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Abstract. We provide a model-checking technique for a logic for true
concurrency, whose formulae predicate about events in computations and
their causal dependencies. The logic, that represents the logical counter-
part of history-preserving bisimilarity, is naturally interpreted over event
structures. It includes minimal and maximal fixpoint operators and thus
it can express properties of infinite computations. Global algorithms are
not convenient in this setting, since the event structure associated with
a system is typically infinite (even if the system is finite state), a fact
that makes also the decidability of model-checking non-trivial. Focusing
on the alternation free fragment of the logic, along the lines of some clas-
sical work for the modal mu-calculus, we propose a local model-checking
algorithm. The algorithm is given in the form of a tableau system, for
which, over a class of event structures satisfying a suitable regularity
condition, we prove termination, soundness and completeness.

1 Introduction

When dealing with concurrent and distributed systems, a partial order app-
roach to the semantics can be appropriate for providing a precise account of
the behavioural steps and of their dependencies, like causality and concurrency.
This is normally referred to as a true concurrent approach to the semantics and
opposed to the so-called interleaving approach where concurrency of actions is
reduced to the non-deterministic choice among their possible sequentializations.
True concurrent models can be convenient also because, thanks to an explicit
representation of concurrency, they provide some relief to the so-called state-
space explosion problem in the analysis of concurrent systems, which instead
occurs more severely in interleaving approaches (see, e.g., [1]).

A number of true concurrent behavioural equivalences have been defined
which take into account different concurrency features of computations (see,
e.g., [2]). On the logical side, various behavioural logics have been proposed
capable of expressing causal properties of computations (see, e.g., [3–8] just to
mention a few and [9,10] for more references) and corresponding model-checking
problems have been considered (see, e.g., [11–15]).

Recently, the logical characterisation of true concurrent behavioural equiv-
alences has received a renewed interest and corresponding event-based logics
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have been introduced [9,10], interpreted over event structures [16]. Logic formu-
lae include variables which can be bound to events in computations and describe
their dependencies, namely causality and concurrency. The expressiveness of such
logics is sufficient to provide a logical characterisation of the main behavioural
equivalences in the true concurrent spectrum [2]. Hereditary history preserving
(hhp-)bisimilarity [4], the finest equivalence in the spectrum in [2], corresponds
to the full logics, i.e., two systems are hhp-bisimilar if and only if they satisfy the
same logical formulae, and fragments can be identified corresponding to coarser
behavioural equivalences. The corresponding model-checking problem, instead,
has not been investigated. Decidability itself is an issue, since event structure
models are infinite even for finite state systems and problems in this framework
have often revealed to sit on the border between decidability and undecidability.

In this paper we focus on a fragment of the event-based logic in [10], referred
to as Lhp, corresponding to a classical equivalence in the spectrum, namely his-
tory preserving (hp-)bisimilarity [17–19]. The logic is extended with minimal and
maximal fixpoint operators, in mu-calculus style, in order to express interesting
properties of infinite computations. Hp-bisimilarity is known to be decidable for
finite safe Petri nets [20,21]. However, the question remains open on whether the
corresponding model checking problem for Lhp is decidable over some interesting
class of systems.

We answer positively to the question, defining a model checking procedure
for Lhp over a class of event structures satisfying a suitable regularity condition.

Since the model checking procedure acts on event structures which are nor-
mally infinite even when generated from finite state systems, global algorithms
fully exploring the structure are not a convenient choice. We are naturally led
to focus on local algorithms, in the style of [22], exploring only the part of a
model needed to asses the property. Along the lines of [22], the model checking
procedure is given in the form of a tableau system. In order to check whether
a system model satisfies a given formula a set of proof trees is constructed by
applying a suitable set of rules that reduce the satisfaction of a formula in a
given state to the satisfaction of suitably generated subformulae. In this way,
the state space is explored “on demand” only in the part relevant for deciding
the satisfaction of the formula. The presence of fixpoint operators makes the
issue of sound termination quite delicate and non-trivial already in the original
approach that works on finite transition systems. In the setting of this paper,
this is further complicated by the infiniteness of the event structure model of
any non-trivial system.

In order to single out a setting that ensures termination, soundness and
completeness of the model checking procedure we take two key choices. The first
is the restriction to a class of event structures having a finitary flavour, which we
call strongly regular event structures. Recall that regular event structures [23] are
characterised by the fact that the number of sub-structures arising as residuals
of the original event structure after some steps of computations is finite up to
isomorphism. The intuition is that, after going sufficiently in depth, the event
structure starts repeating cyclically. For strongly regular event structures the
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requirement is strengthened by asking the finiteness of the residuals extended
with an event from the past. This is important in our setting since Lhp formulae
can express history-based properties that depend not only on the future but
also on past events. The second choice is the use of fixpoints in an alternation
free fashion: minimal and maximal fixpoints can be nested, but without creating
mutual dependencies (technically, the propositional variable bound by a minimal
fixpoint operator cannot be in the scope of a maximal fixpoint operator and
vice versa). When dealing with finite structures, alternation freeness allows for
efficient verification procedures [24]. Here the essential fact is that it ensures
that, over finitely branching transition systems, the formulae are continuous
in the sense of [25,26], hence fixpoints are reached in at most ω steps (higher
ordinals are never needed).

The paper is organised as follows. In Sect. 2 we recall some basics on (prime)
event structures and we define the regularity property of interest. In Sect. 3 we
introduce the true concurrent logic Lhp, its fixpoint extension and the alternation
free fragment. In Sect. 4 we define our model checking procedure as a tableau
system, and we prove its soundness, completeness and termination. Finally, in
Sect. 5 we discuss some related work and outline directions of future research.

2 Event Structures and Regularity

Prime event structures [16] are a widely known model of concurrency. They
describe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper E is a fixed countable set of events, Λ
a finite set of labels ranged over by a, b, c . . . and λ : E → Λ a labelling function.

Definition 1 (Prime event structure). A (Λ-labelled) Prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, # are
binary relations on E, called causality and conflict respectively, such that:

1. ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all

e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

The pess E1 = 〈E1,≤1,#1〉, E2 = 〈E2,≤2,#2〉 are isomorphic, written E1 ∼ E2,
when there is a bijection ι : E1 → E2 such that for all e1, e

′
1 ∈ E1 it holds

e1 ≤1 e′
1 iff ι(e1) ≤2 ι(e′

1) and e1 #1 e′
1 iff ι(e1) #2 ι(e′

1) and λ(e1) = λ(ι(e1)).

In the following, we will assume that the components of an event structure
E are named as in the definition above, possibly with subscripts.

Definition 2 (Consistency, concurrency). Let E be a pes. We say that
e, e′ ∈ E are consistent, written e� e′, if ¬(e#e′). A subset X ⊆ E is called
consistent if e� e′ for all e, e′ ∈ X. We say that e and e′ are concurrent, writ-
ten e || e′, if e� e′ and ¬(e ≤ e′), ¬(e′ ≤ e).
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Causality and concurrency will be sometimes used on set of events. Given
X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly
X || e, resp. X � e, means that for all e′ ∈ X, e′ || e, resp. e′ � e.

The concept of (concurrent) computation for event structures is captured by
the notion of configuration.

Definition 3 (Configuration). Let E be a pes. A configuration in E is a finite
consistent subset of events C ⊆ E closed w.r.t. causality (i.e., �e� ⊆ C for all
e ∈ C). The set of finite configurations of E is denoted by C(E).

The empty set of events ∅ is always a configuration, which can be inter-
preted as the initial state of the computation. The evolution of a system can be
represented by a transition system where configurations are states.

Definition 4 (Transition system). Let E be a pes and let C ∈ C(E). Given
e ∈ E\C such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X < e, Y ‖ e we

write C
X,Y < e−−−−−→λ(e) C ∪ {e}, possibly omitting X, Y or the label λ(e). The set

of enabled events at a configuration C is defined as en(C) = {e ∈ E | C
e−→ C ′}.

Transitions are labelled by the executed event e. In addition, they can report its
label λ(e), a subset of causes X and a set of events Y ⊆ C concurrent with e.

We already mentioned that the pes associated with a non-trivial system
exhibiting a cyclic behaviour is infinite. We next introduce a class of pess enjoy-
ing a finitary property referred to as strong regularity.

Definition 5 (Residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e ∈ E\C | C � e}.
The residual of E can be seen as a pes, endowed with the restriction of the
causality and conflict relations of E . Intuitively, it represents the pes that remains
to be executed after the computation expressed by C.

Recall that a pes E is regular [23] when the set of residuals {E [C] | C ∈ C(E)}
is finite up to isomorphism and there exists an integer k such that |en(C)| ≤ k
for all C ∈ C(E). The first condition roughly means that there is a finite number
of residuals over which the computation cycles. The second condition requires
that the transition system of configurations is boundedly branching, with a finite
bound. Here we strengthen the first condition by requiring the finiteness of the
residuals extended with an event from the past. Given C ∈ C(E) and e ∈ C, we
denote by E [C] ∪ {e} the pes obtained from E [C] by adding event e with the
causal dependencies it had in the original pes E .

Definition 6 (Strong regularity). A pes E is called strongly regular when
the set {E [C] ∪ {e} | C ∈ C(E) ∧ e ∈ C} is finite up to isomorphism of pess
and there exists an integer k such that |en(C)| ≤ k for all C ∈ C(E).

Clearly, each strongly regular pes is regular. Strongly regular pess can be
shown, e.g., to include regular trace pess, the class of event structures associated
with finite safe Petri nets [23].



Local Model Checking in a Logic for True Concurrency 411

a0 b0

b1

(a) E1

a0 a1 b0

b1

(b) E2

a0 b0

a1 b1

a2 b2

(c) E3

Fig. 1. Some examples of pess.

Some simple pess are depicted in Fig. 1. Graphically, dotted lines represent
immediate conflicts and the causal partial order proceeds upwards along the
straight lines. Events are denoted by their labels, possibly with superscripts. For
instance, in the pes E1, there are two b-labelled events, b0 and b1 in conflict.
The first is caused by the only a-labelled event a0 and the other is concurrent
with it. The infinite pes E3 corresponds to the CCS process a ‖ b. C where
C = a + b. C. It is strongly regular since it has seven (equivalence classes of)
residuals extended with an event from the past E3[{a0}]∪{a0} = E3[{b0}]∪{b0} =
E3, E3[{a0, b0}]∪{a0}, E3[{a0, b0}]∪{b0}, E3[{b0, a1}]∪{b0}, E3[{b0, a1}]∪{a1},
E3[{a0, b0, a1}] ∪ {a0} � E3[{a0, b0, a1}] ∪ {a1}, and E3[{a0, b0, a1}] ∪ {b0}.

3 A Logic for True Concurrency

In this section we introduce the syntax and the semantics of the logic for concur-
rency of interest in the paper. Originally defined in [10], the logic has formulae
that predicate over executability of events in computations and on their depen-
dency relations (causality and concurrency).

3.1 Syntax

As already mentioned, logic formulae include event variables from a fixed denu-
merable set Var , denoted by x, y, . . .. In order to keep the notation simple, tuples
of variables like x1, . . . , xn will be denoted by a corresponding boldface letter x
and, abusing the notation, tuples will be often used as sets. The logic, in positive
form, besides the standard propositional connectives ∧ and ∨, includes diamond
and box modalities. The formula 〈|x,y < a z|〉ϕ holds when in the current con-
figuration an a-labelled event e is enabled which causally depends on the events
bound to the variables in x and is concurrent with those in y. Event e is executed
and bound to variable z, and then the formula ϕ must hold in the resulting con-
figuration. Dually, [[x,y < a z]]ϕ is satisfied when all a-labelled events causally
dependent on x and concurrent with y bring to a configuration where ϕ holds.
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Fixpoint operators resort to propositional variables. In order to let them
interact correctly with event variables, whose values can be passed from an
iteration to the next one in the recursion, we use abstract propositions.

We fix a denumerable set X a of abstract propositions, ranged over by X, Y ,
. . . , that are intended to represent formulae possibly containing (unnamed) free
event variables. Each abstract proposition has an arity ar(X), which indicates
the number of free event variables in X. An abstract proposition X can be
turn into a formula by specifying a name for its free variables. For x such that
|x| = ar(X), we write X(x) to indicate the abstract proposition X whose free
event variables are named x. When ar(X) = 0 we will write X instead of X(ε)
omitting the trailing empty tuple of variables. We call X(x) a proposition and
denote by X the set of all propositions.

Definition 7 (Syntax). The syntax of Lhp over the sets of event variables
Var, abstract propositions X a and labels Λ is defined as follows:

ϕ ::= X(x) | T | ϕ ∧ ϕ | 〈|x,y < a z|〉ϕ | νX(x).ϕ
| F | ϕ ∨ ϕ | [[x,y < a z]]ϕ | μX(x).ϕ

The free event variables of a formula ϕ are denoted by fv(ϕ) and defined in
the obvious way. Just note that the modalities act as binders for the variable
representing the event executed, hence fv(〈|x,y < a z|〉ϕ) = fv([[x,y < a z]]ϕ) =
(fv(ϕ)\{z})∪x∪y. For formulae νX(x).ϕ and μX(x).ϕ we require that fv(ϕ) =
x. The free propositions in ϕ, i.e., the propositions not bound by μ or ν, are
denoted by fp(ϕ). When both fv(ϕ) and fp(ϕ) are empty we say that ϕ is closed.

The model checking procedure presented in the paper is shown to work in
the so-called alternation free fragment of the logic. The idea is that propositions
introduced in least (greatest) fixpoints should not occur free in nested greatest
(least) fixpoints. More precisely, call an occurrence of an abstract proposition
X a μ-proposition or ν-proposition when it is bound by a μ or ν operator,
respectively. Then the definition is as follows.

Definition 8 (Alternation free formula). A formula of Lhp is called alter-
nation free when no subformula includes both a free μ-proposition and a free
ν-proposition.

An example of formula with alternation is the following

[[ax]]μY (x).(νZ(x).[[x < a y]]Y (y) ∧ [[x < b y]]Z(y))

In fact, Z is a ν-proposition, Y is a μ-proposition and they both occur free in
the subformula [[x < a y]]Y (y) ∧ [[x < b y]]Z(y). It expresses that along every run
starting with an a and consisting of an infinite causal chain of events, labelled a
or b, only a finite number of a-labelled events can occur. Already for the proposi-
tional mu-calculus, it can be proved that alternation increases the expressiveness
of the logic and also its complexity (see, e.g., [27]). Still, as argued in the same
paper, the alternation free fragment is quite useful, in practice, as many behav-
ioural properties of interest can be expressed in such fragment.
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3.2 Semantics

Since the logic Lhp is interpreted over pess, the satisfaction of a formula is defined
with respect to a configuration C, representing the state of the computation, and
a (total) function η : Var → E, called an environment, that binds free variables in
ϕ to events in C. Namely, if EnvE denotes the set of environments, the semantics
of a formula will be a set of pairs in C(E) × EnvE . The semantics of Lhp also
depends on a proposition environment providing a semantic interpretation for
propositions.

Definition 9 (Proposition environments). Let E be a pes. A proposition
environment is a function π : X → 2C(E)×EnvE such that if (C, η) ∈ π(X(x))
and η′(y) = η(x) pointwise, then (C, η′) ∈ π(X(y)). We denote by PEnvE the
set of proposition environments, ranged over by π.

The condition imposed on proposition environments ensures that the semantics
of a formula only depends on the events that the environment associates to its
free variables and that it does not depend on the naming of the variables.

We can now give the semantics of the logic Lhp. Given an event environment
η and an event e we write η[x �→ e] to indicate the updated environment which
maps x to e. Similarly, for a proposition environment π and S ⊆ C(E) × EnvE ,
we write π[Z(x) �→ S] for the corresponding update.

Definition 10 (Semantics). Let E be a pes. The denotation of a formula
ϕ in Lhp is given by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined
inductively as follows, where we write {|ϕ|}E

π instead of {|ϕ|}E(π):

{|T|}E
π = C(E) × EnvE {|F|}E

π = ∅ {|Z(y)|}E
π = π(Z(y))

{|ϕ1 ∧ ϕ2|}E
π = {|ϕ1|}E

π ∩ {|ϕ2|}E
π {|ϕ1 ∨ ϕ2|}E

π = {|ϕ1|}E
π ∪ {|ϕ2|}E

π

{|〈|x,y < a z|〉 ϕ|}E
π = {(C, η) | ∃e. C

η(x),η(y) < e−−−−−−−−→a C′ ∧ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|[[x,y < a z]] ϕ|}E
π = {(C, η) | ∀e. C

η(x),η(y) < e−−−−−−−−→a C′ ⇒ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|νZ(x).ϕ|}E
π = gfp(fϕ,Z(x),π) {|μZ(x).ϕ|}E

π = lfp(fϕ,Z(x),π)

where fϕ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is the semantic function of ϕ, Z(x), π
defined by fϕ,Z(x),π(S) = {|ϕ|}E

π[Z(x) �→S] and gfp(fϕ,Z(x),π) (resp. lfp(fϕ,Z(x),π))
denotes the corresponding greatest (resp. least) fixpoint. When (C, η) ∈ {|ϕ|}E

π we
say that the pes E satisfies the formula ϕ in the configuration C and environ-
ments η, π, and we write C, η |=E

π ϕ.

The semantics of boolean operators is as usual. The formula 〈|x,y < a z|〉ϕ
holds in (C, η) when from configuration C there is an enabled a-labelled event
e that is causally dependent on (at least) the events bound to the variables in
x and concurrent with (at least) those bound to the variables in y and can be
executed producing a new configuration C ′ = C ∪ {e} which, paired with the
environment η′ = η[z �→ e], satisfies the formula ϕ. Dually, [[x,y < a z]]ϕ holds
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when all a-labelled events executable from C, caused by x and concurrent with
y bring to a configuration where ϕ is satisfied.

The fixpoints corresponding to the formulae νZ(x).ϕ and μZ(x).ϕ are guar-
anteed to exist by Knaster-Tarski theorem, since the set 2C(E)×EnvE ordered by
subset inclusion is a complete lattice and the functions, of which the fixpoints
are calculated, are monotonic.

For example, the formula 〈|ax|〉〈|x < b y|〉T says that we can execute an
a-labelled event and a b-labelled event, concurrently. It is satisfied by all the
pes in Fig. 1. The formula 〈|ax|〉(〈|x < b y|〉T ∧ 〈|x < b z|〉T) expresses a sim-
ple “history dependent” property: it requires that, after the execution of an
a-labelled event, one can choose between a concurrent and a causally dependent
b-labelled event. This holds for E1 in Fig. 1a, while it is false on E2 in Fig. 1b
where the choice is already determined by the execution of the a-labelled event.

As an example of property of infinite computations consider the formula
[[bx]]νZ(x).〈|a z|〉〈|z < a y|〉T∧[[x < b y]]Z(y), expressing that all non-empty causal
chain of b-labelled events reach a state where is possible to execute two concur-
rent a-labelled events. This holds for the pes E3 in Fig. 1c. Now consider the for-
mula μX.〈| z|〉X∨〈|bx|〉〈|x < a y|〉νY.〈| z|〉Y , where we use 〈| z|〉ϕ as a shortcut for∨

c∈Λ〈|c z|〉ϕ. The formula, requiring the existence of an infinite run containing a
b-labelled event immediately followed by a causally dependent a-labelled event,
turns out to be false in the same pes. Intuitively this is because any a-labelled
event causally dependent on a b-labelled event is in conflict with the rest of the
infinite chain of events, and then, after its execution, the computation is guaran-
teed to terminate. A variant of the formula μX.〈| z|〉X∨〈|bx|〉〈|x < a y|〉νY.〈| z|〉Y
requiring the existence of an infinite run containing a b-labelled event imme-
diately followed by a concurrent a-labelled event, would be again true in E3.
Observe that all formulae in the examples above are alternation free.

4 A Local Model Checker for the Logic

The model checker is given as a tableau system for testing whether an alternation
free formula of the logic Lhp is satisfied by a semantic model of a system given
in the form of a pes.

4.1 Constants and Definition Lists

As a first step, along the lines of [22], we extend the logic with propositional
constants which are useful in defining the tableau rules.

Let K be a set of propositional constant symbols, ranged over by upper case
letters like U, V,W . . .. Similarly to abstract propositions, constants are meant
to represent formulae of the logic, possibly containing (unnamed) free variables.
Each constant U has an arity ar(U), which indicates the number of free event
variables in the associated formula. It can be used as a formula by specifying
the names for its free variables, writing U(x) where |x| = ar(U).
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Definition 11 (Extended logic). We denote by Le
hp the logic defined as in

Definition 7, with the addition of constants U(x) as atomic formulae.

Constants are interpreted at syntactical level, by means of a list of declara-
tions that associates constants with formulae of the logic.

Definition 12 (Definition list). A definition list is a sequence Δ of declara-
tions U1(x1) = ϕ1, . . . , Un(xn) = ϕn, where Ui �= Uj whenever i �= j and each ϕk

is a formula of the extended logic Le
hp such that |xk| = ar(Uk) and fv(ϕk) = xk,

for k ∈ {1, . . . , n}. We write dom(Δ) = {U1, . . . , Un} for the set of constants
declared in Δ, and K (ϕ) for the set of constants appearing in ϕ. The definition
list is well-formed if for all k ∈ {1, . . . , n} it holds that K (ϕk) ⊆ {U1, . . . , Uk−1}.

Clearly, a prefix of a well-formed definition list is itself a well-formed defini-
tion list. Hereafter all definition lists will be implicitly assumed to be well-formed.

Definition 13 (Admissibility). Let ϕ be a formula of the extended logic Le
hp.

We say that a definition list Δ is admissible for ϕ if K (ϕ) ⊆ dom(Δ).

A definition list is a sort of syntactical environment for constants, but, dif-
ferently from environments, it is not total. The admissibility of Δ for ϕ simply
means that each constant occurring in ϕ is declared in Δ, possibly with differ-
ent names for its free variables. Given a constant U /∈ dom(Δ) such that Δ is
admissible for ϕ, |fv(ϕ)| = ar(U) and fv(ϕ) = x, we denote by Δ · (U(x) = ϕ)
the definition list resulting by appending the declaration U(x) = ϕ to Δ.

Given a formula ϕ in the extended logic Le
hp and an admissible definition list

Δ, we can transform ϕ into a formula of the original logic Lhp by repeatedly
replacing each constant with the corresponding definition. The substitution of
a constant U according to its definition U(x) = ψ in a formula ϕ, denoted
ϕ[U := ψ], is the formula obtained from ϕ by replacing any occurrence of U(y)
with ψ[y�x].

Definition 14 (Expansion). Let ϕ be a formula in the extended logic Le
hp and

let Δ be U1(x1) = ψ1, . . . , Un(xn) = ψn, an admissible definition list for ϕ. The
formula ϕΔ in Lhp is obtained by applying recursively n substitutions, starting
from ϕ(n) = ϕ[Un := ψn] and then ϕ(i−1) = ϕ(i)[Ui−1 := ψi−1], until ϕ(1) is
calculated. Then ϕΔ = ϕ(1).

We will often write Δ(U(y)) to indicate the formula of the extended logic
associated with U(y) in Δ. Free variables and free propositions of a formula ϕ
in the extended logic, in an admissible definition list Δ, are defined as before,
with the addition of the clauses fv(U(y)) = y and fp(U(y)) = fp(Δ(U(y))).

Concerning the semantics, we say that a pes E satisfies the formula ϕ with
the admissible definition list Δ in the configuration C and environments η, π,
written C, η,Δ |=E

π ϕ, when (C, η) ∈ {|ϕΔ|}E
π.
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4.2 Tableau Rules

The tableau system works on judgements Γ |=E ϕ, where Γ = 〈C, η,Δ〉, referred
to as a context, is a tuple consisting of a configuration C ∈ C(E), an environment
η and a definition list Δ, admissible for ϕ, such that ϕΔ is closed. It consists in
a set of rules of the form

C, η,Δ |=E ϕ

C1, η1,Δ1 |=E ϕ1 . . . Ck, ηk,Δk |=E ϕk
δ

where k > 0 and δ is a possible side condition required to hold. The intuition is
that the validity of the premise sequent reduces to the validity of its consequents.
The index E , when the model E is clear from the context, will be dropped.

In [22,28], the finiteness of the model is an essential ingredient that concurs to
the finiteness of the tableaux. In our case, as already mentioned, the pes model
is commonly infinite, even for finite-state systems. However, working on strongly
regular pess we have that (1) only a finite part of the model is used in every
step of the tableau construction, thanks to the fact that strongly regular pess
are boundedly branching and (2) after going sufficiently in depth, the pes starts
“repeating” cyclically the same structure. These facts will allow to conclude that
the satisfaction of a formula can be determined by checking only a finite part of
the pes (as formally proved later in Sect. 4.4).

The tableau rules for the logic Le
hp, are reported in Table 1. The rules for

the propositional connectives are straightforward. They reduce the satisfaction
of the formula in the premise to the satisfaction of subformulae in an obvious
way. For instance ϕ ∨ ψ is satisfied when either ϕ is satisfied or ψ is satisfied.
The context is not altered.

Similarly, the rules for the modal operators generate sequents involving the
subformulae after the modal operators with a context that changes according to
the semantics. The formula 〈|x,y < a z|〉ϕ holds when there is at least a transition
leading to a context where ϕ is satisfied, while [[x,y < a z]]ϕ is satisfied when
all transitions lead to a context where ϕ is satisfied.

For each kind of fixpoint formula αZ(x).ϕ, with α ∈ {μ, ν}, there are two
rules. The first rule introduces a constant, which is added to the definition list
and used as a formula in the consequent. The second rule unfolds the fixpoint
by unrolling the associated constant and also reassigns its variables by updating
the environment. The side condition involves an unspecified part γ, the so-called
stop condition, that prevents the reduction to continue unboundedly and will be
described in the next section.

The tableau rules are backwards sound, namely the premise is true if all the
consequents are true, a property that will play a basic role in Sect. 4.4.

Lemma 1 (Backwards soundness). Every rule of the tableau system is back-
wards sound.

4.3 The Stop Condition

In order to ensure the finiteness of the tableaux generated by a formula, the
unfolding of the fixpoints has to be stopped when a context is reached that is
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Table 1. The tableau rules for logic Le
hp.

C, η, Δ |= ϕ ∧ ψ

C, η, Δ |= ϕ C, η, Δ |= ψ

C, η, Δ |= ϕ ∨ ψ

C, η, Δ |= ϕ

C, η, Δ |= ϕ ∨ ψ

C, η, Δ |= ψ

C, η, Δ |= 〈|x,y < a z|〉 ϕ

C′, η[z �→ e], Δ |= ϕ
∃ e. C

η(x),η(y) < e−−−−−−−−→a C′

C, η, Δ |= [[x,y < a z]] ϕ

C1, η1, Δ |= ϕ . . . Cn, ηn, Δ |= ϕ

where {(C1, η1), . . . , (Cn, ηn)} = {(C′, η[z �→ e]) | ∃ e. C
η(x),η(y) < e−−−−−−−−→a C′}

C, η, Δ |= αZ(x).ϕ

C, η, Δ′ |= U(x)
Δ′ is Δ · (U(x) = αZ(x).ϕ) for α ∈ {ν, μ}

C, η, Δ |= U(y)

C, η′, Δ |= ϕ[Z := U(y)]
¬γ and Δ(U(x)) = αZ(x).ϕ for α ∈ {ν, μ} and

η′ = η[x �→ η(y)],

equivalent, in a suitable sense to be defined, to a context occurring in an ancestor
of the current node of the tableau, for the same fixpoint formula. The notion of
equivalence should prevent the tableau generation to continue infinitely but it
should be chosen carefully not to break the soundness of the technique.

Surely two contexts Γ = 〈C, η,Δ〉 and Γ ′ = 〈C ′, η′,Δ′〉 for a formula ϕ,
in order to be considered equivalent, must have isomorphic futures, i.e., the
residuals E [C] and E [C ′] are isomorphic as pess. This is not sufficient, though,
since ϕ can express history dependent properties that relates the future with the
past events. Therefore we additionally ask that event variables of ϕ are mapped
to events in C and C ′, respectively, which have the same relations (causality and
concurrency) with the corresponding futures.

In order to formalise this intuition we need to set up some notions.

Definition 15 (Contextualized residual). Let E be a pes. Given a config-
uration C ∈ C(E), an environment η, a finite set of variables x ⊆ Var, we refer
to E [C, η,x] = 〈E [C], η,x〉 as the (η, x)-contextualised residual of E after C.

The contextualised residuals E [C, η,x] and E [C ′, η′,x′] are isomorphic when
x = x′ and there is an isomorphism between E [C] and E [C ′] “compatible” with
the way environments map the variables in x into events.
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Definition 16 (Isomorphism of contextualized residuals). Let E be a
pes. Two contextualised residuals E [C1, η1,x1] and E [C2, η2,x2] are isomorphic,
written E [C1, η1, ϕ] ∼ E [C2, η2, ϕ], when x1 = x2 and there is an isomorphism
ι : E [C1] → E [C2] such that for any x ∈ x1, e1 ∈ E [C1] it holds η1(x) ≤1 e1 ⇐⇒
η2(x) ≤2 ι(e1).

A key observation is that isomorphic contextualised residuals satisfy exactly
the same formulae, in the sense of the following theorem.

Lemma 2 (Equivalent contexts, logically). Let E be a pes, let ϕ be a for-
mula and let Γ1 = 〈C1, η1,Δ1〉 and Γ2 = 〈C2, η2,Δ2〉 be contexts, where C1, C2 ∈
C(E), Δ1 ⊆ Δ2 and Δ1 (hence Δ2) admissible for ϕ. For all proposition envi-
ronments π1, π2 such that ∀ Z ∈ fp(ϕΔ1), (C1, η1) ∈ π1(Z(y)) ⇐⇒ (C2, η2) ∈
π2(Z(y)), if E [C1, η1, fv(ϕ)] ∼ E [C2, η2, fv(ϕ)] then Γ1 |=E

π1
ϕ ⇐⇒ Γ2 |=E

π2
ϕ.

Note that the condition on the proposition environments π1, π2 is vacuously
satisfied for formulae in the sequents of a tableau. In fact, the sequent labelling
the root contains a closed formula and thus, by construction, formulae do not
contain free propositions and neither do those associated to constants.

The results above motivate the definition of the stop condition.

Definition 17 (Stop condition). The stop condition γ for a rule where the
premise is C, η,Δ |= U(y), is as follows:

There is an ancestor of the node labelled with C ′, η′,Δ′ |= U(z), such that

E [C ′, η′[y �→ η′(z)],y] ∼ E [C, η,y].

Informally, the stop condition holds when in a previous step of the construc-
tion of the tableau the same constant has been unfolded in a context equivalent
to the current one, possibly after some renaming of variables. Hence we can
safely avoid to continue along this path. Instead, when the stop condition fails,
it makes sense to further unroll the fixpoint since the current context is still
“different enough” from those previously encountered.

4.4 Model Checking a Formula Through Tableaux

For checking whether a closed formula ϕ in Lhp is satisfied by a pes E , we proceed
by building a tableau for the sequent ∅, η, ∅ |=E ϕ, where η is any environment
(irrelevant since the formula does not have free variables). A maximal tableau is
a proof tree where all leaves are labelled by sequents to which no rule applies.

We next clarify when a maximal tableau is considered successful.

Definition 18 (Successful tableau). A successful tableau is a finite maximal
tableau where every leaf is labelled by a sequent C, η,Δ |=E ϕ such that:

1. ϕ = T; or
2. ϕ = [[x,y < a z]]ψ; or
3. ϕ = U(y) and Δ(U(x)) = νZ(x).ψ.
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We will prove that in a successful tableau all leaves are labelled by true
sequents, a fact that, together with backwards soundness of the rules (Lemma1),
will guarantee the truth of the sequent labelling the root.

Note that the choice of the rule to be applied at a step of the construction of
a tableau is non-deterministic in the case of 〈|x,y < a z|〉ϕ and ϕ∨ψ. This means
that there can be various maximal tableaux for the same sequent. However, when
we work on strongly regular pess, the fact that they are boundedly branching
ensures that at each step the number of possible non-deterministic choices is
finite and bounded. In turn this is used to deduce that there can be only a finite
number of maximal tableaux for a sequent, up to renaming of constants.

We next focus the finiteness issue and then move on to the soundness and
completeness of the technique.

Finiteness. We first aim at proving that all tableaux for a sequent ∅, η, ∅ |=E ϕ
are finite. A first basic observation is that an infinite tableau for a sequent
C, η,Δ |=E ϕ necessarily includes a path where the same constant is unfolded
infinitely many times.

Lemma 3 (Infinite repetitions of constants in infinite tableaux). Given
an infinite tableau for a sequent C, η,Δ |=E ϕ there exists a constant U and an
infinite path in the tableau such that U occurs in an unfolding rule infinitely
many often, possibly each time with different event variables xi.

Along the lines of [22], the proof relies on the introduction of a notion of
degree for a sequent, that intuitively estimates the length of the longest path
in the tableau that starts from the sequent itself and ends at the first sequent
whose formula is a constant previously introduced (not new) or at a leaf. We
already observed that the fact that strongly regular pess are boundedly branch-
ing implies that also the constructed tableaux are finitely branching. Then, by
König lemma, an infinite tableau necessarily include an infinite path. The obser-
vation that the degree is finite, non-negative and it decreases along a path until
a previously introduced constant is met again, allows one to conclude.

A crucial observation is now that, for strongly regular pess, the number of
contextualised residuals is finite up to isomorphism. Using this fact, if there
were an infinite path in a tableau and thus, by Lemma3, a constant occurring
infinitely often in such a path, then the constant would occur infinitely often
within isomorphic contextualised residuals, leading to a contradiction. In fact,
at the first repetition the stop condition (see Definition 17) would have prescribed
of terminating the branch.

Theorem 1 (Finite number of contextualised residuals). Let E be a
strongly regular pes and let x ⊆ Var be a finite set of variables. Then the class
of (η, x)-contextualised residuals of E after C, i.e., {E [C, η,x] | η ∈ EnvE ∧ C ∈
C(E)} is finite up to isomorphism.

We can finally deduce the finiteness of the tableaux for a sequent that in turn
implies that the number of tableaux is finite (up to constant renaming). This
fact is essential for termination of the model checking procedure.



420 P. Baldan and T. Padoan

Theorem 2 (Tableaux finiteness). Given a strongly regular pes E and a
formula ϕ, every tableau for a sequent Γ |=E ϕ is finite. Hence the number of
tableaux for Γ |=E ϕ is finite up to constant renaming.

Soundness and Completeness. We finally prove the soundness and com-
pleteness of the tableau system. For this we use the possibility of reducing the
satisfaction of a formula to the satisfaction of a finite approximant. While on
finite models this is immediate, here we need the (co)continuity of the semantic
functions associated to formulae (see Definition 10) ensuring that the fixpoints
will be reached in at most ω steps.

Let X be a set. A subset A ⊆ 2X is called directed if for any S1, S2 ∈ A there
exists S ∈ A such that S1, S2 ⊆ S. A function f : 2X → 2X is continuous when
for any directed set A ⊆ 2X it holds that f(

⋃
A) =

⋃{f(S) | S ∈ A}. We call it
co-continuous when it is continuous in the reverse (superset) order.

The semantic functions associated with formulae of the logic Lhp (see Def-
inition 10) are neither continuous nor co-continuous in general. However, when
requiring alternation freeness, μ-formulae, i.e., formulae where all ν-operators
are in the scope of a μ-operator, are continuous and ν-formulae, defined dually,
are co-continuous.

Lemma 4 ((Co-)continuous semantic operators). Let E be a pes. Given
an alternation free μ-formula ψ, a proposition Z(z) ∈ X and a proposition envi-
ronment π ∈ PEnvE , the semantic function fψ,Z(z),π is continuous. Dually, if ψ
is an alternation free ν-formula the function fψ,Z(z),π is co-continuous.

Note that the continuous fragment here is wider than that in [25] as, in
particular, it includes the box modality. The difference is motivated by the fact
that strongly regular pess are finitely branching.

By Kleene Theorem the least fixpoint of a continuous function on a lattice
requires up to ω iterations to be reached, namely if f : 2X → 2X is continuous
then lfp(f) =

⋃

i∈N

f i(∅). Similarly, if f is co-continuous gfp(f) =
⋂

i∈N

f i(X). This

fact plays a role in the proof of the main result below.

Theorem 3 (Soundness and completeness of the tableaux system).
Given a strongly regular pes E and a closed alternation free formula ϕ of Lhp,
a sequent C, η, ∅ |=E ϕ has a successful tableau if and only if (C, η) ∈ {|ϕ|}E .

5 Conclusions

We provided a tableau system for model checking the alternation free fragment
of a logic for true concurrency Lhp over strongly regular pess, proving finite-
ness of the tableaux and soundness and completeness of the rule system. Such
results, together with Theorem 2, that ensures that a sequent has a(n essentially)
finite number of tableaux, leads to a decision procedure for the alternation free
fragment of Lhp over strongly regular event structures. A concrete procedure
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requires the effectiveness of the transition relation over configurations and of the
equivalence of contextualised residuals, that we have if we focus on regular trace
pess. Indeed, a natural instantiation of the model checking procedure can be
given on finite safe Petri nets. For space reasons its presentation is delayed to
the full version of the paper.

While regular trace event structures can be shown to be strongly regular, we
still do not know whether also the converse holds. Some preliminary investiga-
tions lead us to conjecture that this is the case.

Soundness and completeness of the tableau system rely on the (co)continuity
of the semantic functions associated with the formulae that we obtained by
considering the alternation free fragment of the logic. While continuity fails
outside this fragment, we conjecture that, exploiting the regularity property of
the pes models, a sort of continuity up to isomorphism can be proved, allowing
to extend the procedure to the full logic Lhp.

Another open issue concerns the possibility of generalising the tableau-based
technique to the full logic L in [10]. This is quite challenging: the full logic L
induces a behavioural equivalence – hhp-bisimilarity – which is known to be
undecidable already for finite state Petri nets [29]. Note that this does not imply
undecidability of the corresponding model checking problem. On the semantic
side one could try to relax the restriction to strongly regular pess. However,
we tend to believe that few results can be obtained when the realm of regular
structures is abandoned.

Model checking on event structures has been considered by several other
authors. In [30] a finite representation of the pes corresponding to the behav-
iour of a suitable class of programs is proposed, showing how discrete event logics
can be model-checked on such structures. The paper [15] shows that first order
logic and a restricted form of monadic second order (MSO) logic are decidable
on regular trace event structures. The fact that the mu-calculus, in the proposi-
tional case, corresponds to the bisimulation invariant fragment of MSO logic [31]
suggests the possibility of exploiting the mentioned result in our setting. This
would require an encoding of Lhp into the MSO logic of [15]. More generally,
understanding which are the bisimulation invariant fragments of MSO over event
structures, with respect to the various concurrent bisimulations, represents an
interesting program in itself. The work in [14] develops higher-order games as
a mean for local model-checking a concurrent logic over partial order seman-
tics. Despite the fact that such logic is different (and of incomparable expressive
power with ours as explained in [10]), exploring the possibility of adopting a
game-theoretical approach in our setting appears an interesting venue of further
research.

Finally, a lot of work exists in the literature for the propositional mu-
calculus, proposing efficient automata-based model checking techniques [32,33],
that reduce the model checking problem to the non-emptiness problem of parity
tree automata. Trying to develop a similar approach for the logic Lhp, with the
idea that the automata would somehow inherit the regularities in the structure
of the pess, represents a stimulating direction of future research.
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