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Abstract. Dynamic complexity is concerned with updating the out-
put of a problem when the input is slightly changed. We study the
dynamic complexity of Dyck reachability problems in directed and undi-
rected graphs, where updates may add or delete edges. We show a strong
dichotomy between such problems, based on the size of the Dyck alpha-
bet. Some of them are P-complete (under a strong notion of reduction)
while the others lie either in DynFO or in NL.

1 Introduction

Dynamic problems and dynamic complexity. In this paper, we focus on the
dynamic complexity of some reachability problems. Standard complexity theory
aims at developing algorithms that, given an input of some problem, compute
an output as efficiently as possible. Its dynamic variant is focused on algorithms
that are capable of efficiently updating the output after a small change of the
input [11,16,17]. Such algorithms may rely on auxiliary data about the current
instance of the problem, and update it when the instance is modified.

A well-studied dynamic complexity class is DynFO. An algorithm is in
DynFO if the output and the auxiliary data can be updated by FO formulas
after a small change of the input. Variants of DynFO include the class DynFO+,
which allows polynomial-time precomputations, and DynTC0, in which updates
of the auxiliary data are performed by TC0 circuits.

Consider the problem of reachability in directed graphs, and update opera-
tions that consist in inserting or deleting edges (one at a time). It was recently
proven that this problem belongs to the class DynFO [3], which had been con-
jectured for decades.

Furthermore, like static complexity classes, dynamic complexity classes come
with natural notions of reduction. The class DynFO is closed under bounded
expansion first-order reductions (hereafter called bfo reductions), which are spe-
cific L reductions (L is for logarithmic space). A bfo reduction from a problem
to another one is a first-order mapping from instances of the first problem to
instances of the latter one, such that performing an update operation on the
instance of the first problem amounts to performing a bounded number of update
operations on the instance of the latter problem. Similarly, the class DynFO+ is
closed under bounded expansion first-order reductions with polynomial-time pre-
computation (hereafter called bfo+ reductions).
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Reachability problems and language theory. Dyck reachability problems lie at the
interface between two areas. On the one hand, language theory is concerned with
handling descriptions of languages, that is sets of words, with respect to various
questions: Is a language empty, finite or infinite? What about the intersection or
the union of two languages? Does a language contain a given word? Among the
best known and most simple classes of languages are regular and context-free
languages. On the other hand, reachability problems deal with the existence of
paths in graphs, and include questions such as: Does there exist a path between
two given vertices? How long must be such paths?

Dyck reachability problems are focused on the existence of paths in labeled
graphs, whose labels belong to a given Dyck language. Dyck languages are lan-
guages of well-parenthesized words and, roughly speaking, are the most simple
context-free languages that are not regular. The Dyck reachability problem in
labeled directed acyclic graphs was proven to be in DynFO [17], when consider-
ing two types of update operations on labeled graphs, which are insertion and
deletion of edges. Whether this result extends to all labeled directed graphs was
then an open question.

Our contributions. We study this open question, and we distinguish the Dyck
reachability problem in two different ways. Is the labeled graph directed or undi-
rected? How many symbols does the Dyck alphabet contain?

We prove that there exists a strong dichotomy between the dynamic com-
plexity of such problems, based on the size of the Dyck alphabet. In the case
of a unary Dyck alphabet, the Dyck reachability problem lies in NL (non-
deterministic logarithmic space), and even lies in DynFO in the case of undi-
rected graphs; this contrasts with the case of binary Dyck alphabets, where
we prove that the Dyck reachability problem is P-complete under bfo+ reduc-
tions. Furthermore, it is widely believed [16] that no P-complete problems under
bfo+ reductions lie in classes such as DynFO or the slightly broader class DynFO+.

Related works. From its very inception 20 years ago, dynamic complexity has
been a framework of study for several variants of reachability problems and
language theory problems. The class DynFO was shown to contain reachability
problems in directed acyclic graphs [5], undirected graphs [16] and, most recently,
in all directed graphs [3]; regular and Dyck languages [16], then all context-free
languages [6]; Dyck reachability in directed acyclic graphs [17].

At the same time, finding natural problems that are NL- or P-complete (under
L reductions) and belong to low dynamic complexity classes such as DynFO,
DynFO+ or DynTC0 is an ongoing challenge. All known P-complete problems
lying in DynFO rely on highly redundant inputs, hence may be seen as arti-
ficial [16]. Hence, a notion of non-redundant projection [14] was introduced.
Non-redundant projections are a special kind of P reductions, which contains,
in particular, bfo and bfo+ reductions.

Hence, for every static complexity class C, we define non-redundant
C-complete problems as those problems that are C-complete both under L reduc-
tions and under non-redundant projections. Most canonical P-complete problems
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are non-redundant, hence non-redundancy may be seen as a prerequisite for being
a “natural” problem.

A breakthrough was the proof that the Dyck reachability problem in acyclic
directed graphs, which is a non-redundant LogCFL-complete problem, belongs to
DynFO [17]. It was then proved in [15] that the reachability problem in labeled
acyclic graphs, where path labels are constrained to belong to a given context-
free grammar (and not only to a Dyck language), is in DynFO. We prove here
that the results of [15] are unlikely to extend to all labeled graphs, or even to
undirected graphs, even in the simple case of two-letter Dyck languages. This
also allows us to answer negatively a question of Weber and Schwentick, who
asked in [17] whether “the Dyck reachability problem might be a non-redundant
P-complete problem that allows efficient updates.”

Complete proofs can be found in research report [2].

2 Definitions

2.1 Dyck Reachability Problems

A labeled directed graph is a triple G = (V,L,E) where V is a finite set of
vertices, L is a finite set of labels and E ⊆ V × L × V is a finite set of edges.
The graph G is said to be unlabeled if L is a singleton set; in that case, we may
directly represent G as a pair (V,E) where E ⊆ V ×V . The graph G is also said
to be undirected if the relation E is symmetric, i.e. if, for every edge (v, θ, w) in
E, the triple (w, θ, v) also belongs to E.

A path in the graph G is a finite sequence of edges π = (v1, θ1, w1)·(v2, θ2, w2)·
. . . · (vk, θk, wk) such that vi+1 = wi for all i ∈ {1, . . . , k − 1}. The vertex v1 is
called the source of π, and wk is called the sink of π. We also denote by λ(π)
the word θ1 · . . . · θk, which is called the label of π.

Assume that the label set L is of the form L = {�1, . . . , �n} � {�1, . . . , �n}
for some integer n ≥ 1. The Dyck language (also called semi-Dyck language
in [7]) associated with L is the context-free language Dn built over the grammar:
S → ε | �1 · S · �1 · S | . . . | �n · S · �n · S, where ε is the empty word. The set
{�1, . . . , �n} is said to be the Dyck alphabet of that language.

The n-letter Dyck reachability problem asks whether, given two vertices s
and t of G, there exists a path in G, with source s and sink t, and whose label
belongs to the Dyck language Dn (the actual value of the label set L does not
matter, as long as its elements can be partitioned in n ordered pairs). The n-
letter undirected Dyck reachability problem is the restriction of that problem to
the case where the underlying graph G is constrained to be undirected.

2.2 Dynamic Complexity

In this paper, we study the dynamic complexity of Dyck reachability problems.
To that end, we first introduce briefly the formalisms of descriptive and dynamic
complexity here, and refer to [10,13,16] for more details.
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Descriptive complexity aims at characterizing positive instances of a prob-
lem using logical formulas. The input is then described as a logical structure
described by a set of k-ary predicates (the vocabulary) over its universe. For
example, a graph can be described by a binary predicate representing its edges,
with the set of vertices (usually identified with {1, . . . , n} for some n) as the uni-
verse. The problem of deciding whether some state has at most one outgoing edge
can be described by the first-order formula ∃x.∀y.∀z.(E(x, y) ∧ E(x, z)) ⇒ (y =
z). The class FO contains all problems that can be characterized by such first-
order formulas. This class corresponds to the circuit-complexity class AC0 (under
adequate uniformity assumptions) [1].

Dynamic complexity aims at developing algorithms that can efficiently
update the output of a problem when the input is slightly changed, for exam-
ple reachability of one vertex from another one in a graph. We would like our
algorithm to take advantage of previous computations in order to very quickly
decide the existence of a path in the modified graph.

Formally, a decision problem S is a subset of the set of τ -structures Struct(τ)
built on a vocabulary τ . In order to turn S into a dynamic problem DynS,
we need to define a finite set of allowed updates. For instance, we might use
a 2-ary operator ins(x, y) that would insert an edge between nodes x and y.
For a universe of size n, the set of update operations forms a finite alphabet,
denoted by Σn. A finite word in Σ∗

n then corresponds to a structure obtained
by applying a sequence of update operations of Σn to the empty structure In

over the vocabulary τ . The language DynSn is defined as the set of those words
in Σ∗

n that correspond to structures of S, and DynS is the union (over all n) of
all such languages.

A dynamic machine is a uniform family (Mn)n∈N of deterministic finite
automata Mn = 〈Qn, Σn, δn, sn, Fn〉 over an update alphabet Σn, with an
update transition function δn. Every state is a polynomial-size auxiliary data
structure over some vocabulary τaux, which contains the vocabulary τ . Such a
machine solves a dynamic problem if DynSn = L(Mn) for all n. It is in the
dynamic complexity class C′-DynC (or simply DynC if C = C′) if the update
transition function and membership in the accepting set can be computed in C,
while the initial state can be computed in C′. In other words, solving the initial
instance of the problem and computing initial auxiliary data structure can be
done in C′, and after any update of the input (specified by some letter of Σn),
further calculations to solve the problem and update the auxiliary data on that
new instance are restricted to the class C. Of course, for a dynamic complexity
class C′-DynC to have some interest, the class C should be easier than the static
complexity class of the original problem.

In this paper, we only consider the case where C = FO, and where C′ = FO or
C′ = P, meaning that first-order formulas will be used to describe how predicates
are updated along transitions, and that we may make use of polynomial-time
precomputations. As a convention, we will denote the class P-DynFO by DynFO+,
and we recall that the simple notation DynFO is for FO-DynFO.
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2.3 Dynamic Reductions

Dynamic complexity comes with the notion of dynamic reductions [16]. Let C be
a complexity class. A (static) C reduction from a decision problem P to another
decision problem Q is a mapping in C from the instances of P to the instances
of Q that associates every positive instance of P with a positive instance of
Q, and every negative instance of P with a negative instance of Q. Standard
P-completeness results use L reductions [7].

A dynamic reduction from a dynamic problem P (with vocabulary τ1) to
another dynamic problem Q (with vocabulary τ2) is a mapping from Struct(τ1)
to Struct(τ2) such that:

– every positive (respectively, negative) instance of P is mapped to a positive
(respectively, negative) instance of Q;

– every update on an instance i1 of P results in a well-behaved sequence of
updates on the instance i2 of Q to which i1 is mapped.

Dynamic reductions have therefore several parameters: the complexity class to
which the mapping belongs, and the sequences of updates that are allowed.

The dynamic classes DynFO and DynFO+ are respectively closed under
bounded expansion first-order (bfo for short) and bounded expansion first-
order with polynomial-time precomputation (bfo+ for short) reductions [16].
A dynamic reduction μ from P to Q is bfo+ if it is a FO reduction and if every
update on an instance i1 of P results in a bounded sequence of FO updates on
its image μ(i1). If, furthermore, the empty structure I1 is mapped to a structure
μ(I1) that can be obtained by applying a bounded sequence of FO updates on
the empty structure I2, then we say that μ is bfo.

Note that dynamic reductions can be applied to the class P (which coin-
cides with the class DynP, under the assumption that updates are one-bit input
changes). So, being P-hard for bfo+ reductions is arguably stronger than being
P-hard for L reductions. Furthermore, it is known that the classes of bfo and of
bfo+ reductions are closed under composition and that the circuit value problem
is a P-complete problem for bfo+ reductions [16]. Hence, every P problem to
which the circuit value problem is bfo+-reducible is also P-complete problem for
bfo+ reductions.

2.4 Main Result

We are now in a position to formally present our main result.

Theorem 1. The 1-letter Dyck reachability problem is in NL, and the 1-letter
undirected Dyck reachability problem is in NL∩DynFO. Furthermore, for all inte-
gers n ≥ 2, both the n-letter Dyck reachability problem and the n-letter undirected
Dyck reachability problem are P-complete for bfo+ reductions.

Remark 1. Note that NL ∩ DynFO is not known to be strictly included in NL.
Nevertheless, the case of undirected graph appears to be “easier” than the case
of directed graphs in the 1-letter case. Hence, the P-hardness of both cases for
alphabets with at least two letters appears rather unexpected.
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3 One-Letter (Undirected) Dyck Reachability Problems

We prove here the first part of Theorem 1, that is we assume n = 1. We first
observe that the 1-letter Dyck reachability problem is equivalent to a stan-
dard reachability problem in one-counter automata (without zero-tests), which
is known to belong to NL [4,8]. The 1-letter undirected Dyck reachability prob-
lem is a restriction of the 1-letter directed Dyck reachability problem, hence it
is in NL as well. Furthermore, we make the following claim.

Proposition 1. Let s and t be two distinct vertices of an undirected labeled
graph G = (V,E,L), with L = {�1, �1}. There exists a Dyck path from s to t in
G if and only if:

– the set {x ∈ V | (s, �1, x) ∈ E} is non-empty;
– the set {y ∈ V | (t, �1, y) ∈ E} is non-empty;
– there exists a path of even length from s to t in G.

Proof. First, if there exists a Dyck path π = (vi, λi, vi+1)0≤i<k with s = v0 and
t = vk, then λ0 = �1, λk−1 = �1, and the sets {0 ≤ i < k | λi = �1} and
{0 ≤ i < k | λi = �1} have the same cardinality, which proves that k is an even
number.

Conversely, assume that s �= t and that the three conditions of Proposition 1
hold. Let π = (vi, λi, vi+1)0≤i<2k be a path of length 2k from s to t in G, for
some integer k ≥ 1. Let κ be the cardinality of the set {0 ≤ i < 2k | λi = �1}
and let κ be the cardinality of the set {0 ≤ i < 2k | λi = �1}. Since κ + κ = 2k,
we have κ − κ = 2(k − κ).

Furthermore, consider vertices x, y ∈ V such that (s, �1, x) and (t, �1, y)
belong to E. Since the graph is undirected, there exist also edges (x, �1, s) and
(y, �1, t). Let ρ1 be the length-2 circuit (s, �1, x) · (x, �1, s), and let ρ2 be the
length-2 circuit (t, �1, y) · (y, �1, t). One checks easily that the path ρk

1 · π · ρκ
2 is

a Dyck path in G, where ρk
1 is the concatenation of k occurrences of ρ1, and ρκ

2

is the concatenation of κ occurrences of ρ2. ��
Hence, checking whether there exists a Dyck path from s to t in G amounts

to checking whether s = t or, if s �= t, whether the sets {x ∈ V | (s, �1, x) ∈ E}
and {y ∈ V | (t, �1, y) ∈ E} are non-empty, and whether there exists a path of
even length from s to t in G. The first statements can be checked directly in FO,
and the latter one can be checked in DynFO, as proved below. This completes
the proof of the first part of Theorem 1 in the case n = 1.

Lemma 1. Checking whether there exists a path of even length from s to t in
G is feasible in DynFO.

Proof. Let Γ be the graph (G × {0, 1}, E′), where E′ = {((x, 0), �, (y, 1)) |
(x, �, y) ∈ G} ∪ {((x, 1), �, (y, 0)) | (x, �, y) ∈ G}. The graph Γ consists in two
copies of G, and edges of G translate into edges between these two copies. Since
Γ is undirected, the reachability problem in Γ is in DynFO [3,16]. Furthermore,
there exists a path of even length from s to t in G if and only if there exists
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a path from (s, 0) to (t, 0) in Γ . Since Γ is FO-definable in terms of G, and
since adding/deleting one edge in G amounts to adding/deleting two edges in
Γ , Lemma 1 follows. ��
Remark 2. Note that this proof heavily relies on the property that the graph
is undirected. In fact, the problem of computing distances in directed graphs,
whose membership in DynFO or DynFO+ is a long-standing open question [3,9], is
bfo+-reducible to the 1-letter Dyck reachability problem (over directed graphs).
The reduction is as follows.

Given an unlabeled directed graph G = (V,E), equip each edge with a label
�1, and add self-loops (with the label �1) around each vertex in V . Then, for all
vertices v ∈ V , add n vertices (v, 1), . . . , (v, n), where n = |V |, and add edges
with the label �1 from v to (v, 1) and from (v, i) to (v, i + 1), for all i. It comes
at once that the distance (in the original graph G) from a vertex s to a vertex
t is k if and only if there exists a Dyck path (in the extended, labeled graph)
from s to (t, k) but not to (t, k − 1).

Furthermore, the proof of [9] showing that distances in graphs can be com-
puted in DynTC0 does not extend to the 1-letter Dyck reachability, whose precise
dynamic complexity remains therefore unknown.

4 n-letter Dyck Reachability Problem

We prove now that, for all integers n ≥ 2, the n-letter Dyck reachability problem
is P-complete for bfo+ reductions.

We first introduce two auxiliary problems.

1. Let G = (V,E) be an unlabeled directed graph, let (V∧, V∨) be a partition of
V , and let s and t be two marked vertices of G. The alternating reachability
problem asks whether s belongs to the alternating coaccessible set of t, i.e. the
smallest subset X of V such that all of {t}, {x ∈ V∨ | ∃y ∈ X s.t. (x, y) ∈ E}
and {x ∈ V∧ | ∀y ∈ V, (x, y) ∈ E ⇒ y ∈ X} are subsets of X.
Note that this problem could be alternatively and equivalently defined using
the notion of winning state in a two-player turn-based zero-sum reachability
game. However, we choose the above definition using a fixed point to avoid
defining the notion of winning strategies.

2. Let G = (V,E,L) be a labeled directed graph with set of labels L = V ∪ {v |
v ∈ V }, and let s and t be two marked vertices of G. A near-Dyck word is
an element of the set D′ built over the grammar: S → ε | v · S · v · S (for all
v ∈ V ). The near-Dyck reachability problem asks whether there exists a path
π in G, with source s, sink t, and whose label belongs to D′.
Note that the near-Dyck reachability problem may be viewed as a generali-
sation of the n-letter Dyck reachability problem: it involves a grammar with
|V | rules and not only n, i.e. the size of the grammar is not constant anymore.

While it is well-known that the alternating reachability problem is P-hard
for standard logarithmic-space reductions, it is also the case that it is P-hard
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for bfo+ reductions [16]. Hence, we show in the two next subsections that there
exists a bfo+ reduction from the alternating reachability problem to the near-
Dyck reachability problem, and that there exists a bfo+ reduction from that
latter problem to the 2-letter Dyck reachability problem. It will follow that the
2-letter (and, therefore, the n-letter) Dyck reachability problem is P-hard for
bfo+ reductions.

On the other hand, it is known that the n-letter Dyck reachability problem
belongs to P (see [7, Sect. A.7.9]).

4.1 From the Near-Dyck Reachability Problem to the Dyck
Reachability Problem

Let G = (V,E,L) be a labeled directed graph with set of labels L = V ∪ V
(where V = {v | v ∈ V }), and let s and t be two marked vertices of G.

We fix the new alphabet L = {0, 1, 0, 1}. Then, we consider an integer n and
an injective coding function cod : (V ∪ V ) �→ Ln such that cod(V ) ⊆ {0, 1}n,
cod(V ) ⊆ {0, 1}n. We further assume the following consistency requirement
about cod: for all v ∈ V and all i ∈ {1, . . . , n}, we have cod(v)i = cod(v)n+1−i,
where we denote by wi the ith letter of the word w ∈ Ln.

Formally, let G = (V, E ,L) be the labeled directed graph defined by:

– V = V ∪ (
V × (V ∪ V ) × {0, 1, . . . , n});

– L = {0, 1, 0, 1};
– E = E1 ∪ E2, where

E1 = {x
0−→ (x, v, 0) | x, v ∈ V } ∪ {x

0−→ (x, v, 0) | x ∈ V, v ∈ V } ∪
{(x, v, i)

cod(v)i+1−−−−−−→ (x, v, i + 1) | x ∈ V, v ∈ V ∪ V , 0 ≤ i ≤ n − 1} and

E2 = {(x, v, n) 0−→ y | x
v−→ y ∈ E} ∪ {(x, v, n) 0−→ y | x

v−→ y ∈ E},

and in which we mark the vertices s and t.
Each sequence of transitions x

0−→ (x, v, 0) v1−→ . . .
vn−→ (x, v, n) prepares the

encoding of some edge leaving x with label v. If there is some edge x
v−→ y in the

original graph, then only one edge (x, v, n) 0−→ y needs to be added: this is the
role of the edges in E2. We use a similar encoding for edges labeled by v.

Proposition 2. There exists a near-Dyck path from s to t in G if and only if
there exists a Dyck path from s to t in G.
Proof. First, for every pair (u, v) ∈ V2, there exists at most one edge in E with
source u and sink v. Henceforth, we omit representing labels of edges and of
paths in G.

We further define two mappings ϕ and ψ. The mapping ϕ identifies every
label λ ∈ L with a word ϕ(λ) ∈ L∗, as follows:

ϕ(v) = 0 · cod(v) · 0 for all v ∈ V, and ϕ(v) = 0 · cod(v) · 0 for all v ∈ V .
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This mapping extends immediately to a morphism from L∗ to L∗ that maps
every near-Dyck word w ∈ D′ to a Dyck word ϕ(w) ∈ D. The mapping ψ
identifies every edge e ∈ E with a path ψ(e) in G, as follows:

ψ(x v−→ y) = (x → (x, v, 0) → . . . → (x, v, n) → y) for all v ∈ V ∪ V .

This mapping extends immediately to a morphism that maps every path in G
to a path in G. The relation λ(ψ(e)) = ϕ(λ(e)) holds for all edges e ∈ E, and
therefore extends to all paths π in G. Hence, a path π in G is near-Dyck if and
only if the path ψ(π) in G is Dyck.

In addition, let us call nominal paths in G the paths that belong to the set
{ψ(e) | e ∈ E}, and generic paths in G the concatenations of nominal paths.
Nominal paths are the minimal paths whose source and sink both belong to the
subset V of V. Hence, every path π from s to t in G is generic, thus π is the
image by ψ of some path ψ−1(π) from s to t in G. ��

The graph G is FO-definable as a function of G and of the coding func-
tion cod, and adding/deleting an edge in E amounts to adding/deleting exactly
one edge in E2. Since the function cod can be precomputed in P, and due to
Proposition 2, the near-Dyck reachability problem is therefore bfo+-reducible to
the Dyck reachability problem.

4.2 From the Alternating Reachability Problem to the Near-Dyck
Reachability Problem

Let G = (V,E) be an unlabeled directed graph, let (V∧, V∨) be a partition of V ,
let s and t be two marked vertices of G.

Let us number the vertices of G from 0 to n − 1, i.e. set V = {v0, . . . , vn−1}.
Then, let G be the context-free grammar with set of non-terminal symbols V
and initial symbol s, without terminal symbol, and that consists in three kinds
of rules:

– a termination rule t → ε;
– rules v → w for all vertices v ∈ V∨ and w ∈ V such that (v, w) ∈ E;
– rules v → w0 · w1 · · · wn−1 for all vertices v ∈ V∧, where wi = vi if (v, vi) ∈ E

and wi = t otherwise.

The following result is straightforward.

Proposition 3. Let X be the alternating coaccessible set of t. The vertex s
belongs to X if and only if the language generated by G is non-empty.

Inspired by the translation of context-free grammars into pushdown
automata (by simulating leftmost derivations, see for instance [12, Theorem
6.13]), we build below a labeled graph whose labels correspond to push and pop
moves of such a pushdown automaton, so that near-Dyck paths in the new graph
will correspond to the empty-stack accepting runs of the pushdown automaton.
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Formally, let G = (V, E ,L) be the labeled directed graph defined by:

– V = {◦, •} ∪ V ∪ (
V∧ × {1, . . . , n − 1}), where ◦ and • are two fresh vertex

symbols;
– L = V ∪ {v | v ∈ V };
– E = E1 ∪ E2, where

E1 = {◦ s−→ •} ∪ {• x−→ x | x ∈ V } ∪ {• t−→ •} and

E2 = {x
y−→ • | x ∈ V∨ and (x, y) ∈ E} ∪

{(x, n − 1 − i) vi−→ (x, n − i) | x ∈ V∧, 0 ≤ i ≤ n − 1 and (x, vi) ∈ E} ∪
{(x, n − 1 − i) t−→ (x, n − i) | x ∈ V∧, 0 ≤ i ≤ n − 1 and (x, vi) /∈ E},

where we use (v, 0) as a placeholder for v and (v, n) as a placeholder for • (for
all vertices v ∈ V∧). Then, let us mark vertices ◦ and •.

The construction is illustrated in Fig. 1, in which the graph G is associated
with the grammar G whose initial symbol is v0 and whose rules are v3 → ε |
v1 → v2 | v1 → v4 | v2 → v3 | v3 → v1 | v0 → v3v1v3v3v4 | v4 → v3v1v3v3v3.

∧

∨ ∧

∨ ∨

s = v0

v1 v4

v2 t = v3

Graph G

v0 v1 v2 v3 v4

•
◦

v0

v0
v2,
v4,

v1
v3 v2

v1
v3

v4

v3

v4

v3

v3

v1
v3

v3

v3

v3

v1
v3

Graph G

Fig. 1. Graphs G and G

Proposition 4. There exists a near-Dyck path from ◦ to • in G if and only if
the language of the context-free grammar G is non-empty.

Proof. Consider the pushdown automaton A = (Q,Σ, δ, ι, F ), with set of states
Q = V, input alphabet Σ = ∅, initial state ι = ◦, set of final states F = {•},
whose transition function δ contains only the following ε-transitions:

δ : q
push(v)−−−−−→ q′ for all q, q′ ∈ V and v ∈ V s.t. (q, v, q′) ∈ E

q
pop(v)−−−−→ q′ for all q, q′ ∈ V and v ∈ V s.t. (q, v, q′) ∈ E ,
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and whose accepting runs are those that start in ι with an empty tape and end
in a final state (i.e. in •) with an empty tape.

It is straightforward that A accepts the language of G, for instance by observ-
ing that it follows the construction of [12, Theorem 6.13]. Furthermore, near-
Dyck paths from ◦ to • in G can be identified with stack operations of accepting
executions of A. Proposition 4 follows. ��

The graph G is FO-definable as a function of G, s, t and of the mapping i �→ vi.
Moreover, adding/deleting an edge e in E amounts to adding/deleting exactly
either one or two edges in E2. Since the mapping i �→ vi can be precomputed
in P, and due to Propositions 3 and 4, the alternating reachability problem is
therefore bfo+-reducible to the near-Dyck reachability problem.

5 n-letter Undirected Dyck Reachability Problem

We proceed by proving that there exists a bfo+ reduction from the 2-letter Dyck
reachability problem (in directed graphs) to the 2-letter undirected reachability
problem.

Let G = (V,E,L) be a directed labeled graph, with L = {�1, �2, �1, �2}, and
let s and t be two marked nodes of G. In addition, let L = {0, 1, 0, 1} be another
set of labels.

The main difficulty, when working in an undirected graph, is that lots of
cycles are created, generating lots of stuttering in the words labeling the paths.
It is therefore hard to really control where a path goes just by looking at its label.
In particular, the recipe used in Sect. 4.1 to reduce the near-Dyck reachability
problem to the 2-letter Dyck reachability problem cannot be used now, and it is
not clear whether simple alternative reductions from the near-Dyck undirected
reachability problem to the 2-letter undirected Dyck reachability problem exist.
Below, we prove directly the P-hardness of the 2-letter undirected Dyck reacha-
bility. In order to do so, we rely on a rather intricate encoding, where each part
plays an important role.

We denote by ϕ : L∗ �→ L∗ the homomorphism of monoids defined by:

ϕ(�1) = 0 · 0 · 1 · 1 · 0 · 0 · 1 · 1 · 1 · 1 · 1 · 0 ϕ(�1) = 0 · 1 · 1 · 1 · 1 · 1 · 0 · 0 · 1 · 1 · 0 · 0
ϕ(�2) = 0 · 0 · 1 · 0 · 0 · 1 · 1 · 0 · 0 · 1 · 1 · 0 ϕ(�2) = 0 · 1 · 1 · 0 · 0 · 1 · 1 · 0 · 0 · 1 · 0 · 0

Observe that the words ϕ(�1) and ϕ(�2) are formal inverses of the words ϕ(�1)
and ϕ(�2): in particular, both the words ϕ(�1) · ϕ(�1) and ϕ(�2) · ϕ(�2) are Dyck
words.

In gray boxes are locks: along a Dyck path, once a lock has been traveled
through, we cannot go back earlier in the encoding, since this would create a
factor 1 ·0 or 0 ·1, which is not a factor of any Dyck word. We therefore say that
a path is doomed if it crosses a lock backwards, thereby having a factor 1 · 0 or
0 · 1. By preventing Dyck paths from having doomed subpaths, locks will allow
us to recover partially the directed character of G.
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Finally, for every word w ∈ L∗, we denote by wi the ith letter of w. Let
G = (V, E ,L) be the undirected labeled graph defined by:

– V = V ∪ (V × L × V × {1, . . . , 11});
– E = Einit ∪ Emid ∪ Eend, where

Einit = {x
ϕ(λ)1←−−→ (x, λ, y, 1) | (x, λ, y) ∈ E}

Emid = {(x, λ, y, i − 1)
ϕ(λ)i←−−→ (x, λ, y, i) | (x, λ, y) ∈ E, 1 ≤ i ≤ 11}

Eend = {(x, λ, y, 11)
ϕ(λ)12←−−→ y | (x, λ, y) ∈ E},

and in which we mark the vertices s and t.
Like in Sects. 4.1 and 4.2, we observe an equivalence between the two kinds

of Dyck reachability problems in the graphs G and G, which we prove formally
in the rest of the section.

Proposition 5. There exists a Dyck path from s to t in G if and only if there
exists a Dyck path from s to t in G.

A first completeness result towards proving Proposition 5 comes quickly.

Lemma 2. Let ρ be a Dyck path from s to t in G. There exists a Dyck path
from s to t in G.
Proof. First, for every pair (u, v) ∈ V2 there exists at most one undirected edge
between u and v in E . Henceforth, we may omit representing labels of edges and
of paths in G.

Now, let us denote by ψ the mapping that identifies every edge e ∈ E with the
path ψ(e) = (x → (x, θ, y, 1) → . . . → (x, θ, y, 11) → y) in G, where e = (x, θ, y).
Observe that ψ extends immediately to a morphism that maps every path in G
to a path in G. The relation λ(ψ(e)) = ϕ(λ(e)) holds for all edges e ∈ E, and
therefore extends to all paths in G. Hence, a path ρ in G is Dyck if and only if
the path ψ(ρ) in G is Dyck. ��

However, unlike in Sect. 4.1, there may exist Dyck paths in G that are not
of the form ψ(ρ), as shown by the examples of the two Dyck cycles γ1 and γ2
displayed in Fig. 2. Consequently, we cannot use directly the morphism ψ to
associate every Dyck path in G with a Dyck path in G.

We overcome this problem as follows. Let Q be the set of all factors of all
Dyck words with letters in L (called approximate Dyck words), and let P the
set of all paths π in G such that λ(π) ∈ Q (called approximate Dyck paths).
Moreover, for every set S of paths, we denote by λ(S) the set of labels of paths
in S, i.e. λ(S) = {λ(π) | π ∈ S}. It comes at once that λ(P) ⊆ Q, that Q is
factor closed, and that none of the words 1 · 0 nor 0 · 1 belongs to Q.

We further say that a path in G is nominal if its source and sink belong to
V , while its intermediate vertices belong to V \ V . For all edges (x, λ, y) ∈ E,
we denote by Px,λ,y the set of nominal paths π ∈ P such that π has source x,
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Fig. 2. Graphs G and G, and Dyck cycle in G

sink y, and such that its internal vertices are exactly the elements of the set
{(x, λ, y, i) | 1 ≤ i ≤ 11}. For all vertices x ∈ V , we also denote by Px the set
of nominal paths π ∈ P such that π has source and sink x, and whose edges are
all labeled with 0 or 0. These two classes of paths capture the entire family of
nominal paths that belong to P, as shown by the following result.

Lemma 3. Let π ∈ P be a nominal path in G. Either there exists an edge
(x, λ, y) ∈ E such that π ∈ Px,λ,y or there exists a vertex x ∈ V such that
π ∈ Px. Moreover, the sets Px,λ,y and Px are pairwise disjoint.

Proof. We first assume that some edge e in π is labeled by 1 or 1. By construction,
there exists a unique edge (x, λ, y) ∈ E and a unique pair of integers i, j ∈
{1, . . . , 11} such that e = (x, λ, y, i) → (x, λ, y, j), with j = i ± 1. Since π is
nominal, its internal vertices belong to the set {(x, λ, y, i) | 1 ≤ i ≤ 11}, and its
source and sink belong to {x, y}. Then, since π belongs to P, it does not contain
doomed paths, hence its source must be x and its sink must be y.

Then, assume that no edge in π is labeled by 1 or 1. Since π is nominal, there
exists a unique edge (x, λ, y) ∈ E such that the internal vertices of π belong to
the set {(x, λ, y, i) | 1 ≤ i ≤ 11}, and its source and sink belong to {x, y}. If x
is the source of π, then π can never reach the vertex (x, λ, y, 3), hence x is the
sink of π; if y is the source of π, then π can never reach the vertex (x, λ, y, 9),
hence y is the sink of π.

Observing that every path in every set Px,λ,y contains an edge labeled by 1
or 1 completes the proof. ��

Going further, we associate with every path ρ = (v1, λ1, w1) · . . . · (vk, λk, wk)
in G the set Pρ of paths in G defined by:

Pρ = P∗
v1

· Pv1,λ1,w1 · P∗
v2

· Pv2,λ2,w2 · . . . · P∗
vk

· Pvk,λk,wk
· P∗

wk
.

Observe that, unlike the sets Px and Px,λ,y, the sets Pρ may contain paths that
are not nominal and/or not approximate Dyck paths.

Conversely, however, it comes immediately that every Dyck path π in G
belongs to one unique set Pρ, where ρ is the nominal ancestor of π defined
below.
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Definition 1. Let π be a Dyck path in G from s to t. There exists a unique
sequence of vertices v0, . . . , vk, a unique partial function fπ : {1, . . . , k} �→ L,
whose domain is denoted by dom(fπ), and a unique sequence of nominal paths
π1, . . . , πk such that:

– v0 = s and vk = t;
– for all i ∈ dom(fπ), the edge (vi−1, fπ(i), vi) belongs to E, and πi ∈

Pvi−1,fπ(i),vi
;

– for all i ∈ {1, . . . , k} \ dom(fπ), we have vi−1 = vi, and πi ∈ Pvi
;

– π = π1 · . . . · πk.

We call nominal vertex sequence of π sequence v0, . . . , vk, nominal label map-
ping of π the mapping fπ, nominal decomposition of π the sequence π1, . . . , πk,
and nominal ancestor of π the path (vi−1, fπ(i), vi)i∈dom(fπ).

Associating every Dyck path in G with a unique path in G is a first step
towards proving the soundness of the construction. Further steps depend on the
following, additional properties of the encoding.

Every Dyck path traveling through the word ϕ(�1), may go back and forth
arbitrarily, except at locks, which it may cross only once. Consider such a possible
journey through the word ϕ(�1), and observe the word w obtained during that
journey. This word is made of blocks that consist, alternatively, of letters 0 and
0, and of letters 1 and 1. Such a word, even if we first reduce it (by deleting
recursively the words 0 · 0 and 1 · 1), will always satisfy the following properties:

1. there exists at least four such (non-empty) blocks;
2. the last block consists of letters 0 only;
3. the last two blocks are of odd length, and every other block is of even length.

To illustrate the above analysis, consider the direct journey through ϕ(�1),
where we have identified the blocks: (0 ·0) · (1 ·1) · (0 ·0) · (1 ·1 ·1 ·1 ·1) · (0). If that
word is reduced, there remain four non-empty blocks: (1 ·1) · (0 ·0) · (1 ·1 ·1) · (0).

Another example is the journey first followed by the path γ2 (see Fig. 2) from
the vertex s1 to the vertex s2, and which gives us more blocks: (0 · 0) · (1 · 1) ·
(0 · 0) · (1 · 1) · (0 · 0) · (1 · 1 · 1 · 1 · 1) · (0). If that word is reduced, there remain
six non-empty blocks: (1 · 1) · (0 · 0) · (1 · 1) · (0 · 0) · (1 · 1 · 1) · (0). One checks
easily on these examples that all the words obtained satisfy the properties 1–3.

Properties 1–2 hold for the word ϕ(�2), while property 3 should be
replaced by:

3’. the first block of letters 1 and 1 and the last block of letters 0 are of odd
length, and every other block is of even length.

This distinction between encodings of the two letters will allow identifying a
path that encodes �1 or �2, even when there is backtracking between the two
locks.

Now, we denote by Qinit the set of all prefixes of all Dyck words with letters
in L. Observe that, for all words ρ1, ρ2 ∈ L∗, the three words ρ1 · ρ2, ρ1 · 0 · 0 · ρ2
and ρ1 · 1 · 1 · ρ2 are either all Dyck or all non-Dyck.
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Then, for every word w ∈ L∗, we call reduced word of w the word red(w)
obtained from w by deleting recursively the 2-letter words 0 · 0 or 1 · 1. Alter-
natively, if we consider w as an element of the free group generated by �1 and
�2 (with inverses �1 and �2), then red(w) is the reduced word representing w.
We just proved that w is Dyck if and only if red(w) is Dyck. Moreover, it comes
immediately that Qinit is in fact the set of all words w such that red(w) has only
letters 0 and 1.

The above remarks and notions lead to the following results, whose proofs
are then technical yet simple, and therefore omitted here.

Lemma 4. Let ρ be a path in G. If ρ is not an approximate Dyck path, then
λ(Pρ)∩Q = ∅, and if λ(ρ) is not a prefix of a Dyck word, then λ(Pρ)∩Qinit = ∅.
Lemma 5. Let π be a Dyck path from s to t in G, let ρ be the nominal ancestor
of π, and let λ(ρ) ∈ L∗ be the label of ρ. In addition, let μ : L∗ �→ Z be the
morphism of monoids defined by μ(�1) = μ(�2) = 1 and μ(�1) = μ(�2) = −1.
Then, we have μ(λ(ρ)) = 0.

A consequence of Lemmas 4 and 5 is the correctness of the construction,
which is therefore valid.

Proof (Proposition 5). First, if there exists a Dyck path from s to t in G, then
Lemma 2 already states that there also exists a Dyck path from s to t in G.
Hence, we look at the converse implication.

Let π be a Dyck path from s to t in G, and let ρ be the nominal ancestor
of π. Let λ(ρ) be the label of ρ and let Λ be the reduction of λ(ρ). Lemma 4
proves that λ(ρ) is a prefix of a Dyck word, hence that Λ has only letters �1 and
�2. Since Lemma 5 also proves that μ(λ(ρ)) = μ(Λ) = 0, it follows that Λ is the
empty word, i.e. that λ(ρ) is a Dyck word. ��

We complete the proof of Theorem 1 as follows. Observe that the graph G
is FO-definable as a function of G. Furthermore, adding/deleting an edge in E
amounts to adding/deleting exactly twelve edges in E . Due to Proposition 5,
the 2-letter Dyck reachability problem is therefore bfo-reducible to the 2-letter
undirected Dyck reachability problem.

On the other hand, as a restriction of the n-letter Dyck reachability problem,
the n-letter undirected Dyck reachability problem is clearly in P, which completes
the proof of Theorem 1.
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