Example 5. The annotated AES for the network (1) is:

p � X◦ | q � Y ◦ | r � Z◦ | s � W ◦
p.∗ -> q

�� r.∗ -> s��
p � X• | q � Y • | r � Z◦ | s � W ◦

r.∗ -> s
��

p.∗ -> q

��
p � X◦ | q � Y ◦ | r � Z• | s � W •

p.∗ -> q
��

r.∗ -> s

��

This AES now has the following two SEGs:

p � X◦ | q � Y ◦ | r � Z◦ | s � W ◦

p.∗ -> q��

p � X◦ | q � Y ◦ | r � Z◦ | s � W ◦

r.∗ -> s��
p � X• | q � Y • | r � Z◦ | s � W ◦

r.∗ -> s
		

p � X◦ | q � Y ◦ | r � Z• | s � W •
p.∗ -> q

		

Observe that the self-loops are discarded because they do not go through a node
with all ◦ annotations. From these SEGs, we can extract two definitions for X:

def X = p.∗ -> q; r.∗ -> s;X inX and def X = r.∗ -> s; p.∗ -> q;X inX

Both of these definitions correctly capture all behaviors of the network. 	

A similar situation may occur if there are processes with finite behavior (no

procedure calls): the network

p � def X = q!〈∗〉;X inX | q � def Y = p?;Y inY | r � s!〈∗〉 | s � r?

can be extracted to the choreography X, with X = p.∗ -> q;X, where r and s
never communicate. Hence, we require that if a node in a SEG has more than one
incoming edge (it is a “loop” node) and contains processes with finite behavior,
then these processes must be deadlocked (being finite, this is trivially verifiable).
This ensures that if finite processes are able to reduce, they cannot be in a loop.

Definition 4. A SEG for a network N is valid if all its loops:

– pass through a node where all recursive calls are marked with ◦;
– start in a node where all processes with finite behavior are deadlocked.

A network N extracts to a choreography C if C can be constructed (as in
Definition 3) from a valid SEG for N .

Validity implies, however, that there are some non-deadlocked networks that
are not extractable, such as

p � def X = q!〈∗〉;X inX | q � def Y = p?;Y inY | r � def Z = p?;Z inZ

for which there is no valid SEG. This is to be expected, since deadlock-freedom
is undecidable in SP. We can generalize this observation as a necessary condition
for extraction to be defined, in the following theorem.

The Paths to Choreography Extraction 435

Theorem 3. If the AES for a network N does not contain nodes from which a
process is always deadlocked, then N is extractable.

Lemma 1 and the first part of Theorem 2 still hold for extraction in SP with
recursion, but the second part of Theorem 2 does not: in general, the projection
of a choreography is extracted to a choreography with different procedures, since
extraction ignores the actual definitions in the source network.

Theorem 4. If C is a choreography extracted from a network N , then N ∼ C.

We conclude this section with some complexity theoretical considerations.

Lemma 2. The annotated AES for a network of size n has at most e
2n
e vertices.

Theorem 5. Extraction from a network of size n terminates in time O(ne
2n
e).

As discussed earlier, this time complexity is a dramatic improvement over
earlier, comparable work. However, in practice, we may be able to perform even
better. Algorithmically, all the required work stems from traversals of the AES,
so any reduction in its (explored) size will lead to proportional runtime improve-
ments. Thus, instead of first computing the entire AES and then a valid SEG, we
can compute the relevant parts of the AES lazily as we need them, so parts of the
AES that are never explored while computing a valid SEG are never generated.

5 Asynchrony

We now discuss an asynchronous semantics for SP, with which we can express
new safe behaviors. Most notably, SP can now express asynchronous exchange
(Example 6). We also show a novel choreography primitive that successfully cap-
tures this pattern, which cannot be described in previous works on choreographic
programming, and extend our algorithm to extract it from networks.

Asynchronous SP. Asynchronous communication can be added to SP using stan-
dard techniques for process calculi. In the semantics of networks, we add a FIFO
queue for each pair of processes. Communications now synchronize with these
queues: send actions append a message in the queue of the receiver, and receive
actions remove the first message from the queue of the receiver (see [12] for a
formalization in an extension of SP).

Example 6. The network p � q!〈∗〉; q? | q � p!〈∗〉; p? exemplifies the pattern of
asynchronous exchange. This network is deadlocked in synchronous SP, but runs
without errors in asynchronous SP: both p and q can send their respective val-
ues, becoming ready to receive each other’s messages. This behavior is not rep-
resentable in any previous work on choreographies (including CC from Sect. 3),
since all choreographies presented so far can only describe processes that are not
deadlocked under a synchronous semantics (see [12] for a formal argument). 	

436 L. Cruz-Filipe et al.

The multicom. The situation in Example 6 is prototypical of programs that are
safe only in an asynchronous setting: a group of processes wants to send messages
to a group of receivers, with circular dependencies among communications.

We deal with this situation by means of a new choreography action, which
we call a multicom. Syntactically, a multicom is a list of communication actions
with distinct receivers, which we write (η̃). In the unary case, we obtain the usual
communications and selections; by removing these from the syntax of CC and
adding the multicom, we obtain a more expressive calculus with fewer primitives.
The semantics of multicom is given by the following rule, which generalizes (and
replaces) both �C|Com� and �C|Sel�.

I = {i | pi.ei -> qi ∈ η̃} vi = ei[σ(pi)/∗]

(η̃);C, σ
(η̃)[ei/vi]i∈I−−−−−−−−→ C, σ[qi �→ vi]i∈I

�C|MCom�

Structural precongruence rules for the multicom are motivated by its intuitive
semantics: actions inside a multicom can be permuted as long as the senders
differ, and sequential multicoms can be merged as long as they do not share
receivers and there are no sequential constraints between them (i.e., none of the
receivers in the first multicom is a sender in the second one).

pn(η1) ∩ pn(η2) = ∅(
. . . , η1, η2, . . .

) ≡ (
. . . , η2, η1, . . .

) �C|MCom-Perm�

rcv(η) ∩ rcv(ν) = ∅ rcv(η̃) ∩ snd(ν̃) = ∅(
η̃

)
;
(
ν̃

) ≡ (
η̃, ν̃

) �C|MCom-MCom�

From these rules we can derive all instances of �C|Eta-Eta�, e.g.:

p.∗ -> q; r.∗ -> s ≡
(
p.∗ -> q
r.∗ -> s

)
≡

(
r.∗ -> s
p.∗ -> q

)
≡ r.∗ -> s; p.∗ -> q

The problematic program in Example 6 can now be written as
(
p.∗ -> q
q.∗ -> p

)
.

Structural precongruence rules for multicom also allow us to define a normal
form for choreographies, where no multicom can be split in smaller multicoms.

Extraction. In order to extract choreographies containing multicoms, we alter
the definition of the AES for a process network by allowing multicoms as labels
for the edges. These can be computed using the following iterative algorithm.

1. For a process p with behavior q!〈e〉;B (or q ⊕ l;B), set actions = ∅ and
waiting = {p.e -> q} (resp. waiting = {p -> q[l]}).

2. While waiting �= ∅:
(a) Move an action η from waiting to actions. Assume η is of the form r.e -> s

(the case for label selection is similar).

The Paths to Choreography Extraction 437

(b) If the behavior of s is of the form a1; . . . ; ak; r?;B where each ai is either
the sending of a value or a label selection, then: for each ai, if the corre-
sponding choreography action is not in actions, add it to waiting.

3. Return actions.

This algorithm may fail (the behavior of s in step 2(b) is not of the required form),
in which case the action initially chosen cannot be unblocked by a multicom.

Example 7. Consider the network from Example 6. Starting with action q!〈∗〉 at
process p, we initialize actions = ∅ and waiting = {p.∗ -> q}. We pick the action
p.∗ -> q from waiting and move it to actions. The behavior of q is p!〈∗〉; p?, which
is of the form described in step 2(b); the choreography action corresponding to
p!〈∗〉 is q.∗ -> p, so we add this action to waiting, obtaining actions = {p.∗ -> q}
and waiting = {q.∗ -> p}. Now we consider the action q.∗ -> p, which we
move from waiting to action, and look at p’s behavior, which is q!〈∗〉; q?. The
choreography action corresponding to q!〈∗〉 is p.∗ -> q, which is already in actions,
so we do not change waiting. The set waiting is now empty, and the algorithm

terminates, returning
(
p.∗ -> q
q.∗ -> p

)
. We would obtain the equivalent

(
q.∗ -> p
p.∗ -> q

)

by starting with the send action at q. 	

Example 8. As a more sophisticated example, we show how our new choreogra-
phies with multicom can model the alternating 2-bit protocol. Here, Alice alter-
nates between sending a 0 and a 1 to Bob; in turn, Bob sends an acknowledgment
for every bit he receives, and Alice waits for the acknowledgment before sending
another copy of the same bit. Since we are in an asynchronous semantics, we
only consider the time when the messages arrive. With this in mind, we can
write this protocol as the following network.

a � def X = (b?; b!〈0〉; b?; b!〈1〉;X) in (b!〈0〉; b!〈1〉;X)
| b � def Y = (a?; a!〈ack0〉; a?; a!〈ack1〉;Y) inY

This implementation imposes exactly the dependencies dictated by the pro-
tocol. For example, Alice can receive Bob’s acknowledgment to the first 0 before
or after Bob receives the first 1. This network extracts to the choreography

a.0 -> b;X where X =
(

a.1 -> b
b.ack0 -> a

)
;
(

a.0 -> b
b.ack1 -> a

)
;X

which is a simple and elegant representation of the alternating 2-bit protocol.	

Extraction for asynchronous SP is still sound, but behavioral equivalence is

now an expansion [1,24], as each communication now takes two steps in asyn-
chronous SP. Its complexity is also no larger than for the synchronous case. The
algorithm computing the multicom takes linear time in the size of the multicom
produced. Via a one-time preprocessing of the network, we can assume direct
references from communication terms in one process to the process it directs its
communication at, and from there to the current state of that process. Other

438 L. Cruz-Filipe et al.

than the above, all constant steps in the algorithm can be seen as an extension of
the multicom. Since adding a communication to a multicom removes a potential
node in the AES (as we are combining communications), the worst-case time
complexity is no worse than in the synchronous case. In practice, this complex-
ity actually gets better when larger multicoms are created, since building these
is a much cheaper local operation than exploring graphs that would be larger in
terms of nodes as well as edges without the multicoms.

6 Extensions and Applications

We discuss some straightforward modifications of our extraction to cover other
scenarios occurring in the literature.

More expressive communications and processes. In real-world contexts, the val-
ues stored and communicated by processes are typed, and the receiver process
can also specify how to treat incoming messages [12]. This means that communi-
cation actions now have the form p.e -> q.f , where f is the function consuming
the received message, and systems may deadlock because of typing errors. Our
construction applies without changes to this scenario.

Some works allow processes to store several values, used via variables [5,6].
Again, dealing with this situation does not require any changes to our algorithm.

Local conditionals. Many choreography models allow for a local conditional con-
struct, i.e., if p.e thenC1 elseC2 [6,14,21]. Dealing with this construct is simple:
the if and then transitions now can occur whenever a process has a conditional
as top action, since they no longer require synchronization with other processes.

Choreography Specifications. So far, we have considered choreographies that
describe concrete implementations, i.e., processes are equipped with storage and
local computational capabilities. However, choreographies have also been advo-
cated for the specification of communication protocols. Most notably, multiparty
session types use choreographies to define types used in the verification of process
calculi [17]. While there are multiple variants of multiparty session types, the
one so far most used in practice is almost identical to a simplification of SP. In
this variant, each pair of participants has a dedicated channel, and communica-
tion actions refer directly to the intended sender/recipient as in SP (see, e.g.,
the theory of [6,9,10,21] and the practical implementations in [16,20,23]). To
obtain multiparty session types from SP (and CC), we just need to: remove the
capability of storing values at processes; replace message values with constants
(representing types, which could also be extended to subtyping in the straightfor-
ward way); and make conditionals nondeterministic (since in types we abstract
from the precise values and expression used by the evaluator). These modifi-
cations do not require any significant change to our approach, since our AES
already abstracts from data and thus our treatment of the conditional is already
nondeterministic. For reference, we can simply treat the standard construct for
an internal choice at a process p – C1 ⊕p C2 – as syntactic sugar for a local
conditional like if p.coinflip thenC1 elseC2.

The Paths to Choreography Extraction 439

References

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Inf.
29(8), 737–760 (1992)

2. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: WWW,
pp. 795–804 (2011)

3. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/
4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),

323–342 (1983)
5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)
6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous

global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM (2013)

7. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 47–62. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44584-6 5

8. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43376-8 4

9. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: A logical explanation of multiparty session types. In: Desharnais,
J., Jagadeesan, R. (eds.) 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23–26, 2016, Québec City, Canada, vol. 59 of LIPIcs, pp.
33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

10. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

11. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. In:
FACS 2016. LNCS. Springer (accepted for publication)

12. Cruz-Filipe, L., Montesi, F.: Choreographies, divided and conquered. CoRR,
abs/1602.03729 (2016). Submitted for publication

13. Cruz-Filipe, L., Montesi, F.: Choreographies in practice. In: Albert, E., Lanese, I.
(eds.) FORTE 2016. LNCS, vol. 9688, pp. 114–123. Springer, Cham (2016). doi:10.
1007/978-3-319-39570-8 8

14. Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic chore-
ographies. In: Holvoet, T., Viroli, M. (eds.) COORDINATION 2015. LNCS, vol.
9037, pp. 67–82. Springer, Cham (2015). doi:10.1007/978-3-319-19282-6 5

15. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 10

16. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICD-
CIT 2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19056-8 4

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9 (2016)

18. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1 17

http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/978-3-662-44584-6_5
http://dx.doi.org/10.1007/978-3-662-43376-8_4
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-19282-6_5
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-32940-1_17

440 L. Cruz-Filipe et al.

19. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, pp. 221–232. ACM, 15–17 January 2015

20. Montesi, F.: Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen (2013). http://fabriziomontesi.com/files/choreographic programming.pdf

21. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-40184-8 30

22. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00590-9 23

23. Ng, N., Yoshida, N.: Pabble: Parameterised scribble for parallel programming. In:
22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2014, Torino, Italy, pp. 707–714. IEEE Computer Society,
12–14 February 2014

24. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

25. W3C WS-CDL Working Group. Web services choreography description language
version 1.0 (2004). http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

http://fabriziomontesi.com/files/choreographic_programming.pdf
http://dx.doi.org/10.1007/978-3-642-40184-8_30
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

	The Paths to Choreography Extraction
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Core Choreographies and Stateful Processes
	4 Extraction from SP
	5 Asynchrony
	6 Extensions and Applications
	References

