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Abstract. Modern computer architectures share physical resources
between different programs in order to increase area-, energy-, and cost-
efficiency. Unfortunately, sharing often gives rise to side channels that
can be exploited for extracting or transmitting sensitive information.
We currently lack techniques for systematic reasoning about this inter-
play between security and efficiency. In particular, there is no established
way for quantifying security properties of shared caches.

In this paper, we propose a novel model that enables us to character-
ize important security properties of caches. Our model encompasses two
aspects: (1) The amount of information that can be absorbed by a cache,
and (2) the amount of information that can effectively be extracted from
the cache by an adversary. We use our model to compute both quantities
for common cache replacement policies (FIFO, LRU, and PLRU) and to
compare their isolation properties. We further show how our model for
information extraction leads to an algorithm that can be used to improve
the bounds delivered by the CacheAudit static analyzer.

1 Introduction

Modern computer architectures share physical resources across different pro-
grams in order to increase area-, energy-, and cost-efficiency. Examples of com-
monly shared resources are caches, branch prediction units, DRAM, and disks.

Unfortunately, sharing poses a threat to security: even if programs are com-
pletely isolated on a logical level, sharing a physical resource usually means that
one program’s resource usage pattern can be observed by the other. This con-
stitutes a channel that can be exploited for extracting or transmitting sensitive
information. While this kind of vulnerability has been known for decades [14],
its severity has become painfully apparent with a stream of highly effective side-
channel attacks. One shared resource that has been the objective of a large
number of attacks are CPU caches, e.g. [2,3,6,12,16,20,24].

From a security point of view it would be ideal to completely eliminate side
channels through the cache by design, as in [22,25], or to flush the cache between
accesses of two different parties. Unfortunately, such conservative approaches
also partially void the performance benefits of sharing. In many practical sce-
narios, designers will opt for less conservative solutions that offer “sufficient”
degrees of security together with high performance. However, while there is a
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large body of work on evaluating the impact of different cache designs on per-
formance, there are no established metrics for evaluating their security, which
prevents principled decision-making in that design space.

Approach. In this paper, we address this problem by introducing a novel app-
roach to quantify the security of caches, in particular: their replacement policies.
Our approach aims to answer the following questions, which capture two natural
aspects of isolation between programs that share the cache:

Q1. How much information about a computation is absorbed by the cache?
There are two challenges involved with this question. The first is to identify
a meaningful measure for the information contained in a given cache state.
The second is to characterize the set of possible computations, which may
induce different cache states. To make assertions about the security of the
cache architecture (rather than about the security of a specific program
running on top of a cache architecture) such a characterization needs to
encompass a sufficiently general class of programs.

Q2. How much information can an adversary extract from the cache state?
The challenge for answering this question is that an adversary can only
learn about the cache state by probing, that is, by performing memory
accesses and measuring their latency. However, probing also modifies the
cache state and thus can reduce its information content. With the excep-
tion of one approach that encompasses secrets that change over time [17],
existing models of quantitative information flow do not account for this
scenario because they either consider only single probes [21] or assume the
secret remains unchanged by the probing [4,7,13].

A1. For answering Q1, we characterize the absorbed information as the number
of reachable cache states, which essentially captures the information that pro-
grams leak into the cache. For a single program, this amount can be bounded
using existing static analysis tools [10]. For abstracting from a specific program,
we draw inspiration from the working set model [9] and characterize programs
in terms of their footprint, i.e., the number of memory blocks they use. We then
show how (and under which assumptions) the footprint alone can be used to
characterize the absorption of a given replacement policy, leading to a program-
independent measure.

A2. For answering Q2, we put forward a novel model to quantify the
“extractable” information about the cache state. We consider an adversary that
adaptively provides inputs and observes the outputs. The key difference to exist-
ing models of adaptive attacks [7,13] is that our model is based on a Mealy
machine in which each input triggers a state transition, which may erase infor-
mation about its origin. As in existing models, we first characterize the revealed
information in terms of a partition of the set of secrets (here: initial states of the
machine). We then evaluate this partition with established measures of leakage
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to quantify the corresponding amount of information. By considering the maxi-
mum leakage w.r.t. all possible inputs to the Mealy machine, we obtain an upper
bound on the information that any adaptive adversary can extract. We present
an algorithm that computes such bounds for given Mealy machines.

Results. We put our models and algorithms to work for the quantification
of absorption and extraction properties of common cache replacement policies,
namely FIFO, LRU, and PLRU. We highlight the following results; see the paper
for more details.

– We show that the relative security ranking of cache replacement policies varies
widely depending on the memory demand of the program. For example, FIFO
can provide the best security when memory demand is low, whereas LRU
generally provides the best security. Our results show that PLRU generally
offers worse security than the other replacement policies.

– We show that our algorithm for information extraction can be used for improv-
ing the cache-state counting of the CacheAudit static analyzer [10]. Our exper-
imental results show that this significantly improves the bounds delivered by
CacheAudit, leading to gains of up to 50 bits for AES 256.

Contribution. In summary, our conceptual contribution is to propose novel
measures for quantifying isolation properties of shared caches. Our practical con-
tribution is to perform the first security analysis of common cache replacement
policies.

2 The Model

2.1 Caches as Mealy Machines

Caches are fast but small memories that store a subset of the main memory’s
contents to bridge the latency gap between the CPU and the main memory. To
profit from spatial locality and to reduce management overhead, main memory
is logically partitioned into a set B of memory blocks. Each block is cached as
a whole in a cache line of the same size. When accessing a memory block, the
cache logic has to determine whether the block is stored in the cache (“cache
hit”) or not (“cache miss”).

In this paper, we model caches as Mealy machines, that is, finite automata
that map sequences of accessed memory blocks to sequences of hits and misses.
We begin by recalling the definition of a Mealy machine before we specialize it
to the case of caches.

Definition 1. A (deterministic) Mealy machine M is a five-tuple consisting of

– S: a finite set of states,
– Σ: a finite set of inputs,
– O: a finite set of outputs (or observations),
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– upd : S × Σ → S: a transition function, and
– view : S × Σ → O: an observation function

For casting caches as Mealy machines, we use memory blocks as inputs, i.e.
Σ = B, and cache hits (H) and misses (M) as observations, i.e., O = {H,M}.
For defining the set of states S, recall that caches are commonly partitioned into
independent equally-sized cache sets whose size A is called the associativity of
the cache. For each block there is a single cache set that stores it.

For simplicity of presentation we focus on caches with a single set. Since
cache sets behave independently from each other, the technique is generalizable
to several sets by focusing each time on the blocks stored in a particular set. We
model a cache set as a function that assigns an age in A := {0, . . . , A − 1, A} to
each memory block.

S = {c ∈ B → A | ∀b1, b2 ∈ B : b1 �= b2 ⇒ c(b1) �= c(b2) ∨ c(b1) = c(b2) = A)} .

Here, the youngest block has age 0 and the oldest cached block has age A − 1.
Age A means that a block is not cached; it is the only age that can be shared
by multiple blocks.

With this, the observation function view b = view(·, b) is naturally defined as

view b(c) =

{
H if c(b) < A

M else

The transition function updb = upd(·, b) is specified by:

updb(c)(b
′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(b′) if b′ �= b ∧ c(b′) = A

0 if b′ = b ∧ c(b) = A

c(b′) + 1 if b′ �= b ∧ c(b′) < A ∧ c(b) = A

Πc(b)(c(b′)) if c(b′) < A ∧ c(b) < A

(1)

This transition function models permutation replacement policies as defined
in [1]. Upon a miss, c(b) = A, the accessed block is placed at the beginning of
the cache, increasing the ages of younger blocks and evicting the block with age
A−1. In the case of a hit, each replacement policy reorders the blocks in a certain
way, determined by the permutation function Πα(α′) : A → A; it modifies the
current age α′ of a block according to a base age α.

Each replacement policy has its own permutation function: FIFO does not
reorder the blocks, LRU sets the age of the accessed block to 0, and PLRU
behaves similar to LRU but with a more complex reorganization. We refer
to the Mealy machines corresponding to LRU, PLRU, and FIFO caches by
MLRU,MPLRU, and MFIFO, respectively.

The formalization of these policies, as well as the proofs of all technical results
are contained in the extended version of this paper [8].
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2.2 Quantifying Absorption and Extraction

We characterize absorption and extraction in terms of the interactions of two
agents, a victim and an adversary.

– The victim first chooses a secret, such as a cryptographic key. We model this
using a random variable X. The victim then uses this secret as input to a
program that he runs to completion (or preemption) on a platform with a
cache. We capture the effect of the victim’s computation on the cache state
in terms of a finite sequence of blocks from the set of victim’s blocks Bv,
where Bv ⊆ B. The cache uses this sequence as inputs to transition from an
initial state to the victim’s state. We model the victim’s state using a random
variable Yv that takes values in a set Sv ⊆ S, i.e. ran(Yv) = Sv.

– The adversary then runs a program on the same platform, which enables him
to make observations about the state of the cache by measuring the latency
of its memory accesses.1 We model the adversary’s actions in terms of a finite
sequence of blocks from the subset of attacker’s blocks Ba ⊆ B. Using the
sequence of blocks as inputs, the cache transitions from the victim’s state
returning a sequence of hits and misses that we model with the random vari-
able Za, ran(Za) ⊆ O∗. We make the random variable dependent on the
attacker since he can choose the sequence of blocks. Based on these observa-
tions, the adversary tries to guess the secret. We model the guess in terms of
the random variable X̂.2 We say that an attack is successful if the adversary
correctly guesses the secret, i.e. if X = X̂.

We now give a high-level operational motivation for our definitions of infor-
mation absorption and extraction, in terms of a bound on the probability of
a successful attack. We assume that the distribution of each of these random
variables depends only on the outcome of the previous one, i.e., that the dis-
tribution of cache states depends only on the secret, and that the adversary’s
observations depend only on the state of the cache. Then we can cast the depen-
dencies between these random variables in terms of the following Markov chain:

X
Secret

Victim
|−→ Yv

Cache State

Adversary probe
|−→ Za

Observation

Adversary guess
|−→ X̂

Guess
(2)

The following result bounds the probability of a successful attack, i.e.
P (X = X̂), in terms of the size of the ranges of Yv and Za, respectively.

Theorem 1.

P (X = X̂) ≤ max
x∈ran(X)

P (X = x) · |ran(Za)| (3)

P (X = X̂) ≤ max
x∈ran(X)

P (X = x) · |ran(Yv)| (4)

1 In the literature, this is known as an access-based adversary, e.g. [19].
2 Note that, while Yv and Za are given in terms of inputs and outputs of the Mealy

machine representing the cache, we do not assume any particular structure on X
and X̂.
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For an attacker that follows a deterministic strategy, the value of Za is deter-
mined by the value of Yv. Therefore |ran(Za)| ≤ |ran(Yv)|, which implies that (3)
leads to better security guarantees than (4).

Whenever additionally the value of Yv is determined by that of X and X is
uniformly distributed, the bounds given by Theorem 1 are tight, in the sense
that they can be achieved by computationally unbounded adversaries.

In this paper, we will use |ran(Yv)| to capture the amount of information
that is absorbed by the cache, and we will use |ran(Za)| to capture the amount
of information that the adversary can extract from the cache. The operational
significance of these quantities follows from Theorem 1. We discuss how these
quantities can be computed in Sects. 3 and 4, respectively.

3 Absorption of Information

Fig. 1. Example of
Mealy machine

In this section we characterize the information absorption
of different cache replacement policies. That is, we char-
acterize ran(Yv) from (2) as a subset Sv ⊆ S of reach-
able victim’s states of the Mealy machine representing
the cache.

Before we give the formal definition we note that the
absorbed information depends on two things: the initial
state of the Mealy machine and the inputs of the victim.
To see the effect of the initial state s0 ∈ S, consider the
Mealy machine in Fig. 1 and assume that the victim may
use any sequence of inputs from Σ∗

v = {a, b}∗. If we start
from the state s0 = 1 only that one state is reachable, Sv = {1}; if s0 = 2, 3
then Sv = {1, 2, 3} and finally if s0 = 4 then Sv = S.

We capture the victim’s inputs as a trace t ∈ Σ∗
v . This leads to the following

definition of |ran(Yv)|.
Definition 2. We define the absorbed information of a Mealy machine M =
(S,Σ,O, upd , view) w.r.t an initial state s0 and a set of traces T ⊆ Σ∗

v as

Abs(M, s0, T ) = |{s ∈ S | ∃t ∈ T : upd t(s0) = s}| ,
In the above definition of absorption, the set of traces T is a parameter.

For a given program, existing static analysis techniques can be used to compute
approximations of the set of traces T and the induced absorption of a particular
cache, modeled by a Mealy machine M . In Sect. 6 we present the results of a
static analysis of two AES implementations.

In this section, our goal is to characterize the absorption properties of caches
independently of a particular program. A worst case approach to this end is to
study absorption under all possible traces T = B∗

v , given a set of memory blocks
Bv. For this, we first state several general results in Sect. 3.1, which show that
the absorption of caches is independent of the particular set of memory blocks
Bv being accessed, and only depends on its size, |Bv|. In Sect. 3.2, we then use
these general results to derive concrete results on the absorption properties of
caches under LRU, FIFO, and PLRU replacement.
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3.1 Data Independence of Permutation Replacement Policies

Initial State. Absorption, as defined in Definition 2 depends on the initial state
of the Mealy machine. Considering programs that may access the set of memory
blocks B ⊆ B, two types of initial states for caches are particularly interesting:

Definition 3. We say that a cache state c : B → A is

1. empty w.r.t. B if c(B) = {c(b) | b ∈ B} = {A}. That is, none of the blocks
in B are cached.

2. filled with B if c(B) = {0, . . . ,min(A, |B| − 1)}. That is, the blocks in B
occupy the cache. If B contains less blocks than cache lines, we require that
the first |B| lines are filled.

The notions of empty and filled cache states are relative to a set of memory
blocks. We will consider empty and filled cache states relative to the memory
blocks accessed by the victim, Bv. To conservatively capture the power of an
attacker, ages without a victim’s block mapped to them will be assumed to hold
the attacker’s memory blocks not accessible for the victim, that is, blocks from
the set Ba\Bv.

Data Independence. The following result is central for our program-independent
analysis of cache replacement policies. It shows that absorption can be char-
acterized independently of the particular set of blocks B that the victim may
access:

Theorem 2. Whenever |B1| = |B2|, and c1 is empty (filled) w.r.t. B1 and c2

empty (filled) w.r.t. B2, then

Abs(M, c1, B
∗
1) = Abs(M, c2, B

∗
2).

The proof of Theorem 2 follows from the following lemma and the observation
that one can define bijections between all sets of equal cardinality.

Lemma 1. Let f : B → B be a bijection. Then

Abs(M, c0, B
∗) = Abs(M, c0 ◦ f−1, (f(B))∗).

We focus on filled and empty initial states since they represent the two
extremes for the information absorption. Consider a partially filled state c, that
is, where there is a sequence of distinct blocks b0 . . . bn with n ≤ min(A, |B| − 1)
such that c(bi) = i for i ≤ n. Then, any state reachable from c by inputting a
trace t ∈ B∗ is reachable from an empty one ce with the trace t′ = bn . . . b0t. Since
ce is empty, we load the blocks b0 . . . bn in reverse order; these access produce
misses and so, after the updates, updb0 · · · updbn(ce)(bi) = i, see (1). Therefore
Abs(M, c,B∗) ≤ Abs(M, ce, B

∗). Using this argument we can see that, for the
same set of memory blocks, the value of the absorbed information is the small-
est when starting on a filled state and is the largest when starting on an empty
state.
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An important consequence of Theorem 2 is that, given an identical status, i.e.
empty or filled, of the initial state, the amount of absorbed information depends
only on the number of blocks in Bv. We call this number the footprint and
denote it by fp = |Bv|. This terminology is loosely connected with the notion
of a memory footprint as used in the theory of locality [23]. Theory of locality
defines the footprint as the number of distinct memory blocks accessed during
a time window, i.e. on a trace of a given length. In our case we consider this
length to be unbounded so the trace is the whole execution of the program.
This motivates the specialization of the definition of the absorbed information
in terms of the footprint, namely

Absx(M, fp) = Abs(M, c0, (Bv)∗) ,

where we use the subscript x = e to denote that c0 is empty w.r.t. Bv, and x = f
to denote that c0 is filled w.r.t. Bv.

3.2 Analysis of Cache Replacement Policies

Next we give a summary of our program-independent analysis of the absorption
for each replacement policy.

Results for Filled Caches. For some replacement policies, when the cache is
filled and the footprint is small enough, some cache states are unreachable from
the initial state, which reduces the information absorption. The details for each
policy are given below. In case every state of the cache is reachable, we count
all the possible feasible mappings of fp blocks to the set of ages A. Then the
absorbed information is the number of k-permutations of n of the memory blocks,
i.e., the number of different ordered arrangements of fp blocks in a sequence of
up to A elements.

Proposition 1. For MLRU, the absorbed information for a filled cache is:

Absf (MLRU, fp) =

{
fp! if fp < A,

fp!
(fp−A)! if fp ≥ A.

Proposition 2. For MFIFO, the absorbed information for a filled cache is:

Absf (MFIFO, fp) =

⎧⎪⎨
⎪⎩

1 if fp ≤ A,

A + 1 if fp = A + 1,
fp!

(fp−A)! if fp > A + 1.

Proposition 3. For MPLRU, the absorbed information for a filled cache is:

Absf (MPLRU, fp) =

{
2fp−1 if 1 ≤ fp ≤ A,

fp!
(fp−A)! if fp > A.
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Results for Empty Caches. The case of an empty cache is more complex
to analyze. First we need to explain a special behavior of PLRU that produces
extra reachable states which increases its absorption with respect to the other
two policies.

Example 1. Consider a 4-way cache that starts in a state consisting of the
attacker’s blocks {x0, x1, x2, x3} ⊆ Ba where we are going to access three victim
blocks in a specific order, a, b, c ∈ Bv. For any of the three replacement policies
the state becomes:

[x0, x1, x2, x3] �
a

[a, x0, x1, x2] �
b

[b, a, x0, x1] �
c

[c, b, a, x0],

where the leftmost element of the lists has age zero and the one on the right is the
oldest. Consider that we now access block b again. The cache states transition to:
[b, c, a, x0] for LRU, [c, b, a, x0] for FIFO and [b, c, x0, a] for PLRU (note the age of
the last attacker’s block x0). The state obtained by PLRU is unreachable for the
other two replacement policies, since they always fill up the cache consecutively
from left to right. This illustrates how the information absorption for PLRU is
larger than for the other policies.

The example is independent of the blocks being used but a consequence of
the fact that we are inputting k < A blocks. For LRU and FIFO, any sequence
using k < A victim blocks will transform an initial state [x0, x1, . . . , xA−1] to a
state of the form [ , . . . , , x0, . . . , xA−1−k], where victim blocks are denoted by
“ ”. In the case of PLRU this is not always the case, as the previous example
shows.

Following our definition of absorption, we assume that the victim may input
any sequence of blocks. Then the number of reachable cache states can be deter-
mined as follows:

1. Determine the set of reachable configurations, i.e., cache states in which the
victim’s memory blocks are not distinguished from each other, but instead
represented by the placeholder “ ”.

2. Determine for each configuration the number of concrete cache states the
configuration represents, i.e., the number of ways the victim’s blocks may fill
its placeholders.

This procedure can further be simplified upon by the following observation: The
number of concrete cache states that a configuration represents, only depends on
its number of placeholders and the number of victim blocks to consider: Given
k placeholders and fp ≥ k victim’s memory blocks, a configuration represents
exactly fp!

(fp−k)! cache states.
Let ΛM (k,A) denote the number of reachable configurations under pol-

icy M , associativity A, with exactly k placeholders. Accessing fp distinct memory
blocks may yield configurations with 0 to fp many placeholders. Based on this
notion, we obtain the following general characterization of a replacement policy’s
absorption:
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Proposition 4. For any replacement policy M , the absorbed information start-
ing from an empty cache is:

Abse(M, fp) =
min{fp,A}∑

k=0

ΛM (k,A)
fp!

(fp − k)!
.

Lemma 2. For LRU and FIFO, ΛM (k,A) = 1 for any number of placeholders k
and associativity A. For PLRU, ΛMPLRU

(k,A) is given by:

ΛMPLRU
(k,A) = 2 ·

min{ A
2 ,k−1}∑

i=max{1,k−A
2 }

ΛMPLRU
(i, A

2 ) · ΛMPLRU
(k − i, A

2 ), (5)

if 1 < k < A and ΛMPLRU
(k,A) = 1 if k ≤ 1 or k = A.

Comparison of Absorption. Let us compare the absorption of LRU, FIFO,
and PLRU based on Propositions 1–4, for a cache set of associativity 4. Similar
results can be obtained for any associativity. The results depicted in Fig. 2 can be
obtained both from the formulas above or by simulation of caches. We highlight
the following observations.

– For each replacement policy, the absorbed information grows monotonically
with the footprint, as expected.

– The absorption for an empty initial state is always larger than for a filled
state.

0 1 2 3 4 5 6 7
0

5

10

0 1 2 3 4 5 6
0

5

10

(a) Filled initial cache. (b) Empty initial cache.

FIFO LRU PLRU

Fig. 2. Information absorption of a 4-way cache set. (a) depicts the case of a filled initial
cache, part (b) an empty one. In both figures, the horizontal axis depicts the footprint,
i.e., the number of memory blocks used. The vertical axis depicts the absorbed infor-
mation on a logarithmic scale, that is, in bits. Note that in (b), the line for LRU and
FIFO coincides.
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– For a filled initial state, LRU absorbs always at least as much information as
the other replacement policies since every state is always reachable. For large
enough footprints, the absorption coincides for all policies.

– For an empty initial state PLRU absorbs most. This is due to the fact that
PLRU may leave “holes” in the cache state, see Example 1.

– For a filled initial cache, FIFO does not absorb any information, whenever
the footprint is smaller than the associativity. This captures the intuition that
preloading of sensitive data can increase security, as long as all data fits into
the cache. In case it does not, the positive effect of preloading is, however,
quickly undone.

4 Extraction of Information

In this section we characterize the information extraction for different cache
replacement policies. That is, we characterize ran(Za) from (2). For this we
develop a novel model that characterizes the information an adaptive attacker
can learn about the initial state of a Mealy machine. We then use the model
to derive bounds on the information that can be extracted from caches with
different replacement policies.

4.1 Probing Strategies

Let M = (S,Σ,O, upd , view) be a Mealy machine. A probe p of M is an alter-
nating sequence p = σ1o1σ2 . . . σnon of inputs σi ∈ Σa ⊆ Σ and observations
oi ∈ O, such that M outputs o1 . . . oi when the sequence σ1 . . . σi is the input.
We say that a state s ∈ S is coherent with probe p if, for all i ∈ {1, . . . , n}, we
have

viewσi
updσi−1

· · · updσ1
(s) = oi ,

i.e., the probe does not exclude s as a potential initial state of M . Along the
lines of [5,13], we define the adversary’s knowledge set K(p) about the initial
state of M as the subset of possible states that are coherent with probe p.

K(p) = {s ∈ Sv | s is coherent with p}

For convenience, we also define the adversary’s final knowledge set FK(p) as
the set of states that M may be in after receiving the inputs and producing the
outputs in the probe p:

FK(p) = {updσn
· · · updσ1

(s) | s ∈ K(p)}

An adversary may be able to choose inputs based on previous observations,
that is, the probing can be adaptive. To model adaptivity we introduce probing
strategies. A probing strategy is a function from a sequence of observations to
an input symbol, att : O∗ �→ Σa. This way, the first input to make comes
from applying the function to the empty sequence, σ1 = att(ε), the second
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input is a function of the previous observation, σ2 = att(o1), and so, for any i
σi = att(o1 . . . oi−1). We say that p is a probe of att, if p may be obtained from
the probing strategy att.

We now present a toy example that we will use through the section to illus-
trate the use of probing strategies.

Example 2. Consider a Mealy machine where S = Sv = Σa = {0, 1, . . . , 6}, the
observation and transition function are:

viewσ(s) =

⎧⎪⎨
⎪⎩

0 if s < σ − 1,

2 if s ∈ [σ − 1, σ + 1],
1 if σ + 1 < s.

updσ(s) =

⎧⎪⎨
⎪⎩

s + 1 if s < σ,

s if s ∈ [σ, σ + 1],
s − 1 if σ + 1 < s.

Consider the probing strategy given by the function att(o1 . . . on) = 0+
∑n

i=1 oi,
which starts by inputting 0 and determines the next input based on the previous
outputs. We will later see that att is a good probing strategy in this example.

By definition, we can apply a probing strategy indefinitely on sequences
of arbitrary length and thus probe the Mealy machine indefinitely. However,
at some point additional inputs are of no use, as the following definition
characterizes.

Definition 4. We say that a probe p = σ1o1σ2 . . . σnon of probing strategy att
is depleted w.r.t. to att, if for all probes q of att that are extensions of p, i.e.,
q = pσn+1on+1σn+2 . . . σmom, the knowledge sets are equal, i.e., K(p) = K(q).
We say a depleted probe p = σ1o1σ2 . . . σnon is of minimal length when, a probe
q made of a sub-sequence of it, q = σk1ok1σk2 . . . σki

oki
for any i < n, is not

depleted.

We next show that the knowledge sets of depleted probes of a probing strategy
form a partition of the states of M . That is, the knowledge sets of distinct
sequences are pairwise disjoint and their union contains all states.

Proposition 5. Given a probing strategy att, the set of all knowledge sets pro-
duced by depleted probes w.r.t. att

Ratt = {K(p) | probe p = att(ε)o1 . . . att(o1 . . . on−1)on ∧ p is depleted w.r.t. att},

is a partition of the set of possible states Sv.

Before starting the probing, the attacker knows that the victim’s state is an
element of the set Sv. As he makes inputs and refines the knowledge sets, he
reduces the number of coherent states and thus learns information about the
victim’s initial state. As depleted probes correspond to unrefinable knowledge
sets, there is no point in further queries once a probe is depleted.

When constructing a strategy, the attacker needs to consider all the possible
outputs that he might observe when eventually applying his strategy. Once all
the knowledge sets obtained from an attack strategy cannot be further refined by
additional queries, the probes are depleted and the attacker has along the way
obtained the finest partition of the set Sv under that strategy and all possible
extensions.
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Table 1. Partition from Example 3.

0/0 1/1 0 2/2 3/3 4/4 5/5 6/6

0/0 2 1/1 2/1 3/2 1 4/3 5/4 6/5

0/1 1/2 2/1 3 3/2 4/2 5/3 2 6/4

0/1 1/2 2/2 3/3 4/2 4 5/3 6/3

0/1 1/2 2/2 3/3 4/3 5/4 6/3

Example 3. Following Example 2 we apply the probing strategy to the set of
possible states and obtain the partition shown in Table 1. Each row shows the
knowledge sets before and after the elements are updated (left and right, respec-
tively). The first row shows the initial knowledge set, i.e., Sv. The bold face 0
indicates the first input symbol, which partitions the initial knowledge set into
two knowledge sets, corresponding to the two possible outputs of the Mealy
machine on the input 0. For each resulting knowledge set, except for the single-
ton ones where the probes are depleted, the figure then indicates the next input
following the probing strategy and how it partitions its knowledge set. After at
most four inputs we obtain a partition of all singleton knowledge sets.

For every attack strategy there is a finite set of depleted probes of minimal
length. We define Za = Zatt from (2) as the random variable that captures
the sequence of observations obtained when following probing strategy att until
obtaining a depleted probe of minimal length. So ran(Zatt) ⊆ O∗ is the set of
sequences of observations obtained from the depleted probes of minimal length
of att. Every depleted probe corresponds to a knowledge set; so we can relate
every element of ran(Zatt) to a knowledge set. Therefore, computing | ran(Zatt)|
is equivalent to counting the number of knowledge sets in the partition induced
by the strategy att.

Definition 5. We say that a strategy att is optimal if the partition Ratt it
induces on a set of possible states Sv, has the maximal number of knowledge
sets among all strategies. We call this number rmax the maximum information
leakage.

The strategy presented in Example 2 is actually optimal since no partition
can be better than the one that produces singleton knowledge sets. On the other
hand, the strategy att(o1 . . . on) = 1 +

∑n
i=1 oi is not optimal since the first

input, 1, is not able to distinguish the initial states 0 and 1, which are both
updated to 1 as a result of the input, upd1(0) = upd1(1) = 1, and so they can
not be distinguished by this strategy.

4.2 Information Extraction in Caches

Here we derive bounds on the maximum information leakage for the three
replacement policies. We prove bounds for LRU and FIFO based on the asso-
ciativity of the cache and prove that for PLRU this bound depends also on the
footprint.
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(a) Filled cache using FIFO. (b) Empty cache using FIFO.
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(c) Filled cache using LRU. (d) Empty cache using LRU.
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(e) Filled cache using PLRU. (f) Empty cache using PLRU.

Absorption Extraction (Shared) Extraction (Disjoint)

Fig. 3. Information extraction of different replacement policies on a 4-way cache set.
(a), (c) and (e) depict the case of a filled initial cache, (b), (d) and (f) an empty one. In
all figures, the horizontal axis depicts the footprint, i.e., the number of memory blocks
used. The vertical axis depicts the extracted information on a logarithmic scale, that is,
in bits. The results for shared memory adversaries use the solid line; disjoint memory
case uses the dashed line.

We consider two types of attackers in terms of their set of memory blocks.

– Shared memory attacker. The attacker’s set of blocks includes the victim’s
ones, Bv ⊂ Ba.

– Disjoint memory attacker. The sets of blocks of the attacker and the victim
are disjoint Bv ∩ Ba = ∅.
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Proposition 6. Consider MLRU and MFIFO with associativity A and a shared
memory attacker. The maximum information leakage on any set of states is
bounded by 2A for MLRU and by (A + 1)! for MFIFO.

Proposition 7. Consider MPLRU with associativity A ≥ 43 and a shared mem-
ory attacker. Let rmax(fp) be the maximum information leakage obtained with a
given footprint fp ≥ A. It holds that rmax(fp + 1) ≥ rmax(fp) + 1.

In the case of associativity four for MPLRU the maximum information leakage
is increased by eight with every new memory block, this can be seen in Figs. 3e
and f. This result also implies that the maximum information leakage for PLRU
is unbounded.

Proposition 8. Consider MFIFO and MLRU with associativity A, and a disjoint
memory attacker. The maximum information leakage on any set of states is
bounded by A + 1.

Proposition 9. Consider MPLRU with associativity A, footprint fp, and a
disjoint memory attacker. The maximum information leakage is bounded by∑fp

k=0 ΛPLRU(k,A) where ΛPLRU(k,A) is defined as in (5).

5 An Algorithm for Information Extraction

In this section we present an algorithm for computing the maximum information
leakage rmax for a given Mealy machine. The algorithm complements Proposi-
tions 6–9 in that it can deliver rmax for a specific set of states Sv ⊆ S and an
arbitrary Mealy machine. We use it later to compute extraction w.r.t. a given
memory footprint, and to replace the engine for counting cache states in the
CacheAudit static analyzer, leading to tighter bounds on the leakage.

In principle, our algorithm enumerates all attack strategies att and computes
their partitions Ratt by grouping states in Sv according to the corresponding
observations. Additionally, we use two techniques for improving efficiency and
ensuring termination:

– First, instead of maintaining the knowledge sets K(p), for every probe p, we
maintain the final knowledge set FK(p). Using the final knowledge set enables
us to track the number of original knowledge sets, as required for computing
leakage. At the same time it enables re-use of the computation leading to
FK(p) across different strategies.

– Second, we need to identify cycles when refining partitions in order to ensure
termination. We say that a probe q is redundant w.r.t another probe p, if
FK(pq) = FK(p). That is, the probe q does not further refine the (final)
knowledge set of p. The probe q represents a cycle, which we detect by keeping
track of already visited final knowledge sets.

The pseudocode is given in Algorithm 1. We next argue its correctness.
3 Note that for associativity 2, PLRU and LRU coincide.
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Algorithm 1. Partition function.
1 Partition(S, view , upd , Σa, S) Data: set of possible states S (initially S = Sv),

observation function view , transition function upd , set of attacker’s
inputs Σa, flag sets S (initially S = ∅).

Result: number of knowledge sets rmax in the partition.
2 begin

// Look for redundant sequences

3 if S ∈ S then
4 return 1;
5 end
6 rmax = 1;
7 foreach σ ∈ Σa do

// If the leakage is equal to the size of the set, finish

8 if rmax = |S| then
9 return rmax;

10 end
// If the partition is not refined save the set

11 if |viewσ(S)| = 1 then
12 S ′ = S ∪ {S};

// If the partition is refined erase the saved sets

13 else
14 S ′ = ∅;
15 end
16 foreach oi ∈ viewσ(S) do
17 Si = {s ∈ S | viewσ(s) = oi}; // partition

18 S′
i = updσ(Si); // update

19 ri = Partition(S′
i, view , upd , Σa, S ′); // recursion

20 end
// Increase the number of produced knowledge sets

21 rmax = max(rmax,
∑

i ri);

22 end
23 return rmax;

24 end

Proposition 10. Given a Mealy machine M = (S,Σ,O, upd , view),
Algorithm 1 terminates and finds the maximum information leakage rmax for
a set of possible states Sv.

6 Experimental Results

6.1 Extraction (Program-Independent)

We use two alternative approaches for the program-independent evaluation of
extraction properties cache replacement policies. The first is to rely on the upper
bounds of Propositions 6–9. The second is to apply the algorithm presented in
Sect. 5 to a set of states that represent the absorbed information for a given
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footprint. We determine that set for each cache replacement policy by a simple
fixpoint computation. This algorithmic approach is more precise because it takes
the absorbed information as a baseline, but it comes at the expense of higher
computational cost.

We obtain the following results by using Algorithm 1, where we consider
a single 4-way cache set. Figure 3 depicts our data. We highlight the following
results:

– For shared-memory adversaries, FIFO and LRU reach the bound on the max-
imum information leakage given in Proposition 6, which is independent of the
footprint, see Figs. 3a–d. In contrast, with PLRU the number of knowledge
sets increases with the footprint as predicted by Proposition 7, see Figs. 3e–f.

– For disjoint-memory adversaries and a filled initial state we always obtain
zero leakage. For PLRU and a footprint of 2 or 3 some cache lines remain
unoccupied. As before, these unoccupied lines trigger additional observations,
which explain the bump in Fig. 3e.

– We observe that FIFO exhibits the smallest difference between absorption
and extraction among all policies, i.e. once absorbed, it is comparably easy to
extract information from the cache, see Figs. 3a–b. This is because FIFO does
not reorder blocks upon hits, which makes systematic search for the cache
state easier.

6.2 Extraction (Program-Dependent)

We now use Algorithm 1 for computing the information that can be extracted
from the cache state w.r.t. a specific program. For this, we use as a basis the
set Sv of states output by the CacheAudit static analyzer, when run on an
implementation of AES 256. In this example we use a cache consisting of several
independent cache sets of associativity 4, blocks of 64 bytes and overall sizes of
4, 8, and 16 KB. We consider two cases, one that starts from a filled cache and
one that starts from an empty cache.

The full results are given in Fig. 4; here we highlight the following results.

– We obtain the bounds on the absorbed information corresponds to using the
CacheAudit static analyzer. The difference between the absorbed information
and the extractable information corresponds to the precision gained by the
development in this paper. This gain is generally higher when sets contain
more blocks, and reaches up to 50 bits for LRU on a 4 K cache with empty
initial state and a shared memory attacker, see Fig. 4d. That is, our extrac-
tion algorithm is a simple but powerful replacement for the model counting
algorithms in CacheAudit.

– The figures show a change in slope at different points. This is due to the fact
that the leakage about the full cache state is computed as the product of the
leakages about the individual sets. When increasing the cache size for a fixed
program, the footprint in each of the sets reduces. The combined effect of
considering more sets with smaller footprint each accounts for the change in
slope.
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(a) Filled cache using FIFO. (b) Empty cache using FIFO.
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(e) Filled cache using PLRU. (f) Empty cache using PLRU.

Absorption Extraction (Shared) Extraction (Disjoint)

Fig. 4. Information absorption and extraction (in bits) for the AES execution on a
4-way cache, for filled and empty initial cache states. (a), (c) and (e) depict the case of
a filled initial cache, (b), (d) and (f) an empty one. The horizontal axis depicts the size
of the cache in KB, the vertical axis depicts the extracted information in logarithmic
scale.

7 Related Work

Our work is related to existing models for adaptive probing [7,13]. There, how-
ever, the secret remains static. The model of [13] and the deterministic part of [7]
is a special case of ours, where the update function is the identity.

Mardziel et al. [17] develop an approach to quantify information flow
for dynamic secrets, that is, secrets that evolve over time. They consider a
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probabilistic system and attacks that consist of a fixed amount of steps. Attacks
finish with an exploit whose success is evaluated using gain functions [4]. Our
model for information extraction differs from their model in that it is determinis-
tic and allows to compute leakage for an undetermined number of attacks steps,
i.e., until the probing is depleted. We further provide an algorithm that actually
allows us to compute optimal strategies. We leave a probabilistic extension of
our model to future work.

The problem that we consider in this paper is related to the state identi-
fication problem for Mealy machines, which was first introduced by Moore in
[18], expanded upon by Gill in [11], and analyzed from a complexity perspective
by Lee and Yannakakis [15]. The state-identification problem is to determine
the initial state of a Mealy machine by probing strategies, just as in our case.
While we are interested in the maximal number of knowledge sets into which
the uncertainty about the initial state can be partitioned, state-identification
algorithms are only concerned with the decision problem, that is whether or not
a full identification, i.e., a partitioning into singleton knowledge sets is feasible,
and if it is, by which strategy. So our problem of finding the finest partition can
be seen as a quantitative generalization of the state-identification problem.

A proposal to quantify the security of cache memories was introduced in
[26]. In this case, they use several types of attackers and study the security
under different countermeasures, without considering the replacement policies
individually. They obtained arguments in favor of some countermeasures against
specific attacks. In our case we consider one single type of attacker, do not take
into account any type of countermeasure and compare the different replacement
policies.

8 Future Work and Conclusions

We presented a novel approach for quantifying isolation properties of shared
caches, based on a simple model of adaptive attacks against Mealy machines.
We use our approach for performing the first security analysis of common cache
replacement policies (LRU, FIFO, PLRU), as well as for improving the preci-
sion of the CacheAudit static analyzer. Our prime target for future work is to
investigate an extension of our model to Markov Decision Processes for dealing
with randomized replacement policies.
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