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Abstract. A cyclic proof system, called CLKID“, gives us another way
of representing inductive definitions and efficient proof search. The 2011
paper by Brotherston and Simpson showed that the provability of CLKID*
includes the provability of Martin-Lo6f’s system of inductive definitions,
called LKID, and conjectured the equivalence. Since then, the equiva-
lence has been left an open question. This paper shows that CLKID* and
LKID are indeed not equivalent. This paper considers a statement called
2-Hydra in these two systems with the first-order language formed by
0, the successor, the natural number predicate, and a binary predicate
symbol used to express 2-Hydra. This paper shows that the 2-Hydra
statement is provable in CLKID“, but the statement is not provable in
LKID, by constructing some Henkin model where the statement is false.

1 Introduction

An inductive definition is a way to define a predicate by an expression which
may contain the predicate itself. The predicate is interpreted by the least fixed
point of the defining equation. Inductive definitions are important in computer
science, since they can define useful recursive data structures such as lists and
trees. Inductive definitions are important also in mathematical logic, since they
increase the proof theoretic strength. Martin-Lof’s system of inductive definitions
given in [10] is one of the most popular system of inductive definitions. This
system has production rules for an inductive predicate, and the production rule
determines the introduction rule and the elimination rule for the predicate.
Brotherston [3] and Simpson [6] proposed an alternative formalization of
inductive definitions, called a cyclic proof system. A proof, called a cyclic proof,
is defined by proof search, going upwardly in a proof figure. If we encounter
the same sequent (called a bud) as some sequent we already passed (called a
companion) we can stop. The induction rule is replaced by a case rule, for this
purpose. The soundness is guaranteed by some additional condition, called the
global trace condition, which guarantees the case rule decreases some measure
of a bud from that of the companion. In general, for proof search, a cyclic proof
system can find an induction formula in a more efficient way than Martin-Lof’s
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system, since a cyclic proof system does not have to choose fixed induction
formula in advance. A cyclic proof system enables us efficient implementation of
theorem provers with inductive definitions [2,4,5,7]. In particular, it works well
for theorem provers of separation logic.

Brotherston and Simpson [6] investigated Martin-Lo6f’s system LKID of induc-
tive definitions in classical logic for the first-order language, and the cyclic proof
system CLKID“ for the same language, showed the provability of CLKID* includes
that of LKID, and conjectured the equivalence. Since then, the equivalence has
been left an open question. Simpson [11] submitted a proof of a particular case
of the conjecture, for the theory of Peano Arithmetic.

This paper shows CLKID“ and LKID are indeed not equivalent. To this aim,
we will consider the first-order language formed by 0, the successor s, the natural
number predicate N, and a binary predicate symbol p. We introduce a statement
we call 2-Hydra, which is a miniature version of the Hydra problem considered
by Laurence Kirby and Jeff Paris [9]: the proviso “2” means that we only have
two “heads”. We define some statement, called the 2-Hydra statement, and we
show that the 2-Hydra statement is provable in CLKID“ with the language, but
the statement is not provable in LKID with the language. 2-Hydra is similar to a
candidate for a counter-example proposed by S. Stratulat [12]. The unprovability
is shown by constructing some model of CLKID* where 2-Hydra is false.

For constructing the counter model M for the second result, we take both
the universe of M and the interpretation of the predicate N to be Nat +Z, where
Nat is the set of natural numbers and Z is the set of integers, and some predicate
p which is a counter-example of 2-Hydra. We prove that M is a model of LKID
by using a set of partial bijections on M and a quantifier elimination result.

The quantifier elimination theorem for a theory of partial equivalence rela-
tions is new, as far as we know, and it may have some independent interest.

This model also shows that LKID is not conservative when we add inductive
predicates, namely, it is not the case that for any language L, the system of LKID
with language L and any additional inductive predicate is conservative over the
system of LKID with L.

Section 2 describes Brotherston-Simpson conjecture. Section3 defines the
2-Hydra statement and proves the 2-Hydra statement in CLKID“. Section4
defines the counter model M and the proof outline of it. Section 5 introduces
a family of partial bijections. Section 6 proves a quantifier elimination theorem
for a theory of partial bijections. Section 7 proves that the 2-Hydra statement is
not provable in LKID. Section 8 shows non-conservativity of LKID with additional
inductive predicates. We conclude in Sect. 9. Detailed proofs are in [1].

2 Brotherston-Simpson Conjecture

In this section we introduce Brotherston-Simpson Conjecture.
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2.1 Martin-Lo6f’s Inductive Definition System LKID

We briefly remind you of Martin-Lo6f’s inductive definition system LKID, defined
in detail in [6].

The language of LKID is determined by a first-order language with inductive
predicate symbols. The logical system LKID is determined by production rules
for inductive predicate symbols. These production rules mean that the inductive
predicate denotes the least fixed point defined by these production rules.

We often abbreviate p(t), ¢(t,u) with pt, gtu. For example, for an inductive
predicate symbol N, the production rules may be written as

L Nz
NO Nsx

These production rules mean that N denotes the smallest set closed under 0
and s, namely the set of natural numbers. We call this set of production rules @y .

The inference rules of LKID are standard inference rules in classical first-
order logic LK with the introduction rules and the elimination rules for inductive
predicates, determined by the production rules. These rules describe that the
predicate actually denotes the least fixed point. In particular, the elimination
rule describes the induction principle.

For example, the above production rules give the introduction rules

I'E Nz, A
I'+-NO, A 't Nsx, A

and the elimination rule

I'FFO,A I,FabF Fsa,A T,FtF A
I NtF A

This elimination rule describes mathematical induction principle restricted to
N. LKID is sound with respect to a class of models called Henkin models (Defi-
nition 2.10 of [6]). We omit the definition of Henkin models and we only use the
following property: if a first order structure M satisfies the induction schema
for N, then M is an Henkin model of LKID with the predicate N.

2.2 Cyclic Proof System CLKID¥

A cyclic proof system CLKID¥ [6] is defined as a system obtained from LKID
by (1) replacing elimination rules by case rules, (2) allowing a bud as an open
assumption and requiring a companion for each bud, (3) requiring the global
trace condition.

The case rule is defined by unfolding the production rule in the antecedent.
For example, the case rule for N is

It=0FA It=sx,Nextk A
I'NtE A
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In a cyclic proof, we can have open assumptions, called buds, but it is required
that each bud has some corresponding sequent of the same form, called a com-
panion, inside the proof figure.

An example of a cyclic proof is

FnNo (a)Nzbk Nssz
F NsO Nz'F Nssz’
F NssO Nz’ Nsssx'

(a)Nz - Nssx

(subst)

(case)

where the mark (a) denotes the bud-companion pair. Remark that the companion
(a) uses Nz, but the bud (a) uses Nxz where x is 2/, so their actual meanings
are different even though they are of the same form.

A pre-proof of CLKID“ is obtained by recursively replacing every bud by the
proof of its companion. A trace is a sequence of occurrences of an atom in a path
of the proof tree, possibly moving to a case-descendant when passing through
a case rule. Moving to a case-descendant is called a progress point of the trace
(Definition 5.4 [6]). The global trace condition says that for every infinite path
there is a trace with infinitely many progress points following some tail of the
path (Definition 5.5 [6]). The global trace condition guarantees the soundness of
a cyclic proof system for fixed-point models. CLKID* is not known to be sound
for Henkin models, and this leaves the possibility of having an Henkin counter-
model for a theorem of CLKID“.

2.3 Brotherston-Simpson Conjecture

LKID has been often used for formalizing inductive definitions, while CLKID“ is
another way for formalizing inductive definitions, and moreover CLKID* is more
suitable for proof search. This raises the question of the relationship between
LKID and cyclic proofs: Brotherston and Simpson conjectured the equality for
each inductive definition. The left-to-right inclusion is proved in [3], Lemma 7.3.1
and in [6], Theorem 7.6. Brotherston-Simpson conjecture (the Conjecture 7.7 in
[6]) is that the provability LKID includes that of CLKID¥. Simpson [11] submitted
a proof of the conjecture in the case of Peano Arithmetic. The goal of this paper
is to prove that it is false in general.

3 2-Hydra Problem

3.1 Hydra Problem

The Hydra of Lerna was a mythological monster, popping two smaller heads
whenever you cut one. It was a swamp creature (its name means “water”) and
possibly was the swamp itself, whose heads are the swamp plants, with two
smaller plants growing whenever you cut one. The original Hydra was defeated



Classical System of Martin-Lo6f’s Inductive Definitions 305

by fire, preventing heads to grow again. In the mathematical problem of Hydra,
we ask whether we may destroy an Hydra just by cutting heads.

Laurence Kirby and Jeff Paris [9] formulated the Hydra problem as a state-
ment for mathematical trees. We are interested about making Hydra a problem
for natural numbers, representing the length of a head, and restricting to the
case when the number of heads is always 2. We call our statement 2-Hydra.

3.2 2-Hydra Statement

In this subsection we give the 2-Hydra statement, which is a formula saying that
any 2-hydra eventually looses its two heads. This statement actually will give a
counterexample to Brotherston-Simpson conjecture.

Let X'x be the signature {0, s, N, p} of a first order language, where 0, the
successor s, an inductive predicate N for natural numbers, and an ordinary
binary predicate symbol p. The logical system LKID(Xy,®y) is defined as the
system LKID with the signature X'y and the production rules @y.

We consider a formal statement of 2-Hydra. The number of head is always 2.
Either both heads have positive length, you reduce the length of the first head
by 1 unit, and of the second head by 2 units (if possible), or there is a unique
head with positive length, you duplicate it and you reduce it by 1 and by 2
units (if possible). We may express H by the convergence of the following set of
transformations on n,m € Nat: if n > 1 and m > 2 then (n,m) — (n—1,m—2);
if n > 2 then (n,0) — (n— 1,n — 2); if m > 2 then (0,m) — (m — 1,m — 2).
When no transformation applies we stop. We may define H by a formula in the
language X' : the intended meaning of p is the complement of the union of all

infinite sequences of transformations. From now on, we write Aq,..., 4, — B
for Ay Ao ANA, — C and Vaq,...,2, € N. Afor Va;. ....Vz,. N(1)A... A
N(z,) — A.

Definition 1 (2-Hydra Statement H). We define H = (H,, Hy, He, Hy —
Va,y € N. p(z,y)), where Hy, Hy,, H., Hy are:

H,) Yz € N. p(0,0) A p(s0,0) A p(z, s0),
Hy) Yo,y € N. p(z,y) — p(sz, ssy),

(
(
(He) Vy € N. p(sy,y) — p(0, ssy),
(Hy) Vz € N. p(sz,x) — p(ssz,0).

For all n,m € Nat there is a unique formula among H,, Hy,, H., H; having
some instance inferring p(n,m). The assumption p(n’,m’) of such a formula, if
any assumption exists, satisfies max(n’,m’) < max(n, m). Thus, we may prove
H in PA by induction on max(n, m). We could define p as an inductive predicate:
however, we preferred having p just a predicate symbol, because in this way the
definition of a counter-model does not require to check the inductive rule for p.

We will prove that LKID(X v, P )+ (0, s)-axioms does not prove 2-Hydra. We
define the (0, s)-axioms as the axioms “0 is not successor” or Vz € N. sz # 0,
and “successor is injective”, or Vz,y € N. st = sy — x = y. These axioms
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cannot be proved in LKID(Xy, @), because they fail, respectively, in the model
of LKID(X'y, @) uniquely determined by M = Ny = {0}, sO = 0, in the model
uniquely determined by M = Ny = {0,s0}, 0 # s0 and ss0 = s0. Compared
with PA, in LKID(X N, Pn) + (0, s)-axioms we do not have a sum nor a product
on NN, nor we have inductive predicate symbols for addition or multiplication.

3.3 2-Hydra Statement in Cyclic-Proof System

In this section, we give a cyclic proof of the 2-Hydra statement.
We define the logical system CLKID“(Xy,®y) as the system CLKIDY with
the signature X' and the production rules @y .

Theorem 1. The 2-Hydra statement H is provable in CLKID¥ (X, Pn).
Proof. Let the 2-Hydra axioms H be H,, Hy,, H., H; defined in Definition 1.
For simplicity, we will write the use of 2-Hydra axioms by omitting (Cut),
(— R), (V R), (Axiom), as in the following example.
ﬁ,Nsy”,Ny” - psy"y"
H,Nsy", Ny" F pOssy”

We will also write a combination of (Case) and (=L) as one rule in the following
example.

HFp00 H,Nz't+ psz'0
H,Nx F px0

xT

For saving space, we omit writing H in every sequent int the next proof
figure. For example, Nz, Ny - pxy actually denotes H, Nx, Ny F pxy.
The following is a cyclic proof of Nz, Ny F pxy.

(a)Nz, Ny + paxy (a)Nz, Ny - pxy (a)Nz, Ny - pxy
Nsaz'/, Nz'' + psa’'z'’ Nsy'/, Ny'' + psy’'y" Naz/, Ny'' + pa'y"’
NOF pl0 Nsz'/, Nz'' + pssa’’0 Nsy'/, Ny' + possy’’  Nsy’/,Na', Ny"' + psa’ssy”’
_ Na
F p00 Nz' - psa’0 NO, Nz + pzl Nsy’', Nz, Ny"' + pxssy’’
Nz , S
Nz F pa0 Nz, Ny’ + pasy

N
a)Nz, Ny + px Y
s Ny pry

The global trace condition holds for the following reason (the detailed proof is in
[1]). We have three possible choices for constructing an infinite path in the proof:
taking a bud of the left, middle, or right. For a given bud and z, 22 € {z,y},
we write z; ~» 2o for a progressing trace from Nz; in the companion to Nzs in
the bud. We write z1 ~ 25, 23 for z; ~ 25 and z; ~ z3. For the left bud, there
are x ~ x,y. For the middle bud, there are y ~ x,y. For the left bud, there
are x ~ x and y ~ y. Hence, given an infinite path, there is some tail of the
path with an infinitely progressing trace, by cleverly choosing = and y possibly
alternatively. Hence the global trace condition holds. O
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4 A Structure M for the Language ¥ Falsifying
2-Hydra

In this section we define a structure M for the language X'y, we prove that M
falsifies the 2-Hydra statement H, and we characterize the subsets of M which
satisfy the induction schema.

4.1 Outline of Proof of Non-Provability

In Sect.4, we define a counter model M. The most difficult point is to prove
that M satisfies Definition 2.10 of [6] for having an Henkin model of LKID + Xy .
We will prove a sufficient condition for it, the induction schema for V.

On one hand, we prove that in our structure M all unary definable predi-
cates of M are sets whose measure is some dyadic rational number. This involves
proving a quantifier-elimination result (Sect. 6) for a theory of partial equivalence
relations (Sect. 5). This result is new, as far as we know: for an introduction to
quantifier-elimination we refer to [8], Sects.3.1 and 3.2). On the other hand,
Sect. 4.3 shows that a definable set of M with dyadic measure satisfies the
induction schema. Combining them, finally we will show that M satisfies the
induction schema for N and according to Definition 2.10 of [6] is an Henkin
model of LKID + Xy.

4.2 Definition of the Structure M

Let Z be the set of relative integers. M is Nat + Z: we represent Nat + Z
by {(1,z) | = € Nat} U {(2,2) | « € Z}. We first define the interpretations
Oty SA, Naq. Opq is O in the component Nat and sa4 is the successor on Nat and
on Z. We choose Nyq = M: by construction, M satisfies the (0, s)-axioms. We
abbreviate x + n = s%,(z), oo for the 0 in the component Z, and co — n for the
relative integer —n in the component Z, for all n € Nat. We define the following
subsets of M: Nat = {Ox¢ + n|n € Nat} and Z= = {oo — (n + 1)|n € Nat} and
Zd = {00 + n|n € Nat}. The sets Nat, Z~, Z are a partition of M.

In order to complete the definition of M we have to choose the interpretation
pm of the binary predicate p. We first define 7 = {(n, 2n)|n € Nat} C Nat x Nat.
7 is the set of points of the straight line y = 2x whose coordinates are some pair
of natural numbers. We imagine 7 starting from the infinite, moving at each step
from some (sa, ssb) to (a,b), and ending in (0,0). Given any (mq, ma) € M x M
we define (my, ma)+7m = {(m1+a, ma+b)|(a,b) € 7} and (mq, m2)—7 = {(m1—
a,mg — b)|(a,b) € w}. We define three paths in M x M by m1 = (Op,00) + 7
and m = (00,00) + 7 and 75 = (00 — 1,00 — 2) — 7. Eventually, we set ppg =
M2\ (1 Uma UT3). As explained in the figure below, we may move forever along
m1 Umg Ums (in red) while “cutting heads” as follows: ... +— (Op + 2,00+ 4) —
(Op 4+ 1,00+ 2) = (0pq,00) — (00 — 1,00 = 2) = (00— 2,00 —4) > .. ..
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Zy
G%)
7—
Nat
o0, ()
Nat Z- zd

Lemma 1 (The 2-Hydra Lemma). H is false in M

M satisfies by construction the closure of N under 0 and s, and the
(0, s)-axioms. In order to prove that M is a model for LKID(Xn,Pn) + (0, s)-
axioms, we have to prove that M satisfies Definition 2.10 of [6], Definition
2.10). Let H be the set of definable predicates of M. A predicate P C M™
is definable in M if for some formula A in the language X'y plus constants
denoting the elements of M, and with free variables in zi,...,z,, we have
P ={(my,...,my) € MM E Almy/z1,...,my/x,]}. We write H,, for the
subset of definable predicates of arity n: we call H; the set of definable sets of
M. According to Definition 2.10 of [6], we have to prove that M is the smallest
pre-fixed point in H; for the inductive definition of N: a sufficient condition is
to prove the induction schema, that all X € H; which are closed under 0 and s
are equal to M.

4.3 The Measure of the Subsets of M Closed Under 0 and s

In this subsection we define a sufficient condition for a predicate on M to satisfy
the induction schema, by using a finitely additive measure u(X), defined on
some subsets X C M. We will prove that all definable subsets of M satisfy this
condition.

Definition 2 (Measure of a Subset of M). For any X C M we set: 1(X) =
card({0p+n,00—n,0c0+neM|n€0,z]}NX)

3(a+1) whenever this limit exists.

hm:p%oo

For instance, p(Nat) = 1/3 and if E = {Op,0p+2, ..., 00—2,00,00+2, ...},
then u(E) = 1/2. We may now provide a sufficient condition for a predicate to
satisfy the induction rule.

Lemma 2 (Measure Lemma). If u(P) is a dyadic rational, then P satisfies
the induction schema.

An example: if P = Mugg, then P is closed under 0, s and co — 1 ¢ P. P
does not satisfy the induction schema and u(P) = 2/3 is not dyadic.
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5 A Set R of Partial Bijections on M

In this section we introduce some set R of partial bijections on M, whose domain
have measure some dyadic rational. In Sects.6 and 7 we will prove that all
definable predicates in M are a boolean combination of atomic formulas of the
language R, and that all definable sets in M are domains of bijections in R,
therefore all have measure some dyadic rational, and by Lemma?2 satisfy the
induction schema. We will conclude that M is an Henkin model of LKID + Xy.

We say that a relation R is finite if there are finitely many pairs (z,y) € R.
For any set X and any binary relations R,S we write: idx = {(z,z)|x €
X}, dom(R) = {z|Jy.(z,y) € R}, codom(R) = {y|3z.(x,y) € R}, R°! =
[(.@)|(z.y) € R}, RoS = {(2,2)3y-((2,9) € S) A ((3,2) € R)} and R[X —
{(z,y) € R|r € X}. Remark that we defined relation composition in the same
order as function composition: the reason is that we will only consider relations
which are partial bijections.

5.1 The Set D of Subsets of M

In this subsection we propose a candidate D for the definable subsets of M.

For any sets I, J we define ISJ as “(I\ J) is finite”: this means “I C J
up to finitely many elements. We define I ~ J as ISJ A JSI: this means “I, J
are equal up to finitely many elements”. I ~ J is equivalent to: (I'\ J)U (J\I)
is finite.

For any r, s € Q we introduce the formal notations O +7, co+s: they denote
elements of M if and only if r € Nat, s € Z. For any z € Z, r € Q, we define the
set of formal notations M (2%,r) = {Op + (2° xn +7),00 + (2° xw + 7)|(n €
Nat) A (w € Z)}. We denote with B the set of all sets M (2%, r), for some z € Z,
req.

We define D as the family of subsets of M which are equivalent, up to finitely
many elements, to some finite union of sets in B.

Definition 3 (The Family D). D € D if and only if D ~ (B1 U ...UB,,) for
some By,...,B, € B. We call D the dyadic family.

Since 2% > 0, all sets M (27, r) are infinite. We have M (2%,7)SM if and only
if (2# *n+r) € Nat for all but finitely many n € Nat and (2%« w +r) € Z for all
but finitely many w € Z. We may check that this is equivalent to: z € Nat and
reZ.

We prove that every set in D has measure some dyadic rational.

Lemma 3 (D-Lemma). Let ag,a € Z and D € D.

1. All finite subsets of M are in D.

2. For all a > ag there are 0 < by < ... < b; < 2% such that M (2% b) =
(M(2%b1) U...UM(2%0;)).

8. For some ag and fm" all a > ag there are 0 < by,...,b; < 2% such that
D~ (M2%b1)U...UM((2%b)).
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4. (D) is some dyadic rational.
5. D is closed under ~ and all boolean operations.

5.2 The Family R of Partial Bijections on M

In this subsection we define a family R of partial bijections on M with domain
in D. The elements of R up to finitely many elements are empty or are some
power of the complement of pa, restricted to some D € D.

We define first some set F of straight lines. F is the set of maps ¢ : @ — Q,
defined by ¢(z) = 2*z+r for some 2z € Z and some r € Q. F is closed under inverse:
if p(x) = 2%z + r, then ¢~ !(z) = 272z — r/27. F is closed under composition: if
¢i(z) = 2%z +r; for i = 1,2, then ¢o(¢1(x)) = 2517221 + (2721 + 13).

Let Q+Q = {(¢,7)|i = 1,2Ar € Q}. Weextend ¢ : Q — Qtoamap: M — Q+Q
by ¢((¢,7)) = (i, ¢(r)) (recall that each element of M is coded by some pair (i, 7)).
For any D C M we define ¢(D) = {¢(d)|d € D} C Q + Q. We provide a sufficient
condition for having ¢(D) C M and ¢(D) € D.

Lemma 4 (¢-Lemma). Let ¢p(z) = 2*1x + 11 for some z1 € Z and some r; € Q
and all x € Q. Assume M(2%,r) € B.

1. ¢(M(2%,7)) € B.
2. If D € D and ¢(D)SM then ¢(D) € D.

Proof.

1. We have ¢p(M(2%,r)) = M(2*T#1,2%1r + 1) € B.

2. If D € D then D ~ M(2%,by)U...UM(2%,b;) for some ay,...,a; € Z and
some by,...,b; € Q. Then ¢(D) ~ ¢(M(2%,b1))U...Up(M(2%,b;)), and by
point 1 above ¢(M(2%1,b1))U...Ud(M(2%,b;)) € B. Thus, ¢(D) € D.

A partial bijection on M is a bijection between two subsets of M. We now
define a family R of partial bijections on M. For instance, one bijection in
R is defined by ¢(x) = 4z, with domain M and codomain M (4,0), mapping
Opr +n— 0pq +4n and co 4 2z +— 00 + 4z.

Let ¢ € F, ¢(x) = 2z +r with z € Z and r € Q. We say that ¢ is even if z
even, and that ¢ is odd if z is odd. We divide infinite bijections in R between
“even” and “odd”. They will be restrictions of an even or odd power of the
relation Q = M?2\ pr, up to finitely many point. We will prove that the first
order definable predicates of M are the propositional formulas of R.

Definition 4 (Even Bijections). Let D,E € D and ¢ € F be even. R is an
even (D, E, ¢)-bijection if D, E are infinite, R is a bijection between D, E, and
R is equal up to finitely many elements to the graph of ¢ restricted to D, E:
R~ {(z,y) € D x Ely = ¢(x)}. We denote the set of even bijections with R .

@ is a partial bijection on M, and by definition @ maps O +n +— 0o + 2n
and co +n — O + 21, and Q is associated to the odd map ¢(x) = 2z.
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Definition 5 (Odd Bijections). Let ¢ € F be odd. An odd (D, E, ¢)-bijection
is any bijection R between some infinite D, E € D, such that, up to finitely many
points, R maps: (1) co—n—1— oo+ ¢(—n—1), (2) Op +n — 00+ ¢(n) and
00 4+ n+— 0p + ¢(n). We denote the set of odd bijections with R~ .

Q@ is an example of odd bijection. Let ¢ € F be even and D, E € D. A
(D, E, ¢)-even bijection may alternatively be defined as any bijection between
D, E such that, up to finitely many points: (1) co—n—1— co+¢(—n—1), (2)
Opm + 1= 0pq + @(n) and 0o + n +— 0o + d(n).

We define R as the set of all bijections between finite sets D, E' € D. Even-
tually, we define a family R of partial bijections by R = RTURqUR™.

If R e RTUR™, associated to the map ¢ € F with domain D and codomain
E, then we may prove that E ~ ¢(D). R and D satisfy the following closure
properties.

Lemma 5 (Partial bijections). Assume that R,S € R and D € D.

idp € R
If D € D then R(D) € D
RoS € R.
R1teR

D is closed under complement.

Cuds o v~

R is closed under intersection.

Lemma 6 (Closure Under Intersection). Assume that R, S € R are asso-
ciated to ¢, € F.

1. Ifp=1 then RNS €R

2. If p#¢y then RNS €R

3. R s closed under intersections.

4. For all R € R there is some D € D such that RN idy = idp.

Our goal is to prove that every first-order definable subset of M is in D.
Since the sets definable in the language of R include those definable in M, it is
enough to prove that any first-order definable set in language of R is in D. To
this aim, we need a quantifier-elimination result for the language of R.

6 A Quantifier Elimination Result for Partial Bijections

In this section we prove a quantifier elimination result for a theory of partial
equivalence relation, which is the abstract counterpart of the families R and
D introduced in the previous section. This is a simple, self-contained result
introducing a model-theoretical tool of some interest.
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Theorem 2 (Quantifier Elimination for Partial Bijections). Let U be a
set and R a set of partial bijections on U. Assume that all finite partial bijections
on U are in R, that D = {dom(R)|R € R} is closed under complement, and that
for all R,S € R, D € D we have idy, R™', RoS € R and RN S, R[D € R. Let
U be the structure with universe U, one constant denoting each element of U,
and one predicate symbol denoting each R € R. Then:

1. The theory of U has quantifier-elimination.
2. Any set definable in U is in D and is R(x,x) for some R € R.

In order to give a flavor of our quantifier elimination procedure, we give an
example: detailed proofs are in [1].

33&‘4(R1(E11‘4 A Roxoxy N ﬁRLL‘3£U4)

is equivalent to
33?4(R1743?1.’E4 A\ R2)4.’172.’L'4 A ﬁR$3$4)

where Dy = codom(R;) N codom(Ry), D1 = Ry (D4), Do = Ry;*(Dy), and
Ri14=Ri1N (D1 X Dy), Ryy = RyN(Dy x Dy). Note domain restriction here. It
is equivalent to

x4 (R1 42124 N R aoxs A Ry 2x129 A " Rx3%4)
where Ry 5 = R; 10R1,4~ Note composition of relations here. It is equivalent to
x4 (R 42124 N Roaoa A Ry o120 A "R 2329)
where R’ = RiiOR Note partial bijections here. It is equivalent to
Fx4(Ry 42124 N Ry gowy) A Ry 22120 A R z30
Using the properties of partial bijections, finally this is equivalent to
Ry o129 N "R 2325,

In the proof we identify each constant symbol with the element ¢ € U it
denotes, and each predicate symbol with the relation R € R it denotes. We prove
quantifier elimination for I/ as defined in [8], Sects. 3.1 and 3.2, namely that each
formula A with possibly free variables in the language U U R is equivalent in U
to some formula B in the same language but without quantifiers. We will in fact
prove a little more, namely that B may be chosen without constants.

We derive some closure properties for R. For any D € D we have idp =
(idm[D) € R. We will abbreviate idp(z,z) with (x € D). D is closed under
intersection, because if D, E € D then idp,idg € R, hence idpng = (idp N
idg) € R and DNE € D. D includes M = dom(id ) and it is closed under com-
plement, therefore D is closed under all boolean operations. For all x € M the
partial bijection idy,y is finite and by assumption it is in R: thus, all singletons
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of M are in D. Assume R € R and D € D: then codom(R) = dom(R~!) € D
and R(D) = (R[D)(D) = codom(R[D) € D. If R € R and D,E € D, then
RN (D x E) € R follows from RN (D x E) = ((R[D)"YH[E)~L.

In the next statement, recall that we defined the relation composition in the
same order as function composition.

Lemma 7 (Composition and Product). Let R,S be any relation and
D, E, F be any sets. Assume R(D)NS~Y(F) C E. Then composition and Carte-
stan product commute: (SN (E x F))o(RN (D x E)) = (SoR)N (D x F).

6.1 A Notion of Normal Form for the Language R

Let n > 0 be any positive integer. Assume R € R and 7,5 € {1,...,n}. We call
any formula R(x;,z;) a positive (R, n)-atom and any formula ~R(z;, z;) a nega-
tive (R,n)-atom. A (R, n)-atom is either a positive or a negative (R, n)-atom. A
(R, n)-propositional formula is any formula obtained from positive (R, n)-atoms
by repeatedly applying disjunction and negation. Any (R, n)-propositional for-
mula has free variables in zg,...,z,—1. We denote by A,, the set of (R,n)-
propositional formula, and by H,, the set of n-ary predicates definable in i.

Our goal is to prove that for all n € Nat, any first-order predicate P of R
is definable by some A € A, and if n = 1 then P € D. We have to prove that
formulas of A,, are closed under existential.

This is the plan of the proof. We will define a notion of (R, n)-normal form
for formulas of A,,, and prove that every A € A,, has some (R, n)-normal form.
Then we will prove that if A € A4, is in (R, n)-normal form, then 3z,.A (with
possibly free variables) may be expressed in A, _; in one of the following ways:
either as some finite disjunction Alci/x1] V ...V Alcg/x,] for some constants
c1,...,c; € U, or by the formula B € A,_1, obtained from A by erasing all
(R, n)-atoms including x,.

Assume n > 0 is any positive integer. Let G be any binary relation on
{1,...,n}. A (G,n)-family is any family F = {R; j(z;,z;)|(i,j) € G} of pos-
itive (R, n)-atoms such that dom(R; ;) = dom(R; ) for all ¢,5,k =1,...,n. F
is a symmetric family if G is a symmetric relation, and for all (i,j) € G we
have R; ; = R; ].1. F is a equivalence family if G is an equivalence relation, and
for all ¢ = 1,...,n we have R;; = idp, for some D;, for all (i,j) € G we
have R, ; = R;’jl, for all (z,7),(j,k) € G we have R;1oR; ; = R; ;. In this case
D; = dom(R; ;) for all 4,5 = 1,...,n and we call D,..., D, the domains of the
family.

A (G, n)-symmetric conjunction is any conjunction of a (G, n)-symmetric fam-
ily. A (G, n)-equivalence conjunction is any conjunction of a (G, n)-equivalence
family.

We recall some basic graph theory. We call an indirect, simple graph

on {1,...,n} just a graph, and we represent it by any irreflexive and sym-
metric relation G on {1,...,n}. A simple cycle in G is any sequence o =
{(i0,71), (11,72)s - - - (bm—1,%m), (im,%0)} € G of pairwise distinct ig, ..., 4, with

m > 2. G is acyclic if G has no simple cycle. A path is any sequence
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m = {(lo,%1), (41,92), .. (bm—1,0m)} with pairwise distinct i1,..., 4, with pos-
sibly m = 0. The connection relation on G is: “there is some path from i to j”
In any acyclic graph G the path from i to j if it exists then it is unique. Given
any equivalence relation P, there is some minimal graph G C P among those
such that P is the smallest equivalence relation including G. All these minimal
graphs are acyclic.

Definition 6 ((R,n)-Normal Forms). C = C; A Cy is a (R,n)-normal con-
Junction if Cy is some conjunction of positive (R,n)-atoms, Cy is some conjunc-
tion of negative (R,n)-atoms, and for some equivalence relation P

1. Cy is some (P,n)-equivalence conjunction
2. for any =S (z;,z;) in Cy we have i < j
3. if [n]p # {n} then x, does not occur in Cy

Any A € A, is an (R, n)-normal form if A is some disjunction of (R,n)-normal
conjunctions.

We first prove that any (G,n)-symmetric conjunction, with G some acyclic
graph, is equivalent to some (P, n)-equivalence conjunction, where P is the reflex-
ive and transitive closure of G.

Lemma 8 (Transitive Closure Lemma). Let n > 0 be any positive integer.
Assume G is any acyclic graph on {1,...,n} and A = A; jegR; j(xi, ;) is any
(G, n)-symmetric conjunction. Let P be the reflexive, symmetric and transitive
closure of G. Then A is equivalent to some unique (P, n)-equivalence conjunction
B whose family of atoms extends the family of atoms of A.

Now we prove that the (P, n)-equivalence conjunctions are closed under con-
junction with a positive (R, n)-atom R(z;,z;). For all i = 1,...,n, we denote
with [i]p the equivalence class of i in P.

Lemma 9 (Partition Lemma). Assume A = A\; jepR; j(z;,2;) is any (P, n)-
equivalence conjunction, and i,j € {1,...,n}. Assume D € D and R € R.

1. AN (z; € D) is equivalent to some (P, n)-equivalence conjunction

2. Assume [i|p = [jlp. Then A A R(z;,x;) is equivalent to some (P,n)-
equivalence conjunction

3. Assume [i|p # [jlp and dom(R) = dom(R; ;) and and codom(R) = dom(R; ;).
Then AN R(z;, ;) is equivalent to some (P, n)-equivalence conjunction

4. Any AN R(x;,x;) is equivalent to some (P, n)-equivalence conjunction

6.2 A Quantifier Elimination Result for R

Now we prove a quantifier-elimination result for the language with symbols the
binary predicates in R, using Lemmas 6 and 9.
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Lemma 10 (Quantifier Elimination for R). Let n > 0 be any positive
nteger.

1. Any finite conjunction of positive (R,n)-atoms has some (P,n)-equivalence
form.

2. Any finite conjunction of positive and negative (R,n)-atoms has some (P,n)-
equivalence form.

3. If A is some finite conjunction of positive and negative (R,n)-atoms, then
Jxn.A is equivalent to some B € A, _1.

4. If A€ A, then 3x,,.A is equivalent to some B € A, _1.

We may now finish the proof of Theorem 2.

7 Main Theorem

Let R, D as in Sect.5. From the properties of the partial bijections in R and
from the quantifier elimination result (Sect.6) we derive our main result.

Theorem 3 (Counterexample to Brotherston-Simpson Conjecture).
Let H be the formula defined in Definition1. Then H has a proof in
CLKID¥ (XN, Pn), and no proof in LKID(Xy,Pyn) + (0, s)-azioms.

Proof. The proof in CLKID“ is shown in Theorem 1. The non-provability in LKID
is shown as follows. Any atomic formulas in M is in R. By definition, R contains
all finite bijections and is closed under restriction to any set D € D. Thus, by
Lemma 6, R satisfies all hypothesis of Theorem 2. We deduce that all definable
sets of M are in D. By Lemma 3 point 4, all sets in D have a dyadic measure,
and by Lemma 2 satisfy the induction schema. According to Definition 2.10 of
[6], this is a sufficient condition for M being an Henkin model of LKID(Xy, PN ).
M satisfies the (0,.5)-axioms by construction. M falsifies H by Lemmal. O

8 Non-conservativity of Martin-Lof’s Inductive Definition
System

This section shows non-conservativity of LKID with respect to additional induc-
tive predicates, by giving a counterexample.
We assume the inductive predicate < and the production rules for it:

<y

r<zx Tz < sy

We call the set of these production rules @<. Let 0-axiom be Vz € N. sz # 0.
In LKID(Xy + {<}, PN + D<), we can show any number < 0 is only 0.
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Lemma 11. O-aziom, Nz, Ny,x <ykFy=0—z=0

The proof is in [1].
The next theorem shows 2-Hydra is provable in LKID with <.

Theorem 4. 0-aziom b H is provable in LKID(Xy + {<}, PN + P<).

We may show Vn. (n > x An >y — p(z,y)) by induction on n. The proof is
given in [1] in case.

In the standard model, the truth of formula does not change when we extend
the model with inductive predicates that do not appear in the formula. On the
other hand, this is not the case for provability in Martin-Lof’s inductive definition
system LKID. Namely, a system may change the provability of a formula even
when we add inductive predicates that do not appear in the formula. Namely,
for a given system, the system with additional inductive predicates may not be
conservative over the original system. Theorems3 and 4 give such an example:
the sequent 0O-axiom + H is in the language of LKID but it is not provable in
LKID, while it is provable in LKID extended with <.

9 Conclusion

We proved in Theorem 3 that CLKIDY, the formal system of cyclic proofs ([6])
proves strictly more that LKID, Martin-Lof formal system of inductive definitions
with classical logic. This settles an open question given in [6]. Our proof also
shows that if we add more inductive predicates to LKID we may obtain a non-
conservative extension (Theorem 4).
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