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Abstract. There has been encouraging progress on information flow
control for programs in increasingly complex programming languages,
tracking the propagation of information from input sources to output
sinks. Yet, programs are typically deployed in an environment with rich
APIs and powerful libraries, posing challenges for information flow con-
trol when the code for these APIs and libraries is either unavailable or
written in a different language.

This paper presents a principled approach to tracking information flow
in the presence of libraries. With the goal to strike the balance between
security and precision, we present a framework that explores the mid-
dle ground between the “shallow”, signature-based modeling of libraries
and the “deep”, stateful approach, where library models need to be sup-
plied manually. We formalize our approach for a core language, extend
it with lists and higher-order functions, and establish soundness results
with respect to the security condition of noninterference.

1 Introduction

The prevalent way to extend a language with functionality, e.g., to interact with
its execution environment, is via libraries. As an example, consider a library that
provides a collection of functions to provide the language with network capabil-
ities. Since the language functionality in such cases is fundamentally extended,
these libraries cannot be written in the language itself, but must be provided by
some other means such as a foreign function interface (e.g. [27] in Java, [34] in
Haskell and [30] in node.js) or via the execution environment.

Recently, there has been a growing interest in retrofitting libraries with
dynamic execution monitors to provide additional runtime checks. One promi-
nent example of this is monitors for secure information flow [1,3,15,17,18]. The
interest in information flow control lies in the realization that access control is
often not enough in cases when it is important what a program does with the
information it has access to [31]. As an example, when a user enters credit card
information into an application to perform a purchase, information flow control
can guarantee that the credit card information is only used for the purpose of
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enabling the purchase (i.e., by passing the information to the payment provider)
and is not being sent or gathered for illicit purposes.

Dynamic monitoring is similar to dynamic type checking, and works by aug-
menting the semantics of the language, with additional runtime information that
provides an abstract view of the execution and enables enforcement of the desired
properties. In the case of dynamic types, the additional information is a runtime
representation of the types of values, and in the case of information flow control
it is the security level.

In the presence of libraries written in another language, dynamic monitors
face two important challenges: (i) the library is not able to work with values in
the augmented semantics, and, more fundamentally, (ii) is not able to maintain
the abstract view of the execution. With respect to the first challenge, some kind
of marshaling must take place — this already occurs for the values of the lan-
guage, but must be extended to first remove any additional runtime information.
With respect to the second challenge, it is important that the removed runtime
information is kept, in order to be able to reestablish the augmentation, once
the library returns.

Thus, the challenges above translate to these pivotal questions:

(i) how should the runtime augmentation be removed when entities are passed
from the monitored program into the unmonitored library, and

(ii) how should the runtime augmentation be reinstated when entities are passed
from the unmonitored library to the monitored program.

On the surface, those questions may seem fairly straightforward, but prove
surprisingly involved in the presence of common programming language features,
such as structured data and higher-order functions.

In the work targeting secure information flow, one can identify two extremes
with respect to library models [1,3,6,15,17,18,20,28]. On one hand are the shal-
low models, essentially corresponding to providing static boundary types, and on
the other hand are the deep models, where the information flow inside the library
is modeled in detail, frequently requiring a reimplementation of the library in
the monitored semantics.

In JavaScript, already the standard API introduces information flow chal-
lenges. Consider, for instance, the following example, that makes use of the
standard JavaScript function Array.every which, given a predicate, returns
true if every element in the array on which every is called, is in the extension
of the predicate.

[1,2,3,0,4,5].every(function(elem) { return elem > 0; })
In both JSFlow [16,17] and FlowFox [13,14], accurate modeling of many library
functions, such as Array.every, requires hand-written, deep models. This is
both labor-intensive and hard to maintain, not scaling to models for a rich
set of libraries, as would be needed in a rich execution environment such as a
browser or node.js [24–26]. For this reason, JSFlow attempts at providing a way
of automatically wrapping libraries. However, JSFlow’s approach is somewhat ad
hoc and lacks formal underpinning. While for simple cases correctness is evident,
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it is unclear if this approach scales to more complex interactions with libraries
such as for promises [22], e.g., when functions are passed to and from the library.

Contribution. We investigate how to provide concise library models, in the set-
ting of dynamic information flow control, for a small functional language. We
present the development in a gradual way and investigate different programming
language constructs in isolation, as extensions of a common core language. The
modeling is such, that the results combine with relative ease. For space rea-
sons, we limit ourselves to the treatment of structured data and higher-order
functions. The main contributions of this paper are:

– a split semantics with stateful marshaling for a simple core;
– a split semantics with stateful marshaling for structured data in the form of

lists and the concept of lazy marshaling;
– a split semantics for higher-order functions that introduces the concept of

abstract names, enabling the connection between callbacks and label models.

The focus of this paper is on the stateful marshaling, leaving the label models
relatively simple. The presented model does, however, allow for more advanced
label models including (value) dependent models that harness the power coming
from the knowledge of runtime values. We discuss possible extensions beyond
the limitations of the provided label model language.

Outline. The rest of the paper is laid out as follows. Section 2 introduces
the core language and the notion of split semantics with stateful marshaling.
Section 3 investigates lists in terms of an extension to the core language and
introduces the notion of lazy marshaling. Section 4 investigates higher-order func-
tions in terms of an extension to the core language and introduces the notion
of abstract names. Finally, Sect. 5 discusses related work, and Sect. 6 discusses
future work and concludes.

2 Core Language C
We present syntax and split semantics with stateful marshaling for a small core
language. The notion of split semantics entails that a program is built up by
two distinct parts: (1) the monitored program executing a labeled information
flow aware semantics, and (2) the unmonitored library, executing an unlabeled
standard semantics. For simplicity, the two parts of the program share syntax
and semantics — the labeled semantics is an extension of the unlabeled. This is
to keep the exposition small and the value-level marshaling to a minimum and
is not a fundamental limitation of the approach.

2.1 Syntax

The syntax of the core language is defined as follows.

e ::= n | x | if e1 then e2 else e3 | let x = e1 in e2 | f e | flib e | e1 ⊕ e2
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Let x denote a list of x, where [ ] is the empty list and · is the cons operator. The
top-level definitions, d ::= f x = e, are restricted to function definitions, and
function models, m ::= f :: ϕ → γ. A function model defines how labeled values
are marshaled to the unlabeled function, ϕ, and how the unlabeled return value
is marshaled back into the labeled world, γ, see below. All unlabeled functions
called from the labeled world must have a corresponding function model.

A program is a triple, (d, d, m), where the first component corresponds to
the monitored program, the second component corresponds to the unmonitored
library, and the third component is the library model consisting of function
models. Execution starts in the main function of the monitored program. In the
following, we refer to the monitored part of the program as the program, and
the unmonitored library as the library.

The bodies of functions are made up of expressions, consisting of integers n,
identifiers x and f (denoting functions), conditional branches, let bindings, func-
tion calls, library calls and binary operators ⊕. Library calls are not allowed in
the library part of the program.

2.2 Semantics

As indicated above, C has two semantics, one labeled and one unlabeled. To
distinguish between the two, without unnecessary notational burden, we use X̂
to denote an entity in the labeled semantics corresponding to X in the unlabeled
semantics.

Values. The labeled values, v̂, and unlabeled values, v, are defined as labeled
and unlabeled integers respectively. The labels, �, are taken from a two-point
upper semi-lattice L � H, where L denotes low (“public” when modeling confi-
dentiality or “trusted” when modeling integrity) and H denotes high (“secret”
when modeling confidentiality or “untrusted” when modeling integrity). While
we focus on confidentiality throughout the paper, information flow integrity can
be modeled dually [5].

v̂ ::= n� v ::= n

For labels let �1��2 denote the least upper bound of �1 and �2, and let v̂�2 = v�1��2

for v̂ = v�1 .

Stateful marshaling. A function model defines how to marshal values between
the program and the library in terms of the parameters and the return value, i.e.,
how to unlabel the parameters and label the result. Since the result is dependent
on the parameters, it follows that the label of the result must be dependent on
the labels of the parameters. For this reason, the removed labels must be stored
for the duration of the library call in such a way that they can be used when
relabeling the result. To achieve this, the unlabel process creates a model state1,
ξ : α → �, based on identifiers α, given by the unlabel model, ϕ. This model
1 Note that here, and in the following, for simplicity, we identify sets with the meta

variables ranging over them.
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state is used in the labeling process in the interpretation of the label model, γ.
The unlabel and label models follow the structure of the values, and are defined
as follows for the core language

ϕ ::= α γ ::= κ

where κ ::= α | κ1 � κ2 | � and the interpretation of κ in a model state ξ is
given by

�α�ξ =

{
L if ξ[α] is undefined
ξ[α] otherwise

���ξ = � �κ1 � κ2�ξ = �κ1�ξ � �κ2�ξ

From this, we define an unlabel operation, v� ↓ α, and a label operation, v ↑ξ κ,
as follows

v� ↓ α = (v, [α �→ �]) v ↑ξ κ = v[[κ]]ξ

The label operation takes an unlabeled value, v, a label model γ = κ and a model
state, ξ and labels the value in accordance with the interpretation of the label
model in the model state. The unlabel operation takes a labeled value, v̂, and an
unlabel model, ϕ = α, and returns an unlabeled value and a model state, ξ. The
unlabel operation is lifted to sequences of values by chaining, in the following
way, where 	 denotes disjoint union.

[ ] ↓ [ ] = ([ ], [ ])
v̂ · v̂ ↓ ϕ · ϕ = (v · v, ξ1 	 ξ2) where v̂ ↓ ϕ = (v, ξ1) and v̂ ↓ ϕ = (v, ξ2)

Unlabeled semantics. Let the unlabeled variable environments, δ : x → v, be
maps from identifiers to values, and let Δ : f → (x, e) be a map from identifiers
to function definitions representing the unmonitored library. For simplicity we
leave Δ implicit, since it is unmodified by the execution.

The unlabeled semantics, defined in Fig. 1, is of the form δ |= e � v, read,
expression e evaluates to v in the unlabeled variable environment δ. For space
reasons, since the unlabeled semantics is entirely standard, it is not explained
further.

Fig. 1. Unlabeled semantics
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Fig. 2. Labeled semantics

Labeled semantics. Let the labeled variable environments, δ̂ : x → v̂, be maps
from identifiers to labeled values, let Δ̂ : f → (x, e) be a map from identifiers
to function definitions representing the monitored program, and let Λ : f →
(ϕ, γ) represent the library model. The labeled semantics, defined in Fig. 2, is
of the form δ̂ |= e → v̂, read, expression e evaluates to v̂ in the labeled variable
environment δ̂. For space reasons, only the rules that differ from the unlabeled
semantics in a non-standard way are included. The remaining rules propagate
and compute with labels to reflect the dynamic information flow of the program
and can be found in the full version of the paper [19]. Similarly to the unlabeled
semantics we leave Δ, Δ̂, and Λ implicit.

Of the rules for the core language, lib is the only non-standard. It corre-
sponds to the situation, where an unmonitored library function is called from
the monitored semantics. Execution proceeds as follows. First, the function def-
inition, (x, ef ), and the function model, (ϕ, γ), are found, then the parameters,
e, are evaluated to labeled values, v̂. Before being passed to the library, the
labeled values are first unlabeled in accordance with the function model, result-
ing in unlabeled values, v, and a model state, ξ. The body of the library function
is evaluated in an environment [x �→ v], where the formal parameters of the
function maps to the corresponding arguments, and the result, v, is labeled in
accordance with the function model, interpreted in the model state, ξ, produced
by the previous unlabeling.

2.3 Correctness

We prove correctness under the assumption that the library model correctly
models the library, i.e., that every modeled function in the library respects its
function model. Semantically, we express this in terms of the execution of the
library, the unlabeling of the parameters and the labeling of the result.

Definition 1 (Correctness of the library models). A library model cor-
rectly models a library if every function, f , in the library, Δ[f ] = (x, e), respects
the associated function model, Λ[f ] = (ϕ, γ), if present.

∀f . Λ[f ] = (ϕ, γ) ∧ Δ[f ] = (x, e)
∧ v̂ � v̂′ ∧ v̂ ↓ ϕ = (v, ξ) ∧ v̂′ ↓ ϕ = (v′, ξ)

∧ [x �→ v] |= e � v ∧ [x �→ v′] |= e � v′ ⇒ v ↑ξ γ � v′ ↑ξ γ
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As is standard, we prove noninterference as the preservation of a low-
equivalence relation under execution, defined as follows for values and labeled
variable environments.

nL � nL nH
1 � nH

2

dom(δ̂) = dom(δ̂′) ∀x ∈ dom(δ̂) . δ̂[x] � δ̂′[x]

δ̂ � δ̂′

Under the assumption that Definition 1 holds, we can prove noninterference
for labeled execution.

Theorem 1 (Noninterference for labeled execution)

δ̂ � δ̂′ ∧ δ̂ |= e → v̂ ∧ δ̂′ |= e → v̂′ ⇒ v̂ � v̂′

Proof. By induction on the height of the derivation tree δ̂ |= e → v̂. The proof
of this and the other theorems are reported in the full version of this paper [19].

2.4 Examples

To illustrate how C can be used, we give two examples. The first example is the
identity function.

id :: α → α
id x = x

The function model for id expresses that the label of the result should be the
label of the parameter. This is computed by storing the label under the name α
in the model state, when id is called, and then interpreting the α in the resulting
model state, when the function returns.

The second example is the min function, which illustrates how more than one
label can be stored into the model state.

min :: α1 α2 → α1 � α2

min x y = if x < y then x else y

Since the result of the min function is dependent on both parameters, the result
should be the least upper bound of the labels of the parameters. To achieve this,
both labels are stored in the model state on the call; the first label as α1 and the
second as α2. The function model uses the label expression α1 �α2, which, when
interpreted in the model state results in the least upper bound of the labels.

2.5 A Note on the Policy Language

While we, in this work, strive to keep the model language simple, to enable us
to study the processes of labeling and unlabeling vis-á-vis different language
constructs, it is worthwhile to mention a few possible avenues for extensions.
First, consider the following example, where the library function f calls the
library function min. Instead of forcing the model of f to repeat the model of
min it would be possible to add some form of model application, where the model
of min is instantiated with the labels from f.
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f :: α1 α2 → min α1 α2

f x y = min x y

This allows for a systematic construction of more complex models (nothing pre-
vents us from introducing models that don’t correspond to library functions).

Further, since the models are evaluated at runtime, they could be extended to
have access to the values of the parameters in addition to the labels. This would
allow for dependent models, where different labels are computed depending on the
value of the parameters. Consider, for instance, the following library function.

f :: α1 α2 → x?α1 � α2 : α1

f x y = if x then y else 0

In this example the model uses the value of the parameter (stored in the model
state under the parameter name) in order to select between two labels. In a
language more complex than C, those additions provide important expressiveness
to the model language.

3 Lists L
Structured data pose interesting challenges in relation to marshaling between
the monitored and unmonitored semantics. While the unlabel and label processes
must follow the structure of the values passed, structured data offer more freedom
in the design of the unlabel and label models. In addition, fundamental questions
pertaining to the time and extent of labeling and unlabeling arise. When passing
a labeled list to the library, should the list be marshaled in a strict or a lazy
fashion? For library functions that only use parts of the passed data, strict
marshaling can be both expensive and potentially imprecise, in particular when
large object graphs are passed to or from the library (cf., getting an object from
the DOM, where strict marshaling would be prohibitively expensive).

For this reason, we explore the notion of lazy marshaling. The idea is to
marshal only when the opposite program part actually makes use of the data
that has been passed. Unlabeling (or labeling in the dual setting) occurs only
when the library (dually, program) actually uses the data, and only the part of
the data that was used is unlabeled. This requires us to be able to pass data
in such a manner that we can trap any interaction and unlabel or relabel on
the fly. To this end, we opt for a solution that is inspired by the Proxy objects
of JavaScript [23] but cast in terms of lists, and use a representation of lists
that allow for proxying. The approach is general in the sense that it scales well
to other types of structural data and that it can be implemented in different
ways, e.g., proxies and accessor methods, both available in a range of languages,
including JavaScript, Python and Objective C. One limitation of the approach
is that some form of programming language support, that allows for trapping
the read and write interaction of the library with given objects, is needed. If
such support is not available, one can always resort to strict marshaling, which
corresponds to a relatively immediate lifting of the label and unlabel functions of
the core language to structured data. Most of the ideas presented in this paper
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should carry over to strict marshaling with little effort at the cost of efficiency
and precision of the marshaling.

3.1 Syntax

From a syntactic standpoint the extension of C to support lists is small; the
empty list, [ ], the cons operation, :, and operations for getting the head, head ,
and tail, tail , of lists are added.

e ::= . . . | [ ] | e : e | head e | tail e

3.2 Semantics

In JavaScript, a Proxy is an object that forwards all interactions to a set of user
defined functions, provided at the creation time of the Proxy. Once the Proxy
object has been created, it can be interacted with like a normal object. Thus,
e.g., by defining a function corresponding to get, all property reads of the proxy
object can be trapped and modified — the return value of the function will be the
result of the read. The fundamental property that makes Proxies suitable for lazy
marshaling is that they allow the functions to modify all possible interactions
with the object.

Unlike the strict marshaling of the core language, where the model state
is computed before entering the library, the introduction of lazy marshaling
requires the model state to be updated during the execution of the library func-
tion (in case the function interacts with the passed data). In a practical setting,
the monitored program and the unmonitored library would share memory (they
are different parts of the same program). This means that it is easy to maintain
the model state in the presence of lazy marshaling. In an operational semantics,
mutable state is modeled by threading the state through the evaluation.

Values. We model proxyable lists as pairs of functions (Ĥ, T̂ ) and (H,T ) respec-
tively.

v̂ ::= n� | (Ĥ, T̂ )� | [ ]� v ::= n | (H,T ) | [ ]

The idea is that Ĥ and H return the head of the list, and T̂ and T return the
tail (which can be the empty list). This representation allows for an elegant lazy
marshaling of lists, when they are passed between the program and the library,
by wrapping the head and tail functions. The actual marshaling takes place only
when the function is called, i.e., when the respective value is read.

Stateful marshaling. In order to support unlabeling and labeling of lists we
must extend the unlabel and label models. Since we are mainly interested in the
stateful marshaling, we use a simple extension that differentiates between the
labels of the values and the label of the structure of the lists [18]. See Sect. 3.5
for a discussion on possible extensions.

ϕ ::= α | [ϕ]α γ ::= κ | [γ]κ
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The intuition for unlabel models is that, whenever a value is read from the list,
the model state is updated accordingly. This means that the model state can
be changed during the execution of the library, which must be reflected in the
unlabeled semantics. The same is not true for the labeled semantics; any value
passed from the unlabeled world will be labeled with respect to the model state at
the time of return, even if the labeling is lazy. This leads to a seeming asymmetry
in the semantics reflected by the definition of the head and tail functions for lists.

Ĥ : () → v̂ T̂ : () → v̂ H : ξ → (ξ, v) T : ξ → (ξ, v)

The way to interpret this asymmetry is not that the unlabeled semantics has to
be changed to enable marshaling — as described above, mutable state is modeled
by threading the state through the computation. Rather, the asymmetry arises
from the fact that the model state is only important for the evaluation of library
functions called from the monitored semantics.

With respect to the unlabel and label operations, they must be updated to
handle the extended unlabel and label models.

[ ]� ↓ [ϕ]α = ([ ], [α �→ �])
(Ĥ, T̂ )� ↓ [ϕ]α = ((unlabel(Ĥ, ϕ),unlabel(T̂ , [ϕ]α)), [α �→ �])

The unlabeling of lists updates the structure label and wraps the head and tail
of the list (if present) with unlabeling wrappers, that unlabel with respect to the
unlabel model. On access the wrapper receives the model state (of the current
call to the library), after which it uses Ĥ to get the labeled value, and ϕ to
unlabel. The unlabeled value is returned together with an updated model state,
where ξ � ξ′ is defined as the union of ξ and ξ′ under least upper bound of
shared mappings. The wrapper for the tail of the list works analogously, but
with respect to the full unlabel model of the list [ϕ]α.

unlabel(Ĥ, ϕ) = λξ . (ξ � ξ′, v),
where Ĥ() = v̂ and v̂ ↓ ϕ = (v, ξ′)

unlabel(T̂ , [ϕ]α) = λξ . (ξ � ξ′, v),
where T̂ () = v̂ and v̂ ↓ [ϕ]α = (v, ξ′)

The labeling of lists is similar, with the difference that the labeling is done
with respect to the final model state. Once evaluation has returned, nothing can
change the model state corresponding to the call.

[ ] ↑ξ [γ]κ = [ ]�κ�ξ

(H,T ) ↑ξ [γ]κ = (label(H, ξ, γ), label(T, ξ, [γ]κ))�κ�ξ

The wrappers are given the model state, ξ, and the label model, γ. On access
the wrapper uses H to get the unlabeled value, v. Notice, how this may actually
extend the model state to ξ′ (it could be the case that H is an unlabel wrapper)
and that ξ′ is used together with γ to compute a label for v. This new model state
does not have to be propagated, though. If the value was used by the unlabeled
world in the creation of the tail of the list its label is already included in ξ.

The relabeling of the tail of the list works analogously, but with respect to
the label model of the list [γ]κ. Any extension of the model state is passed to
the wrapping of the tail.
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label(H, ξ, γ) = λ() . v̂,
where H(ξ) = (ξ′, v) and v ↑ξ′ γ = v̂

label(T, ξ, [γ]κ) = λ() . v̂,
where T (ξ) = (ξ′, v) and v ↑ξ′ [γ]κ = v̂

Unlabeled and labeled semantics. The additions to the labeled semantics, found
in Fig. 3, are straightforward given the above modeling. Let lcons(v̂1, v̂2) =
(λ() . v̂1, λ() . v̂2) be the creation of labeled cons cells2, used in the evalua-
tion of the : operator (cons). The evaluation of head and tail (head, and tail)
uses the head and the tail function respectively to get the value. Notice, how the
model state may be modified during the execution of the library, and how the
return value is labeled in the modified state (lib).

Fig. 3. Labeled semantics of lists

With respect to the unlabeled semantic, the entire semantics must be lifted
to thread the model state, δ |= 〈ξ1, e〉 � 〈ξ2, v〉. This modification is straight-
forward and can be found, along with the additions to the unlabeled semantics,
in Fig. 4.This modification is straightforward and omitted for space reasons but
can be found in the full version [19]. The additions to the unlabeled semantics
are found in Fig. 4. Let ucons(v1, v2) = (λξ . (ξ, v1), λξ . (ξ, v2)) be the creation
of unlabeled cons cells, used in the evaluation of the : operator (cons). The
evaluation of head and tail (head, and tail) uses the head and tail function
respectively to get the value. Notice that the model state is threaded in this case
— this is what allows for the lazy unlabeling. In case the head or tail function
is an unlabel wrapper, the state will be updated.

3.3 Correctness

Definition 2 (Correctness of the library models). A library model cor-
rectly models a library if every function, f , in the library, Δ[f ] = (x, e), respects
the associated function model, Λ[f ] = (ϕ, γ), if present. Notice that, even though
the final model states may differ (due to different interactions with marshaled

2 The term originates from Lisp. In addition, cons is used as the name for the list-
forming operator in many functional languages.
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Fig. 4. Unlabeled semantics of lists

labeled values in the two runs), a correct library model must ensure that the label
is independent on the differences and that the values are low-equivalent with
respect to the labeling.

∀f . Λ[f ] = (ϕ, γ) ∧ Δ[f ] = (x, e)
∧ v̂ � v̂′ ∧ v̂ ↓ ϕ = (v, ξ1) ∧ v̂′ ↓ ϕ = (v′, ξ1)

∧ [x �→ v] |= 〈ξ1, e〉 � 〈ξ2, v〉 ∧ [x �→ v′] |= 〈ξ1, e〉 � 〈ξ′
2, v

′〉 ⇒
v ↑ξ2 γ � v′ ↑ξ′

2
γ

As is standard we prove noninterference as the preservation of a low-
equivalence relation under execution, extended from Sect. 2.3 with lists as fol-
lows.

[ ]L � [ ]L vH
1 � vH

2

Ĥ() � Ĥ ′() T̂ () � T̂ ′()

(Ĥ, T̂ )L � (Ĥ ′, T̂ ′)L

Under the assumption that Definition 2 holds, we can prove noninterference
for labeled execution.

Theorem 2 (Noninterference for labeled execution)

δ̂ � δ̂′ ∧ δ̂ |= e → v̂ ∧ δ̂′ |= e → v̂′ ⇒ v̂ � v̂′

3.4 Examples

We present a selection of examples to illustrate different aspects of our models.
Consider first the length function, that recursively computes the length of the
given list.

length :: [α1]α2 → α2

length l = if l == [] then 0 else 1 + length (tail l)

The function traverses the list until the empty list is found without looking at
the elements. During this traversal, the security labels corresponding to the cons
cells are accumulated into the label variable α2, which is used to label the result.
This corresponds precisely to the structure security label of lists in [18]. It is,
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thus, possible to have functions that are dependent on the structure of a list,
but not the content.

The other way, however, is not possible. Getting an element from a list always
reveals information about the structure of the list. Thus, the sum function, which
sums the element of the list must also take the labels of the cons cells into
account.

sum :: [α1]α2 → α1 � α2

sum l = if l == [] then 0 else head l + sum (tail l)

Consider the function replicate, that creates a list by replicating a given
element, x, n times. The length of the list is given by the label of n and the
label of the elements by the label of x. Notice the limitation in the current
label models. By giving the second argument the unlabel model α2, we force
replicate to take integers — lists cannot be unlabeled by α2. In such cases,
polymorphic models are needed, see below in Sect. 3.5.

replicate :: α1 α2 → [α2]α1

replicate n x = if n == 0 then []
else x : replicate (n - 1) x

Related to both sum and replicate consider the function take, that takes
an integer, n, and a list, l, and returns the n first elements of l. Clearly, the
length of the list is dependent on both the label of n, α1, and the structure of
the list α3. Notice, that the label of the structure of the list is accumulated into
α3 as the function traverses the list. This means that, given a list, where the first
k cons cells are public, followed by some number of secret cons cells, take will
yield lists with public structure, as long as no more than k elements are taken.
Once more than k elements are taken, however, the labels of all cons cells will
be secret. Unfortunately, this is the same for the labels of the values, which are
all joined into α2, see Sect. 3.5.

take :: α1 [α2]α3 → [α2]α1�α3

take n l = if l == [] || n == 0 then []
else head l : take (n - 1) (tail l)

Finally, consider the function takeUntilZero, that takes an unknown num-
ber of elements from the list. In this function, the length of the list is dependent
on the labels of the values of the list, as well as the labels of the traversed cons
cells. As before, only the labels of the cons cells that actually take part in the
computation are part of the accumulated label for α2.

takeUntilZero :: [α1]α2 → [α1]α1�α2

takeUntilZero l = if l == [] || head l == 0 then []

else head l : takeUntilZero (tail l)

3.5 A Note on the Policy Language

With respect to the policy language, there are a number of possible paths to
explore. First, consider a form of polymorphic models, where we add variables,
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x, to the policy language. Unlike α, the intention is that x can map to structured
labels (potentially in combination with the values, see Sect. 2.5). This would
enable the following.

replicate :: α x → [x]α
replicate n x = if n == 0 then []

else x : replicate (n - 1) x

where x would allow any type of value to be repeated. It is also possible to
envision other operations on such variables, such as @x, the computation of the
least upper bound of the labels reachable from x.

Additionally, it is natural to extend the model language with some form of
pattern matching on lists, as follows.

f :: (α1 : α2 : [α3]α4) → α3 � α4

f ls = sum (drop 2 ls)

In this case, the first two elements are dropped before the remainder is summed
together. An interesting avenue of research is to explore this in combination with
dependent models and richer models for building structured data.

4 Higher-Order Functions F
After having investigated how to pass structured and unstructured data between
the program and the library, we turn the attention to the passing of computa-
tions, in terms of higher-order functions. The passing of functions between pro-
grams and libraries is commonplace, used in the presence of, e.g., asynchronous
operations. Examples of this are callbacks, where functions are passed to the
library, allowing it to inform the program of certain events, and promises [22],
that rely on the ability to pass functions in both directions.

4.1 Syntax

To investigate higher-order functions, we extend the core language with a func-
tion expression, fun x ⇒ e and change function calls to a computed call target.
The introduction of higher-order functions subsumes top-level function defini-
tions. Instead, we allow for top-level let declarations, let x = e, and correspond-
ing model declarations, x :: γ.

e ::= . . . | e e | fun x ⇒ e d ::= let x = e m ::=x :: γ

4.2 Semantics

Fundamentally, we use the same approach as with lists and represent closures as
functions instead of structured values. This allows us to marshal functions from
the labeled world to the unlabeled world and back without the need to distinguish
between the origin of the values in the respective semantics. Intuitively, this
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corresponds to using functions as the calling convention and mimics what is
actually in a practical implementation3.

Following the development of Sect. 3, we add functional closures to the values
as follows.

v̂ ::= n� | F̂ � v ::= n | F

where labeled closures, F̂ , take sequences of labeled values to labeled values and
unlabeled closures, F , also thread a model state

F̂ : v̂ → v̂ F : (ξ,v) → (ξ, v)

With respect to the asymmetry of the semantics, the intuition is the same as
before: the model state resides in shared memory, but, since the labeled semantics
never modifies the model state we do not need to thread the model state through
the labeled semantics.

Stateful marshaling. Conceptually, any function defined in the library that can
be called from the monitored program, whether passed as a closure or called,
must be given a label model, that defines how to label the closure as a value,
how to unlabel the parameters and label the result (c.f., the function models
in Sect. 2). The question is, how to unlabel a closure, when passing it from the
monitored program to the library. Intuitively, the unlabel model should be the
dual of the label model, i.e., unlabel the closure as a value, label the parameters
and unlabel the result. The problem is, that both unlabeling and labeling is
performed in relation to a model state, which cannot be assumed to be the same
as when the closure was passed as a parameter (it could be an extension — the
passed closure could be called from an inner function). For this reason, we cannot
tie an unlabel model to the closure at the point of unlabeling; it must be provided
at the point of call. To be able to connect closures to calls, closures are tagged
with a provided abstract identifier, π, when unlabeled. This abstract identifier
is used in the label models for library functions to connect called closures with
call models that express how to label the parameters and unlabel the result in
the model state of the caller.

ϕ ::= α | πα γ ::= κ | (ϕ → γ, ζ)κ ζ ::= π γ → ϕ

Unlabel models for labeled closures, πα, provide both abstract identifiers, π,
and label variables, α, while the label models of unlabeled closures, (ϕ → γ, ζ)κ,
contain how to label the closure as a value, κ, how to unlabel the parameters,
ϕ, how to label the result, γ, and how to label calls to callbacks, ζ. These
call models, ζ, tie abstract identifiers, π, to call models, i.e., how to label the
parameters, γ, and how to unlabel the result, ϕ. Linked by the abstract identifier,
the unlabel model for labeled closures together with the call models can be seen
as duals to the label models for unlabeled closures.

3 In a practical implementation, the program and the library would use the calling
convention of the computer — regardless of the implementation language of the two.
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Unlabeling of labeled closures is similar to unlabeling of values and lists,
and places an unlabel wrapper around the labeled closure. The unlabel wrapper
is, additionally, given the abstract identifier, π, used to tie future calls to the
corresponding call models.

v� ↓ α = (v, ξ[α �→ �]) F̂ � ↓ πα = (unlabel(F̂ �, π), [α �→ �])

The unlabel wrapper becomes an unlabeled closure, that takes a model state, ξ,
and a sequence of unlabeled values, v, and finds the call model γ → ϕ corre-
sponding to the abstract identifier, π. Thereafter, γ is used to label the values,
which are passed to the labeled closure, F̂ , to get a labeled value, v̂. The labeled
value is unlabeled using ϕ, which produces an unlabeled value and an update to
the model state, ξ′. The result of the call to the wrapper is an updated model
state and the unlabeled value. Notice how the label of the closure � is used to
raise the returned value before the unlabeling.

unlabel(F̂ �, π) = λ(ξ,v) . (ξ 	 ξ′, v),
where ξ[π] = γ → ϕ and F̂ (v ↑ξ γ) = v̂ and v̂� ↓ ϕ = (v, ξ′)

Labeling of unlabeled closures places a label wrapper around the closure. The
label wrapper is additionally given the model state, ξ, how to unlabel the para-
meters, ϕ, how to label return value, γ, and the call models, ζ.

v ↑ξ κ = v�κ�ξ F ↑ξ (ϕ → γ, ζ)κ = label(F, ξ,ϕ → γ, ζ)�κ�ξ

The label wrapper becomes a labeled closure, that takes a sequence of labeled
values, v̂, unlabels the value producing a sequence of values, v, and an update
to the model state, ξ′. The updated model state is extended with the call models
of the function (replacing the previously defined), producing a new model state
ξ2 by threading

�π κ → ϕ�ξ = ξ[π �→ (κ → ϕ)]

through the sequence ζ. The produced model state is used in the execution of the
unlabeled closure, F , together with the unlabeled values producing an unlabeled
value, v, and the final model state, ξ3. The result is the labeled value v̂, created
by labeling v with respect to γ and the final model state.

label(F, ξ,ϕ → γ, ζ) = λv̂ . v̂,
where v̂ ↓ ϕ = (v, ξ′) and �ζ�ξ�ξ′ = ξ2

and F (ξ2,v) = (ξ3, v) and v ↑ξ3 γ = v̂

Labeled semantics. The labeled semantics is mostly unaffected by the extension,
apart from the rule for higher-order functions (fun), the rule for function call
(app) and the rule for library call (lib). The modified rules are found in Fig. 5
and make use of closure creation, lclos, defined as follows.

lclos(δ̂,x, e) = λv̂ . v̂,whereδ̂[x �→ v̂] |= e → v̂
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Fig. 5. Labeled semantics for higher-order functions

In the semantics δ̂0, and δ0 are created by evaluating the top levels of the
labeled and the unlabeled world, respectively. This creates all top level closures
used in function and library calls. Similarly, ξ0 is created from the model defin-
itions of the library, and is used as the initial model state.

Function call (app) evaluates the function expression to a closure and the
parameters to a sequence of labeled values, v̂. The closure is called by supplying
the labeled values and the result is returned, but with the label raised to the
label of the closure. The library call has been replaced with a rule that lifts an
unlabeled closure to the labeled world (lib). This is done by looking up the unla-
beled closure in the initial environment of the library δ0, and the corresponding
function model in the initial model state ξ0. The labeled (wrapped) closure is
then returned as the result. Thus, in line with the intuition of using functions as
the calling convention, functions in the program and in the library are translated
to functions that are called in the same manner in the function call rule.

Unlabeled semantics. In the unlabeled semantics, a rule for higher-order func-
tions (fun) has been added and the rule for function application (app) has been
changed. The modified rules are found in Fig. 6 and are analogous with the
changes made to the labeled semantics, including the use of closure creation
defined as follows.

uclos(δ,x, e) = λ(ξ1,v) . (ξ2, v),where δ[x �→ v] |= 〈ξ1, e〉 → 〈ξ2, v〉

4.3 Correctness

We prove correctness under the assumption that the library model correctly
models the library.

Fig. 6. Unlabeled semantics for higher-order functions
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Definition 3 (Correctness of the library models). A library model cor-
rectly models a library if every closure, f , in the library, δ0[f ] = F , respects the
associated function model, ξ0[f ] = (ϕ → γ, ζ)κ, if present.

∀f . ξ0[f ] = (ϕ → γ, ζ)κ ∧ δ0[f ] = F

∧ v̂ � v̂′ ∧ v̂ ↓ ϕ = (v, ξ1) ∧ v̂′ ↓ ϕ = (v′, ξ1) ∧ �ζ�ξ1 = ξ2∧
F (ξ2,v) = (ξ3, v) ∧ F (ξ2,v

′) = (ξ′
3, v

′)∧ ⇒ v ↑ξ3 γ � v′ ↑ξ′
3

γ

As is standard we prove noninterference as the preservation of a low-
equivalence relation under execution, extended from Sect. 2.3 with higher-order
functions as follows.

vH
1 � vH

2

∀v̂, v̂′ . v̂ � v̂′ ⇒ F̂ (v̂) � F̂ ′(v̂′)

F̂L � F̂ ′L

Under Definition 3 holds, we can prove noninterference for labeled execution.

Theorem 3 (Noninterference for labeled execution)

δ̂ � δ̂′ ∧ δ̂ |= e → v̂ ∧ δ̂′ |= e → v̂′ ⇒ v̂ � v̂′

4.4 Examples

To illustrate models for higher-order functions we consider three examples. In
the examples, the library top-level contains a let with a higher-order function,
which is paired with a function model. Before the program is run the top-level let
bindings in the library and the unmonitored program (in that order) is evaluated
to values. As illustrated in the second example, this means that execution no
longer needs to start in a predefined function. Instead, computation can be
started from any of the let bindings that do not produce closures.

The first example takes a callback and immediately calls it with a constant,
and the associated function model expresses that the function takes a closure,
which will be unlabeled as α1 and associated with the abstract name x (nothing
prevents us from using the same name as the parameter). Further, the closure
is called with a public parameter, and the result will be unlabeled as α2, which
is also the label of the result of the function.

f :: (xα1 -> α2, x L -> α2)L

let f = fun x => x 42

When calling the closure, the call model will be looked up and used to label the
parameters — in this case giving 42 labeled with L. The result of the call will
be unlabeled as α2, before being labeled by α2 and returned by the function.

The second example illustrates why callbacks cannot be associated with an
unlabel model on the point of unlabeling.



A Principled Approach to Tracking Information Flow 67

let cb = fun x => x + 1
let main = let g = flib cb in g 10

-- library part

f :: (xα1 -> (α2 -> α3, x α2 -> α3)L)L

let f = fun x => fun y => x y

When the callback cb is passed to f it is not called, rather a closure is returned
which takes another parameter that is unlabeled into α2, which in turn is used
as the parameter to the callback. Thus, in order to correctly label the value of
the parameter to the callback, α2 must be in the model state. This is true for
the second call g 10 but not for the first flib cb in the monitored program.

Finally, consider an example with a conditional callback.

f :: (xα1 -> (α2 -> α2 � α3, x α2 -> α3)L)L

let f = fun x => fun y => if y then x 42 else 42

The example illustrates the situation, where the callback may or may not be
called depending on other values inspired by the frequent use of coercions in
JavaScript libraries. This means that in some executions the variable α2 may
not be set. To handle this kind of situations it suffices that �α�ξ = L, when
ξ[α] is undefined. In addition, this interpretation allows for a limited form of
dependent models.

5 Related Work

There has been a substantial body of work in the area of dynamic information
flow control in the past decade, to a large extent motivated by the desire to pro-
vide security and privacy for JavaScript web applications. There are two big lines
of work. First, execution monitors [1,3,15,17,18] attach additional metadata (for
instance, a security level) and propagate that metadata during the execution of
a program. Second, multi-execution based approaches [6,20,28] essentially exe-
cute a program multiple times, and make sure that the execution that performs
outputs at a certain security level has only seen information less than or equal
to that security level. The multiple-facets approach [2] is an optimized imple-
mentation of multi-execution, but it is less transparent. Bielova and Rezk [4]
give a detailed survey and comparison of all kinds of dynamic information flow
mechanisms, and we refer the reader to that paper for a detailed discussion.
Both lines of work on dynamic information flow control (execution monitoring
and multi-execution) have been applied to JavaScript in the browser [13,16],
and both have dealt with the problem of interfacing with libraries in a relatively
ad-hoc way — essentially by manual programming of models of the library func-
tions, or by treating API calls as I/O operations [14]. Rajani et al. [29] propose
detailed and rigorous formal models of the DOM and event-handling parts of the
browser, and find several potential information leaks. The work in this paper is
a first step to a more principled approach of interfacing with such libraries that
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avoids the labor-intensive manual construction of such models (at the cost of
potentially losing some precision).

The problem of interfacing with libraries where no dynamic checking of infor-
mation flow control is possible, is related to the problem of checking contracts
at the boundary between statically type-checked code and dynamically type-
checked code. The problem of checking such contracts has been studied exten-
sively in higher-order programming languages. Findler and Felleisen pioneered
this line of work and proposed higher-order contracts [11]. The main challenge
addressed is that of function values passed over the boundary. Compliance of
such function values with their specified contract is generally undecidable. But
it can be handled by wrapping the function with a wrapper that will check the
contract of the function value at the point where the function is called. This
is similar to how we handle function values in this paper, and an interesting
question for future work is whether we can avoid the use of abstract identifiers
for closures by injecting the appropriate labeling/unlabeling functionality using
proxies only guided by how this is done in higher-order contract checking [8].
One concern that has received extensive attention is the proper assignment of
blame once a contract violation is detected [7,12]. Assigning blame for informa-
tion flow violations has been investigated by King et al. [21] in the setting of
static information flow checking. Our work could be seen as an application of
the idea of dynamic higher-order contract checking to information flow contracts,
something that to the best of our knowledge has not yet been considered before.
We do not consider the issue of assigning blame: if the library does not comply
with the specified contract, this is not detected at run-time.

Gradual typing [32,33] is an approach to support the evolution of dynamically
typed code to statically typed code, and it shares with our work the challenge of
interfacing soundly between the dynamically checked part of the program and the
statically checked part that no longer propagates all run-time type information.
It has also been applied in the setting of security type systems [9,10], but it
fundamentally differs in objective from our work. With gradual typing, the idea
is to start from a program that is checked dynamically, and to gradually grow
the parts that are statically checked. Our objective is to support interfacing with
parts of the program for which dynamic checking is infeasible, either because the
part is written in another language like C, or because dynamic checking would
be too expensive to start with.

6 Conclusion

In this paper we have explored a method, stateful marshaling, that enables an
information flow monitored program to call unmonitored libraries. The approach
relies on storing the labels in a model state in accordance with an unlabel model
before calling the library, and labeling the returned result by interpreting a label
model in that model state.

Additionally, we have investigated lazy marshaling of structured data in
terms of lists. The idea is similar to the concept of proxies and works by



A Principled Approach to Tracking Information Flow 69

semantically representing lists as pairs of functions, that can be wrapped with-
out recursively marshaling the entire list. When interacted with, the wrappers
unlabel one step and return unlabeled primitive values or new lazy wrappers.

Finally, using functions to represent closures, we have shown how higher-
order functions can be allowed to be passed in both directions. The approach
relies on the concept of abstract identifiers that tie labeled closures, passed from
the monitored program to the library, to call models, which describe how to
label the parameters and unlabel the result with respect to the model state of
the caller.

Future work. We have preliminary results that show that lazy marshaling in
combination with abstract identifiers is able to successfully handle references and
the challenging combination of references and higher-order functions. Further,
as discussed above, we aim to explore richer model languages, including but
not limited to dependent models and model polymorphism. Finally, experiments
with integrating our approach into JSFlow are subject to our current and future
work.
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