
On Higher-Order Probabilistic Subrecursion

Flavien Breuvart1, Ugo Dal Lago1,2(B), and Agathe Herrou3

1 INRIA, Sophia Antipolis, France
flavien.breuvart@inria.fr

2 University of Bologna, Bologna, Italy
ugo.dallago@unibo.it

3 ENS de Lyon, Lyon, France
agathe.herrou@ens-lyon.fr

Abstract. We study the expressive power of subrecursive probabilistic
higher-order calculi. More specifically, we show that endowing a very
expressive deterministic calculus like Gödel’s T with various forms of
probabilistic choice operators may result in calculi which are not equiv-
alent as for the class of distributions they give rise to, although they all
guarantee almost-sure termination. Along the way, we introduce a prob-
abilistic variation of the classic reducibility technique, and we prove that
the simplest form of probabilistic choice leaves the expressive power of
T essentially unaltered. The paper ends with some observations about
functional expressivity: expectedly, all the considered calculi represent
precisely the functions which T itself represents.

1 Introduction

Probabilistic models are more and more pervasive in computer science and are
among the most powerful modeling tools in many areas like computer vision [20],
machine learning [19] and natural language processing [17]. Since the early times
of computation theory [8], the very concept of an algorithm has been itself gen-
eralised from a purely deterministic process to one in which certain elementary
computation steps can have a probabilistic outcome. This has further stimulated
research in computation and complexity theory [11], but also in programming
languages [21].

Endowing programs with probabilistic primitives (e.g. an operator which
models sampling from a distribution) poses a challenge to programming lan-
guage semantics. Already for a minimal, imperative probabilistic programming
language, giving a denotational semantics is nontrivial [16]. When languages also
have higher-order constructs, everything becomes even harder [14] to the point
of disrupting much of the beautiful theory known in the deterministic case [1].
This has stimulated research on denotational semantics of higher-order prob-
abilistic programming languages, with some surprising positive results coming
out recently [4,9].

The authors are partially supported by ANR project 14CE250005 ELICA and ANR
project 12IS02001 PACE.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 370–386, 2017.
DOI: 10.1007/978-3-662-54458-7 22

On Higher-Order Probabilistic Subrecursion 371

Not much is known about the expressive power of probabilistic higher-order
calculi, as opposed to the extensive literature on the same subject about deter-
ministic calculi (see, e.g. [23,24]). What happens to the class of representable
functions if one enriches, say, a deterministic λ-calculus X with certain proba-
bilistic choice primitives? Are the expressive power or the good properties of X
somehow preserved? These questions have been given answers in the case in
which X is the pure, untyped, λ-calculus [6]: in that case, universality continues
to hold, mimicking what happens in Turing machines [22]. But what if X is one
of the many typed λ-calculi ensuring strong normalisation for typed terms [12]?

Let us do a step back, first: when should a higher-order probabilistic pro-
gram be considered terminating? The question can be given a satisfactory answer
being inspired by, e.g., recent works on probabilistic termination in imperative
languages and term rewrite systems [2,18]: one could ask the probability of diver-
gence to be 0, i.e., almost sure termination, or the stronger positive almost sure
termination, in which one requires the average number of evaluation steps to be
finite. That almost sure termination is a desirable property, even in a probabilis-
tic setting can be seen in the field of languages like Church and Anglican, in
which programs are often assumed to be almost surely terminating, e.g. when
doing inference by MH algorithms [13].

In this paper, we initiate a study on the expressive power of terminating
higher-order calculi, in particular those obtained by endowing Gödel’s T with
various forms of probabilistic choice operators. In particular, three operators
will be analysed in this paper:

• A binary probabilistic operator ⊕ such that for every pair of terms M,N ,
the term M ⊕ N evaluates to either M or N , each with probability 1

2 . This
is a rather minimal option which, however, guarantees universality if applied
to the untyped λ-calculus [6] (and, more generally, to universal models of
computation [22]).

• A combinator R, which evaluates to any natural number n ≥ 0 with probability
1

2n+1 . This is the natural generalisation of ⊕ to sampling from a distribution
having countable rather than finite support. This apparently harmless gen-
eralisation (which is absolutely non-problematic in a universal setting) has
dramatic consequences in a subrecursive scenario, as we will discover soon.

• A combinator X such that for every pair of values V,W , the term X〈V,W 〉
evaluates to either W or V (X〈V,W 〉), each with probability 1

2 . The operator X
can be seen as a probabilistic variation on PCF’s fixpoint combinator. As such,
X is potentially problematic to termination, giving rise to infinite trees.

This way, various calculi can be obtained, like T⊕, namely a minimal extension
of T, or the full calculus T⊕,R,X, in which the three operators are all available.
In principle, the only obvious fact about the expressive power of the above
mentioned operators is that both R and X are at least as expressive as ⊕: binary
choice can be easily expressed by either R or X. Less obvious but still easy to
prove is the equivalence between R and X in presence of a recursive operator (see
Sect. 3.3). But how about, say, T⊕ vs. TR?

372 F. Breuvart et al.

Traditionally, the expressiveness of such languages is evaluated by looking at
the set of functions f : N → N defined by typable programs M : NAT → NAT.
However, in a probabilistic setting, any program M : NAT → NAT computes a
function from natural numbers to distributions of natural numbers. In order to
fit usual criteria, we need to fix a notion of observation of which there are at
least two, corresponding to two randomised programming paradigms, namely
Las Vegas and Monte Carlo observations. The main question, then, consists in
understanding how the obtained classes relate to each other, and to the class
of T-representable functions. Along the way, however, we manage to understand
how to capture the expressive power of probabilistic calculi per se. This paper’s
contributions can be summarised as follows:

• We first take a look at the full calculus T⊕,R,X, and prove that it enforces
almost-sure termination, namely that the probability of termination of any
typable term is 1. This is done by appropriately adapting the well-known
reducibility technique [12] to a probabilistic operational semantics. We then
observe that while T⊕,R,X cannot be positively almost surely terminating, T⊕

indeed is. This already shows that there must be a gap in expressivity. This
is done in Sect. 3.

• In Sect. 4, we look more precisely at the expressive power of T⊕, proving that
the mere presence of probabilistic choice does not add much to the expressive
power of T: in a sense, probabilistic choice can be “lifted up” to the ambient
deterministic calculus.

• We look at other fragments of T⊕,R,X and at their expressivity. More specifically,
we prove that (the equiexpressive) TR and TX represent precisely what T⊕ can
do at the limit, in a sense which will be made precise in Sect. 3. This result,
which is the most challenging, is given in Sect. 5.

• Section 6 is devoted to proving that both for Monte Carlo and for Las Vegas
observations, the class of representable functions of TR coincides with the
T-representable ones.

Due to lack of space, most proofs are elided. An extended version of this paper
with more details is available [3].

2 Probabilistic Choice Operators, Informally

Any term of Gödel’s T can be seen as a purely deterministic computational object
whose dynamics is finitary, due to the well-known strong normalisation theorem
(see, e.g., [12]). In particular, the apparent non-determinism due to multiple
redex occurrences is completely harmless because of confluence. In this paper,
indeed, we even neglect this problem, and work with a reduction strategy, namely
weak call-by-value reduction (keeping in mind that all what we will say also holds
in call-by-name). Evaluation of a T-term M of type NAT can be seen as a finite
sequence of terms ending in the normal form n of M (see Fig. 1). More generally,
the unique normal form of any T term M will be denoted as [[M]]. Noticeably,
T is computationally very powerful. In particular, the T-representable functions

On Higher-Order Probabilistic Subrecursion 373

from N to N coincide with the functions which are provably total in Peano’s
arithmetic [12].

As we already mentioned, the most natural way to enrich deterministic calculi
and turn them into probabilistic ones consists in endowing their syntax with one
or more probabilistic choice operators. Operationally, each of them models the
essentially stochastic process of sampling from a distribution and proceeding
depending on the outcome. Of course, one has many options here as for which
of the various operators to grab. The aim of this work is precisely to study to
which extent this choice have consequences on the overall expressive power of
the underlying calculus.

Suppose, for example, that T is endowed with the binary probabilistic choice
operator ⊕ described in the Introduction, whose evaluation corresponds to toss-
ing a fair coin and choosing one of the two arguments accordingly. The presence
of ⊕ has indeed an impact on the dynamics of the underlying calculus: the eval-
uation of any term M is not deterministic anymore, but can be modelled as a
finitely branching tree (see, e.g., Fig. 3 for such a tree). The fact that all branches
of this tree have finite height (and the tree is thus finite) is intuitive, and a proof
of it can be given by adapting the well-known reducibility proof of termination
for T. In this paper, we in fact prove much more, and establish that T⊕ can be
embedded into T.

If ⊕ is replaced by R, the underlying tree is not finitely branching anymore,
but, again, there is not (at least apparently) any infinitely long branch, since each
of them can somehow be seen as a T computation (see Fig. 2 for an example).
What happens to the expressive power of the obtained calculus? Intuition tells
us that the calculus should not be too expressive viz. T⊕. If ⊕ is replaced by X,
on the other hand, the underlying tree is finitely branching, but its height can
be infinite. Actually, X and R are easily shown to be equiexpressive in presence of
higher-order recursion, as we show in Sect. 3.3. On the other hand, for R and ⊕,
no such encoding is available. Nonetheless, TR can still be somehow encoded into
T (the embedding being correct only “at the limit”) as we will detail in Sect. 5.
From this embedding, we can show that applying Monte Carlo or Las Vegas
algorithms to T⊕,X,R do not add any expressive power to that T. This is done in
Sect. 6.

3 The Full Calculus T⊕,R,X

All along this paper, we work with a calculus T⊕,R,X whose terms are the ones
generated by the following grammar:

M,N,L ::= x | λx.M | M N | 〈M,N〉 | π1 | π2

| rec | 0 | S | M ⊕ N | R | X.

Please observe the presence of the usual constructs from the untyped λ-calculus,
but also of primitive recursion, constants for natural numbers, pairs, and the
three choice operators we have described in the previous sections.

374 F. Breuvart et al.

As usual, terms are taken modulo α-equivalence. Terms in which no variable
occurs free are said closed, and are collected in the set T⊕,R,X

C . A value is simply
a closed term from the following grammar:

U, V ::= λx.M | 〈U, V 〉 | π1 | π2 | rec | 0 | S | S V | X.

and the set of values is T⊕,R,X
V . Extended values are (not necessarily closed) terms

generated by the same grammar as values with the addition of variables. Closed
terms that are not values are called reducible and their set is denoted T⊕,R,X

R . The
expression 〈M1, . . . , Mn〉 stands for 〈M1, 〈M2, 〈. . .〉〉〉. A context is a term with
a unique hole:

C := �·� | λx.C | C M | M C | 〈C,M〉 | 〈M,C〉 | C ⊕ M | M ⊕ C.

We write T⊕,R,X
�·� for the set of all such contexts.

Termination of Gödel’s T is guaranteed by the presence of types, which we
also need here. Types are expressions generated by the following grammar

A,B ::= NAT | A → B | A × B.

Environmental contexts are expressions of the form Γ = x1 :A1, . . . , xn : An,
while typing judgments are of the form Γ � M : A. Typing rules are given
in Fig. 5. From now on, only typable terms will be considered. We denote by
T⊕,R,X(A) the set of terms of type A, and similarly for T⊕,R,X

C (A) and T⊕,R,X
V (A).

We use the shortcut n for values of type NAT: 0 is already part of the language
of terms, while n + 1 is simply S n.

3.1 Operational Semantics

While evaluating terms in a deterministic calculus ends up in a value, the same
process leads to a distribution of values when performed on terms in a probabilis-
tic calculus. Formalising all this requires some care, but can be done following
one of the many definitions from the literature (e.g., [6]).

Given a countable set X, a distribution L on X is a probabilistic subdistri-
bution over elements of X:

L,M,N ∈ D(X) =
{

f : X → [0, 1]
∣∣∣

∑
x∈X

f(x) ≤ 1
}

.

We are especially concerned with distributions over terms here. In particular, a
distribution of type A is simply an element of D(T⊕,R,X(A)). The set D(T⊕,R,X

V) is
ranged over by metavariables like U ,V,W. We will use the pointwise order ≤ on
distributions, which turns them into an ωCPO. Moreover, we use the following

notation for Dirac’s distributions over terms: {M} :=
{

M
→ 1
N
→ 0 if M �= N

}
. The

support of a distribution is indicated as |M|; we also define the reducible and

On Higher-Order Probabilistic Subrecursion 375

value supports fragments as |M|R := |M| ∩ T⊕,R,X
R and |M|V := |M| ∩ T⊕,R,X

V .
Notions like MR and MV have an obvious and natural meaning: for any M ∈
D(X) and Y ⊆ X, then MY (x) = M(x) if x ∈ T⊕,R,X

Y and MY (x) = 0 otherwise.
As syntactic sugar, we use integral notations to manipulate distributions,

i.e., for any family of distributions (NM)M∈T⊕,R,X : D(T⊕,R,X)T
⊕,R,X

, the expres-
sion

∫
M NM .dM stands for

∑
M∈T⊕,R,X M(M) · NM (by abuse of notation, we

may define NM only for M ∈ |M|, since the others are not used anyway). The
notation can be easily adapted, e.g., to families of real numbers (pM)M∈T⊕,R,X and
to other kinds of distributions. We indicate as C�M� the push-forward distrib-
ution

∫
M{C�M�}dM induced by a context C, and as

∑M the norm
∫

M 1dM
of M. Remark, finally, that we have the useful equality M =

∫
M{M}dM .

Reduction rules of T⊕,R,X are given by Fig. 6. For reasons of simplicity, the
relation → indicates both a subset of T⊕,R,X

C × D(T⊕,R,X
C) and a relation on

D(T⊕,R,X
C)×D(T⊕,R,X

C). Notice that the reduction → is deterministic. We can easily
define →n as the nth exponentiation of → and →∗ as the reflexive and transitive
closure of → taking the latter as a relation on distributions. In probabilistic sys-
tems, we might want to consider infinite reductions such as the ones induced by
X〈(λx.x),0〉, which reduces to {0}, but in an infinite number of steps. Remark
that for any value V , and whenever M → N , it holds that M(V) ≤ N (V). As
a consequence, we can proceed as follows:

Definition 1. Let M be a term and let (Mn)n∈N be the unique distribution
family such that M →n Mn. The evaluation of M is the value distribution

[[M]] := {V
→ lim
n→∞ Mn(V)} ∈ D(T⊕,R,X

V).

The success of M is its probability of normalisation, which is formally defined
as the norm of its evaluation, i.e., Succ(M) :=

∑
[[M]]. MΔV

n stands for {V
→
Mn(V) − Mn−1(V)}, the distributions of values reachable in exactly n steps.
The average reduction length from M is then

[M] :=
∑

n

(
n ·

∑
MΔV

n

)
∈ N ∪ {+∞}

Notice that, by Rule (r-∈), the evaluation is continuous: [[M]] =
∫

M [[M]]dM .
Any closed term M of type NAT → NAT represents a function g : N → D(N) iff
for every n,m it holds that g(n)(m) = [[M n]](m).

3.2 Almost-Sure Termination

We now have all the necessary ingredients to specify a quite powerful notion of
probabilistic computation. When, precisely, should such a process be considered
terminating? Do all probabilistic branches (see Figs. 1, 2, 3 and 4) need to be
finite? Or should we stay more liberal? The literature on the subject is pointing
to the notion of almost-sure termination: a probabilistic computation should
be considered terminating if the set of infinite computation branches, although
not necessarily empty, has null probability [10,15,18]. This has the following
incarnation in our setting:

376 F. Breuvart et al.

M → · · · → n

Fig. 1. A reduction in T

R

0 1 2 3 4

1
2

1
4

1
8

1
16

Fig. 2. A reduction in TR

(3 ⊕ 4) ⊕ 2

3 ⊕ 4 2

3 4

1
2

1
2

1
2

1
2

Fig. 3. A reduction
in T⊕

X 〈S,3〉

3 S(X 〈S,3〉)

4 SS(X 〈S,3〉)

5
. . .

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 4. A reduction
in TX

Γ, x :A � x :A

Γ, x :A � M : B

Γ � λx.M : A → B

Γ � M : A → B Γ � N : A
Γ � M N : B

Γ � 0 : NAT Γ � S : NAT → NAT Γ � rec : A × (NAT → A → A) × NAT → A

Γ � M : A Γ � N : B
Γ � 〈M, N〉 : A × B Γ � π1 : (A × B) → A Γ � π2 : (A × B) → B

Γ � M : A Γ � N : A
Γ � M ⊕ N : A Γ � R : NAT Γ � X : (A → A) × A → A

Fig. 5. Typing rules.

(r-β)

(λx.M) V →
{

M [V/x]
} M → M

(r-@L)

M V → M V

N → N
(r-@R)

M N → M N
M → M

(r-〈·〉L)

〈M, N〉 → 〈M, N〉
M → M

(r-〈·〉R)

〈V, M〉 → 〈V, M〉
(r-rec0)

rec〈U, V,0〉 →
{

U
} (r-recS)

rec〈U, V, S n〉 →
{

V n (rec〈U, V,n〉)
}

(r-π1)

π1 〈V, U〉 →
{

V
} (r-π2)

π2 〈V, U〉 →
{

U
} (r-R)

R →
{
n �→ 1

2n+1

}
n∈N

(r-⊕)

M ⊕ N →
{

M �→ 1
2

N �→ 1
2

} (r-X)

X〈V, W 〉 →
{

V (X 〈V, W 〉) �→ 1
2

W �→ 1
2

}

∀M ∈ |M|R, M → NM ∀V ∈ |M|V , NV = {V }
(r-∈)M → ∫

M NM .dM

Fig. 6. Operational semantics.

On Higher-Order Probabilistic Subrecursion 377

Definition 2. A term M is said to be almost-surely terminating (AST)
iff Succ(M) = 1.

This section is concerned with proving that T⊕,R,X indeed guarantees almost-sure
termination. This will be done by adapting Girard-Tait’s reducibility technique.

The following is a crucial intermediate step towards Theorem 1, the main
result of this section.

Lemma 1. For any M,N , it holds that [[M N]] = [[[[M]] [[N]]]]. In particular, if
the application M N is almost-surely terminating, so are M and N .

Theorem 1. The full system T⊕,R,X is almost-surely terminating (AST), i.e.,

∀M ∈ T⊕,R,X, Succ(M) = 1.

Proof. The proof1 is based on the notion of a reducible term which is given as
follows by induction on the structure of types:

RedNAT :=
{
M ∈ T⊕,R,X(NAT) | M is AST

}
;

RedA→B := {M | ∀V ∈ RedA ∩ T⊕,R,X
V , (M V) ∈ RedB};

RedA×B := {M | (π1 M) ∈ RedA, (π2 M) ∈ RedB}.

Then we can observe that:

• The reducibility candidates over RedA are →-saturated: by induction on A we
can indeed show that if M → M then |M| ⊆ RedA iff M ∈ RedA.

• The reducibility candidates over RedA are precisely the AST terms M such
that [[M]] ⊆ RedA: this goes by induction on A. Trivial for A = NAT. Let
M ∈ RedB→C : remark that there is a value V ∈ RedB , thus (M V) ∈ RedC

and (M V) is AST by IH; using Lemma 1 we get M AST and it is easy to
see that if U ∈ |[[M]]| then U ∈ |M| for some M →∗ M so that U ∈ RedB→C

by saturation. Conversely, let M be AST with |[[M]]| ⊆ RedB→C and let
V ∈ RedB be a value: by IH, for any U ∈ |[[M]]| ⊆ RedB→C we have (U V)
AST with an evaluation supported by elements of RedC ; by Lemma 1 [[M V]] =
[[[[M]] V]] meaning that (M V) is AST and has an evaluation supported by
elements of RedC , so that we can conclude by IH. Similar for products.

• Every term M such that x1 : A1, . . . , xn : An � M : B is a candidate in the
sense that if Vi ∈ RedAi

for every 1 ≤ i ≤ n, then M [V1/x1, . . . , Vn/xn] ∈
RedB: by induction on the type derivation. The only difficult cases are those
for the application and for X (the one for rec is just an induction on its third
argument).

• We need to show that if M ∈ RedA→B and N ∈ RedA then (M N)∈ RedB.
But since N ∈ RedA, this means that it is AST and for every V ∈ |[[N]]|,
(M V) ∈ RedB . In particular, by Lemma 1, we have [[M N]] = [[M [[N]]]]
so that (M N) is AST and |[[M N]]| ⊆ ⋃

V ∈|[[N]]| |[[M V]]| ⊆ RedB .

1 Another proof of almost sure termination using reducibility candidate can be found
in [25].

378 F. Breuvart et al.

• We need to show that for any value U ∈RedA→A and V ∈Red A if
holds that (X 〈U, V 〉) ∈ RedA. By an easy induction on n, (Un V) ∈
RedA. Moreover, by an easy induction on n we have [[X 〈U, V 〉]] =

1
2n+1 [[Un (X 〈U, V 〉)]] +

∑
i≤n

1
2i+1 [[U i V]] so that at the limit [[X 〈U, V 〉]] =∑

i∈N
1

2i+1 [[U i V]]. We can then conclude that (X 〈U, V 〉) is AST (since
each of the (U i V) ∈ RedB are AST and

∑
i

1
2i+1 = 1) and that

|[[M N]]| =
⋃

i |[[U i V]]| ⊆ RedA.

This concludes the proof. ��
Almost-sure termination could however be seen as too weak a property: there
is no guarantee about the average computation length. For this reason, another
stronger notion is often considered, namely positive almost-sure termination:

Definition 3. A term M is said to be positively almost-surely terminating (or
PAST) iff the average reduction length [M] is finite.

Gödel’s T, when paired with R, is combinatorially too powerful to guarantee
positive almost sure termination:

Theorem 2. T⊕,R,X is not positively almost-surely terminating.

Proof. The naive exponential function applied to R is computing, with proba-
bility 1

2n+1 the number 2n+1 in time 2n+1. This is already a counterexample,
because it clearly has infinite average termination time. ��

3.3 On Fragments of T⊕,R,X: A Roadmap

The calculus T⊕,R,X contains at least four fragments, namely Gödel’s T and the
three fragments T⊕, TR and TX corresponding to the three probabilistic choice
operators we consider. It is then natural to ask how these fragments relate to
each other as for their respective expressive power. At the end of this paper, we
will have a very clear picture in front of us.

The first result we can give is the equivalence between the apparently dual
fragments TR and TX. The embeddings are in fact quite simple:

Proposition 1. TR and TX are both equiexpressive with T⊕,R,X.

Proof. The calculus TR embeds the full system T⊕,R,X via the encoding:2

M ⊕ N := rec〈λz.N, λxyz.M, R〉0; X := λxy.rec〈y, λz.x, R〉.
The fragment TX embeds the full system T⊕,R,X via the encoding:

M ⊕ N := X〈λxy.M, λy.N〉 0; R := X〈S,0〉.
In both cases, the embedding is compositional and preserves types. That the two
embeddings are correct can be proved easily, see [3]. ��
2 Notice that the dummy abstractions on z and the 0 at the end ensure the correct
reduction order by making λz.N a value.

On Higher-Order Probabilistic Subrecursion 379

Notice how simulating X by R requires the presence of recursion, while the con-
verse is not true. The implications of this fact are intriguing, but lie outside the
scope of this work.

In the following, we will no longer consider TX nor T⊕,R,X but only TR, keeping
in mind that all these are equiexpressive due to Proposition 1. The rest of this
paper, thus, will be concerned with understanding the relative expressive power
of the three fragments T, T⊕, and TR. Can any of the (obvious) strict syntactical
inclusions between them be turned into a strict semantic inclusion? Are the
three systems equiexpressive?

In order to compare probabilistic calculi to deterministic ones, several options
are available. The most common one is to consider notions of observations over
the probabilistic outputs; this will be the purpose of Sect. 6. In this section, we
will look at whether it is possible to deterministically represent the distributions
computed by the probabilistic calculus at hand. We say that the distribution
M ∈ D(N) is finitely represented by3 f : N → B, if there exists a q such that for
every k ≥ q it holds that f(k) = 0 and

M = {k
→ f(k)}.

Moreover, the definition can be extended to families of distributions (Mn)n by
requiring the existence of f : N × N → B, q : N → N such that for all k ≥ q(n),
f(n, k) = 0 and

∀n, Mn = {k
→ f(n, k)}.

In this case, we say that the representation is parameterized.
We will see in Sect. 4 that the distributions computed by T⊕ are exactly the

(parametrically) finitely representable by T terms. In TR, however, distributions
are more complex (infinite, non-rational). That is why only a characterisation in
terms of approximations is possible. More specifically, a distribution M ∈ D(N)
is said to be functionally represented by two functions f : N × N → B and
g : N → N iff for every n ∈ N and for every k ≥ g(n) it holds that f(n, k) = 0 and

∑
k∈N

∣∣∣ M(k) − f(n, k)
∣∣∣ ≤ 1

n
.

In other words, the distribution M can be approximated arbitrarily well, and
uniformly, by finitely representable ones. Similarly, we can define a parameterised
version of this definition at first order.

In Sect. 5, we show that distributions generated by TR terms are indeed uni-
form limits over those of T⊕; using our result on T⊕ this give their (parametric)
functional representability in the deterministic T.

3 Here B stands for the set of dyadic numbers, i.e. rationals in the form n
2m (where

m, n ∈ N) and BIN for their representation in system T, encoded as pairs of natural
numbers.

380 F. Breuvart et al.

4 Binary Probabilistic Choice

This section is concerned with two theoretical results on the expressive power
of T⊕. The main feature of T⊕ is that its terms are positively almost surely ter-
minating. This is a corollary of the following theorem (whose proof [3] proceeds
again by reducibility).

Theorem 3. For any term M ∈ T⊕, M →∗ [[M]].

Now, if M →n [[M]], then [M] can be at most n since the distribution MΔV
m of

values reachable in exactly m steps (see Definition 1) will be 0 for every m > n.
But this means that typable terms normalise in finite time:

Corollary 1. Any term M ∈ T⊕ is positively almost-surely terminating.

But this is not the only consequence. In fact, the finiteness of [[M]] and the
fact that T⊕ is sufficiently expressive allow for a finite representation of T⊕-
distributions by T-definable functions. To prove it, let us consider an extension
of T with a single memory-cell c of type NAT. This memory-cell is used to store
some “random coins” simulating probabilistic choices. The operator ⊕ can be
encoded as follows:

(M ⊕ N)∗ := if (mod2 c) then (c:=div2 c ;M∗) else (c:=div2 c ;N∗)

Notice that conditionals and modulo arithmetic are easily implementable in T.
From Theorem 3, we know that for any M ∈ T⊕(NAT), there is n ∈ N such that
M →n [[M]], and since the evaluation of M can thus involve at most n successive
probabilistic choices, we have that

[[M]](k) =
#{m < 2n | k = [[c:=m ;M∗]]}

2n
.

By way of a state-passing transformation, we can enforce (c:=m ;M∗) into a
term of T. But then, the whole #{m<2n | k=[[c:=m ;M∗]]} can be represented
as a T-term k : N � N : N which finitely represents the distribution [[M]].

In the long version of this paper [3], a stronger result is proved, namely that
for any functional M ∈ T⊕(NAT→NAT), there are terms M↓ ∈ T(NAT→NAT→NAT)
and M# ∈ T(NAT→NAT) such that for all n ∈ N:

[[M n]](k) =
#{m < 2[[M# n]] | k = [[M↓ n m]]}

2[[M# n]]
.

The supplementary difficulty, here, comes from the bound M# that have to be
computed dynamically as it depends on its argument n.

As a consequence:

Theorem 4. Distributions generated by T⊕-terms are precisely those which
can be finitely generated by parameterized T-functionals; i.e., for any term
M : NAT → NAT, there are two T-functionals f : (N × N) → B and q : N → N
such that for all n:

[[Mn]] = {k
→ f(n, k) | k ≤ q(n)}.

On Higher-Order Probabilistic Subrecursion 381

5 Countable Probabilistic Choice

In this section, we show that T⊕ approximates TR: for any term M ∈ TR(NAT),
there is a term N ∈ T⊕(NAT → NAT) that represents a sequence approximating M
uniformly. We will here make strong use of the fact that M has type NAT. This
is a natural drawback when we understand that the encoding (·)† on which the
result above is based is not direct, but goes through yet another state passing
style transformation. Nonetheless, everything can be lifted easily to the first
order, achieving the parameterisation of our theorem.

The basic idea behind the embedding (·)† is to mimic any instance of the
operator R in the source term by some term 0⊕ (1 ⊕ (· · · (n⊕ ⊥) · · ·)), where n
is sufficiently large, and ⊥ is an arbitrary value of type NAT. Of course, the
semantics of this term is not the same as that of R, due to the presence of
⊥; however, n will be chosen sufficiently large for the difference to be negligible.
Notice, moreover, that this term can be generalized into the following parametric
form R‡ := λx.rec 〈⊥, (λx.S ⊕ (λy.0)), x〉.

Once R‡ is available, a natural candidate for the encoding (·)† would be to
consider something like M‡ := λz.M [(R‡ z)/R]. In the underlying execution tree,
(M‡ n) correctly simulates the first n branches of R (which has infinite arity),
but truncates the rest with garbage terms ⊥:

R‡ n

0 1 2 3 · · · · · · n ⊥ ⊥ ⊥ · · · · · ·
1
2 1

4
1
8

The question is whether the remaining untruncated tree has a “sufficient weight”,
i.e., whether there is a minimal bound to the probability to stay in this untrun-
cated tree. However, in general (·)‡ fails on this point, not achieving to approx-
imate M uniformly. In fact, this probability is basically (1 − 1

2n)d where d is its
depth. Since in general the depth of the untruncated tree can grow very rapidly
on n in a powerful system like T, there is no hope for this transformation to
perform a uniform approximation.

The solution we are using is to have the precision m of 0 ⊕ (1 ⊕ (· · · (m ⊕
⊥) · · ·)) to dynamically grow along the computation. More specifically, in the
approximants M† n, the growing speed of m will increase with n: in the n-th
approximant M† n, the operator R will be simulated as 0⊕(1⊕(· · · (m⊕⊥) · · ·))
and, somehow, m will be updated to m + n. Why does it work? Simply because
even for an (hypothetical) infinite and complete execution tree of M , we would
stay inside the nth untruncated tree with probability

∏
k≥0(1 − 1

2k∗n) which is
asymptotically above (1 − 1

n).
Implementing this scheme in T⊕ requires a feature which is not available

(but which can be encoded), namely ground-type references. We then prefer to
show that the just described scheme can be realised in an intermediate language
called TR̄, whose operational semantics is formulated not on terms, but rather
on triples in the form (M,m,n), where M is the term currently being evaluated,

382 F. Breuvart et al.

m is the current approximation threshold value, and n is the value of which m
is incremented whenever R is simulated. The operational semantics is standard,
except for the following rule:

(r-R̄)

(R̄,m, n) →
{

(k,m+n, n)
→ 1
2k+1 | k < m

}

Notice how this operator behaves similarly to R with the exception that it fails
when drawing too big of a number (i.e., bigger that the fist state m). Notice
that the failure is represented by the fact that the resulting distribution does
not necessarily sum to 1. The intermediate language TR̄ is able to approximate TR

at every order (Theorem 5 below). Moreover, the two memory cells can be shown
to be expressible in T⊕, again by way of a continuation-passing transformation.
Crucially, the initial value of n can be passed as an argument to the encoded
term.

For any M ∈ TR we denote M∗ := M [R̄/R]. We say that (M,m,n) ∈ TR̄

if m,n ∈ N and M = N∗ for some N ∈ TR. Similarly, D(TR̄) is the set of
probabilistic distributions over TR̄ × N2, i.e., over the terms plus states.

For any m and n, the behaviour of M and (M∗,m, n) are similar, except that
(M∗,m, n) will “fail” more often. In other words, all (M∗,m, n)m,n∈N somehow
approximate M from below:

Lemma 2. For any M ∈ TR and any m,n ∈ N, [[M]] � [[M∗,m, n]], i.e., for
every V ∈ TR

V , we have

[[M]](V) ≥
∑
p,q

[[M∗,m, n]](V ∗, p, q).

Proof. By an easy induction, one can show that for any M∈D(TR) and
N ∈D(TR̄) if M � N , M → L and N → P, then L � P. This ordering is
then preserved at the limit so that we get our result. ��

In fact, the probability of “failure” of any (M,m,n)m,n∈N can be upper-
bounded explicitly. More precisely, we can find an infinite product underapprox-
imating the success rate of (M,m,n) by reasoning inductively over the execution
(M,m,n) →∗ [[(M,m,n)]], which is possible because of the PAST.

Lemma 3. For any M ∈ TR̄ and any m,n ≥ 1

Succ(M,m,n) ≥
∏
k≥0

(
1 − 1

2m+kn

)
.

Proof. We denote #(m,n) :=
∏
k≥0

(
1 − 1

2m+kn

)
and #M :=

∫

M
#(m,n)dM

dmdn. Remark that for any M and any m,n, if (M,m,n) → M then M is either
of the form {(N,m, n)} or {(Ni,m+n, n)
→ 1

2i+1 | i < m} for some N of (Ni)i≤m.

On Higher-Order Probabilistic Subrecursion 383

Thus we have that if (M,m,n)→N then #N = #(m,n) and that if M → N then
#N = #M. In particular, since (M,m,n) →∗ [[M,m,n]] we can conclude

Succ(M,m,n) =
∫

[[M,m,n]]

1 dMdmdn ≥ #[[M]] = #(m,n) =
∏
k≥0

(
1 − 1

2m+kn

)
.

��
This gives us an analytic lower bound to the success rate of (M,m,n). How-

ever, it is not obvious that this infinite product is an interesting bound, it is not
even clear that it can be different from 0. This is why we will further under-
approximate this infinite product to get a simpler expression whenever m = n:

Lemma 4. For any M ∈ TR̄ and any n ≥ 4

Succ(M,n, n) ≥ 1 − 1
n

.

Proof. By Lemma 3 we have that Succ(M,n, n) ≥ ∏
k≥1

(
1− 1

2kn

)
which is above

the product
∏

k≥1

(
1 − 1

n2k2

)
whenever n ≥ 4. This infinite product has been

shown by Euler to be equal to sin(π
n)

π
n

. By an easy numerical analysis we then

obtain that sin(π
n)

π
n

≥ 1 − 1
n . ��

This lemma can be restated by saying that the probability of “failure” of
(M∗, n, n), i.e. the difference between [[M∗, n, n]] and [[M]], is bounded by 1

n .
With this we then get our first theorem, which is the uniform approximability
of elements of TR by those of TR̄:

Theorem 5. For any M ∈ TR and any n ∈ N,

∑
V

∣∣∣ [[M]](V) − Σm′,n′ [[M∗, n, n]](V ∗,m′, n′)
∣∣∣ ≤ 1

n
.

Proof. By Lemma 2, for each V the difference is positive, thus we can remove
the absolute value and distribute the sum. We conclude by using the fact that
Succ(M) = 1 and Succ(M∗, n, n) ≥ 1 − 1

n . ��
The second theorem, i.e., the uniform approximability of ground elements of TR

by those of T⊕, follows immediately:

Theorem 6. Distributions in TR(NAT) can be approximated by T⊕-distributions
(which are finitely T-representable), i.e., for any M ∈ TR(NAT), there is
M† ∈ T⊕(NAT → NAT) such that:

∀n,
∑

k

∣∣∣ [[M]](k) − [[M† n]](k)
∣∣∣ ≤ 1

n
.

384 F. Breuvart et al.

Moreover:

• the encoding is parameterisable, in the sense that for all M ∈ TR(NAT → NAT),
there is M � ∈ T⊕(NAT → NAT → NAT) such that [[(M m)†]] = [[M � m]] for all
m ∈ N;

• the encoding is such that [[M]](k) ≤ [[M† n]](k) only if k = 0.

Proof. It is clear that in an extension of T⊕ with two global memory cells m,n
and with an exception monad, the R̄ operator can be encoded by the term
R̄ := rec 〈⊥, (λx.S ⊕ (λy.0)), (m :=!m+!n)〉, where ⊥ is raising an
error/exception and where m :=!m+!n is returning the value of m before chang-
ing the memory cell to m + n. We can conclude by referring to the usual state
passing style encoding of exceptions and state-monads into T (and thus into
T⊕). ��

6 Subrecursion

If one wishes to define T⊕-definable or TR-definable functions as a set of ordinary
set-theoretic functions (say from N to N), it is necessary to collapse the random
output into a deterministic one. As already acknowledged by the complexity
community, there are at least two reasonable ways to do so: by using either
Monte Carlo or Las Vegas observations.

As the careful reader may have foreseen, the finite (parametric) representa-
tion of T⊕-distributions into T is collapsing both observations into T-definable
functions. One only need to explore the finite representation, the resulting
process suffers from an exponential blow-up, which is easily absorbed by T,
in which all elementary functions (and much more than that!) can be expressed.

Theorem 7 (Monte Carlo). Let f : N → N and M : NAT → NAT a TR-
term such that (M m) evaluates into f(m) with probability p ≥ 1

2 + 1
g(m) for a

T-definable function g. Then f is T-definable.

Theorem 8 (Las Vegas). Let f : N → N and M : NAT → NAT a TR-term such
that (M m) evaluate either to 0 (representing a failure) or to f(m) + 1, the
later happening with probability p ≥ 1

g(m) for some T-definable function g. Then
f is T-definable.

7 Conclusions

This paper is concerned with the impact of adding various forms of probabilistic
choice operators to a higher-order subrecursive calculus in the style of Gödel’s T.
The presented results help in understanding the relative expressive power of
various calculi which can be obtained this way, by showing some separation and
equivalence results.

On Higher-Order Probabilistic Subrecursion 385

The probabilistic choice operators we consider here are just examples of how
one can turn a deterministic calculus like T into a probabilistic model of com-
putation. The expressiveness of T⊕,R,X is sufficient to encode most reasonable
probabilistic operators, but what can we say about their own expressive power?
For example, what about a ternary operator in which either of the first two
operators is chosen with a probability which depends on the value of the third
operator? A general theory of probabilistic choice operators and of their expres-
sive power is still lacking.

Another research direction to which this paper hints at consists in studying
the logical and proof-theoretical implications of endowing a calculus like T with
probabilistic choice operators. What is even more exciting, however, is the appli-
cation of the ideas presented here to polynomial time computation. This would
allow to go towards a characterization of expected polynomial time computa-
tion, thus greatly improving on the existing works on the implicit complexity
of probabilistic systems [5,7], which only deals with worst-case execution time.
The authors are currently engaged in that.

References

1. Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1981)

2. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-32033-3 24

3. Breuvart, F., Dal Lago, U., Herrou, A.: On probabilistic subrecursion (long version)
(2016). http://arxiv.org/abs/1701.04786

4. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54833-8 12

5. Dal Lago, U., Toldin, P.P.: A higher-order characterization of probabilistic poly-
nomial time. Inf. Comput. 241, 114–141 (2015)

6. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO - Theor. Inf. Appl. 46(3), 413–450 (2012)

7. Dal Lago, U., Zuppiroli, S., Gabbrielli, M.: Probabilistic recursion theory and
implicit computational complexity. Sci. Ann. Comp. Sci. 24(2), 177–216 (2014)

8. De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by proba-
bilistic machines. Automata Stud. 34, 183–198 (1956)

9. Ehrhard, T., Pagani, M., Tasson, C.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: Sewell, P. (ed.) Proceedings of POPL. ACM
(2014)

10. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: Proceedings of POPL, pp. 489–501 (2015)

11. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

12. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University
Press, Cambridge (1989)

13. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI, pp. 220–229 (2008)

http://dx.doi.org/10.1007/978-3-540-32033-3_24
http://dx.doi.org/10.1007/978-3-540-32033-3_24
http://arxiv.org/abs/1701.04786
http://dx.doi.org/10.1007/978-3-642-54833-8_12

386 F. Breuvart et al.

14. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. Electr. Notes
Theor. Comput. Sci. 13, 70–91 (1998)

15. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234,
pp. 307–318. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48057-1 24

16. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

17. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing, vol. 999. MIT Press, Cambridge (1999)

18. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Heidelberg (2005)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

20. Prince, S.J.D.: Computer Vision: Models, Learning, and Inference. Cambridge Uni-
versity Press, New York (2012)

21. Saheb-Djahromi, N.: Probabilistic LCF. In: Winkowski, J. (ed.) MFCS
1978. LNCS, vol. 64, pp. 442–451. Springer, Heidelberg (1978). doi:10.1007/
3-540-08921-7 92

22. Santos, E.S.: Probabilistic turing machines and computability. Proc. Am. Math.
Soc. 22(3), 704–710 (1969)

23. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism.
Elsevier Science Inc., New York (2006)

24. Statman, R.: The typed lambda-calculus is not elementary recursive. Theor. Com-
put. Sci. 9, 73–81 (1979)

25. Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of LICS, pp. 525–534 (2016)

http://dx.doi.org/10.1007/978-3-662-48057-1_24
http://dx.doi.org/10.1007/3-540-08921-7_92
http://dx.doi.org/10.1007/3-540-08921-7_92

	On Higher-Order Probabilistic Subrecursion
	1 Introduction
	2 Probabilistic Choice Operators, Informally
	3 The Full Calculus T,R,X
	3.1 Operational Semantics
	3.2 Almost-Sure Termination
	3.3 On Fragments of T,R,X: A Roadmap

	4 Binary Probabilistic Choice
	5 Countable Probabilistic Choice
	6 Subrecursion
	7 Conclusions
	References

