Postulates for Revocation Schemes

Marcos Cramer®) and Giovanni Casini

University of Luxembourg, Luxembourg, Luxembourg
marcos.cramerQuni.lu

Abstract. In access control frameworks with the possibility of delegat-
ing permissions and administrative rights, delegation chains can form.
There are different ways to treat these delegation chains when revoking
rights, which give rise to different revocation schemes. Hagstrom et al.
[11] proposed a framework for classifying revocation schemes, in which
the different revocation schemes are defined graph-theoretically. At the
outset, we identify multiple problems with Hagstrom et al.’s definitions
of the revocation schemes, which can pose security risks. This paper is
centered around the question how one can systematically ensure that
improved definitions of the revocation schemes do not lead to similar
problems. For this we propose to apply the axiomatic method origi-
nating in social choice theory to revocation schemes. Our use of the
axiomatic method resembles its use in belief revision theory. This means
that we define postulates that describe the desirable behaviour of revoca-
tion schemes, study which existing revocation frameworks satisfy which
postulates, and show how all defined postulates can be satisfied by defin-
ing the revocation schemes in a novel way.

1 Introduction

In ownership-based frameworks for access control, it is common to allow princi-
pals (users or processes) to grant both permissions and administrative rights to
other principals in the system. Often it is desirable to grant a principal the right
to further grant permissions and administrative rights to other principals. This
may lead to delegation chains starting at a source of authority (the owner of a
resource) and passing on certain permissions to other principals [5,12,14,15].

Furthermore, such frameworks commonly allow a principal to revoke a per-
mission that she granted to another principal [2,5,11,16]. Depending on the rea-
sons for the revocation, different ways to treat the delegation chain can be desir-
able [1,7,11]. For example, if one is revoking a permission given to an employee
because he is moving to another position in the company, it makes sense to keep
in place the permissions she previously granted; but if one is revoking a permis-
sion from a user who has abused his rights and is hence distrusted, it makes sense
to delete the permissions she previously issued. Any algorithm that determines
which permissions to keep intact and which ones to delete when revoking a per-
mission is called a revocation scheme. Revocation schemes are usually defined in
a graph-theoretical way.

© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 232-252, 2017.
DOI: 10.1007/978-3-662-54455-6_11

Postulates for Revocation Schemes 233

Hagstrom et al. [11] have presented a framework for classifying possible revo-
cation schemes along three different dimensions: the extent of the revocation to
other grantees (propagation), the effect on other grants to the same grantee
(dominance), and the permanence of the negation of rights (resilience). This
classification was based on revocation schemes implemented in database man-
agement systems [3,4,9,10]. The framework’s design decisions are carried over
from these database management systems and are often not fully motivated.

We identify a number of problems with Hagstrom et al.’s framework and the
definitions of the revocation schemes included in the framework. Some of these
problems pose security risks. In order to avoid that an improved framework turns
out to have similar undesirable properties as those we identified in Hagstrom et
al.’s framework, we propose to formally study the merits and demerits of various
definitions of revocation schemes using the axiomatic method. This methodology
originates in social choice theory, and is used in a way akin to ours in belief
revision theory (see [13] for an overview of this methodology in belief revision
and its connections to social choice theory). We will state formal properties,
called postulates, which formalize our intuitions about the desired behaviour
of the revocation schemes. We will study which postulates are satisfied by the
existing revocation frameworks, and show how all of them can be satisfied by
defining the revocation schemes in a novel way.

The idea to use this methodology in the study of delegation revocation was
first put forward in Cramer et al. [7] (the main author of which is also the main
author of the current paper). The main goal of Cramer et al. [7] was to state
postulates that fully characterize all the revocation schemes. This could only be
achieved by introducing a dedicated logic, called Trust Delegation Logic, that
allows to formalize the reasons that principals have for delegating and revoking.
However, this logic is highly complex and has many non-trivial design choices,
so that this approach leaves open the question whether the logic really correctly
formalizes our intuitions about the desired behaviour of revocation schemes. In
this paper, we instead define simpler postulates, whose meaning can be under-
stood more readily. This way of applying the axiomatic method is more in line
with standard applications of this methodology in social choice theory and belief
revision. We show that one of the simple postulates that we introduce in this
paper is not satisfied by the framework that was introduced in Cramer et al. [7].
This means that the approach of the present paper, based on simpler postulates,
can help to detect problems that the approach from [7] cannot detect.

The rest of the paper is structured as follows: In Sect. 2 we discuss the work of
Hagstrom et al. [11] that the present paper is heavily based on. After specifying
some formal preliminaries in Sect. 3.1, we motivate and define four postulates for
revocation schemes in Sect. 3.2, and show which of these postulates are satisfied
by which existing delegation-revocation frameworks in Sect. 3.3. Sections 4—6 are
dedicated to defining a delegation-revocation framework that satisfies all the
defined postulates. This is done in a stepwise way: First we define in Sect. 4 the
framework Dom, which only covers the distinction made in the dominance dimen-
sion. Section 5 extends this framework to DR, which also covers the resilience

234 M. Cramer and G. Casini

dimension, which is further extended in Sect. 6 to the framework DPR that cov-
ers all three dimensions. In Sect.7, we conclude the paper and discuss some
possible further research.

A technical report with the proofs of the theorems can be downloaded at
http://orbilu.uni.lu/handle/10993/29413.

2 Related Work

The only existing work on delegation revocation that takes the same method-
ological approach as the present paper is Cramer et al. [7]. The relation between
the present paper and [7] has already been sketched in the Introduction, and
will be discussed further throughout the rest of the paper. In the present section
we discuss the work of Hagstrom et al. [11] that both the present paper and [7]
are heavily based on, and explain a terminological issue.

2.1 Hagstom et al.’s Framework

Hagstrom et al. [11] have introduced three dimensions according to which revo-
cation schemes can be classified: dominance, propagation and resilience.

Dominance. This dimension deals with the case when a principal losing a per-
mission in a revocation still has permissions from other grantors. If these other
grantors’ revocation rights are dependent on the revoker, the revoker can domi-
nate over these grantors and revoke the permissions from them. This is a strong
revocation. The revoker can also choose to make a weak revocation, where per-
missions from other grantors to a principal losing a permission are kept.

Propagation. The decision of a principal ¢ to revoke an authorization previously
granted to a principal j may either affect only the direct recipient j or propagate
and affect all the other users in turn authorized by j. In the first case, we say
that the revocation is local, in the second case that it is global.

Resilience. This dimension distinguishes revocation by removal (deletion) of
positive authorizations from revocation by issuing a negative authorization which
just inactivates positive authorizations. In the first case another principal may
grant a similar authorization to the one that had been revoked, so the effect of the
revocation does not persist in time. In the second case a negative authorization
will overrule any (new) positive permission given to the same principal, so its
effect will remain until the negative permission is revoked. We call a revocation
of the first kind a delete or non-resilient revocation, and a revocation of the
second kind a negative or resilient revocation.

Since there are two possible choices along each dimension, Hagstrom et al.’s
framework allows for eight different revocation schemes. The behaviour of the
revocation schemes is defined differently depending on whether precedence is
given to positive or negative authorizations. Cramer et al. [7] have argued for
integrating this precedence into the dominance dimension, thereby replacing
the binary distinction along the dominance dimension by a ternary distinction

http://orbilu.uni.lu/handle/10993/29413

Postulates for Revocation Schemes 235

between strong, predecessor-takes-precedence (p-t-p) and weak revocations. Here
p-t-p has the meaning that Hagstrom et al. give to strong, while a strong revo-
cation dominates over all other grantors’ authorizations, no matter whether the
principal targeted by the revocation is dependent on the principal performing the
revocation or not. This design decision and terminological decision are motivated
in Sect. 3.1 of Cramer et al. [7].

2.2 Problems with Hagstrom et al.’s Framework

In this section we analyze some problems with the revocation framework by
Hagstrom et al. [11], and informally sketch how we propose to solve them.! As
many of these problems amount to a principal having access right in a situation
where the intended meaning of the used revocation scheme implies that the
principal should not have access right, these problems can pose security risks.

(1) In Hagstrom et al.’s framework, the relative timing of a granting a permis-
sion and a Strong Global Delete revocation influences the effect of the revocation
in an undesirable way. Let us illustrate this problem with an example.

Example 1. User A issues an authorization to users B and C. B plans to grant
this authorization to C. At the same time A plans to perform a Strong Global
Delete revocation of B’s rights. Depending on which user performs the planned
action first, the outcome will be different in Hagstrom et al.’s framework. If the
Strong Global Delete is performed first, user C will be unaffected. But if B first
delegates to C, then user C will also lose his access right as a consequence of the
Strong Global Delete from A to B.

One way to explain why this behaviour is problematic is to note that if
the revocation was a Weak Global Delete instead of a Strong Global Delete, C
would be unaffected even if B first delegated to C. But the difference between
a Strong Global Delete and a Weak Global Delete is supposed to be only about
the dominance of the revocation, i.e. about what happens when others have
delegated to B. But as no one else has delegated to B, there should be no
difference between the two revocations.

Another way to explain why this behaviour of the Strong Global Delete is
problematic is to note that whether B attempts to delegate to A shortly before
or shortly after the Strong Global Delete should not make a difference. The tim-
ing of a delegation with respect to a Strong Global Delete should only matter if
it is a delegation of a right to B, as the revocation is non-resilient. But since the
revocation is global, the timing of a delegation performed by B should not matter.

! In Cramer et al. [7] five problems with Hagstrém et al.’s framework are discussed. As
problems (4) and (5) from [7] are also relevant to the present paper, we have taken
them over into the present paper, where they are listed as problems number (3) and
(4) respectively. Problem (1) below is based on problem (1) from [7], but the expla-
nation of the problem has been significantly reworked and extended. Problem (2)
below has not been presented in print before. Two further problems with Hagstrom
et al.’s framework not relevant to the present paper were presented in Sects. 3¢ and
3d of Cramer et al. [6].

236 M. Cramer and G. Casini

(2) A similar problem is faced by the Strong Local Negative revocations in
Hagstrom et al.’s framework:

Example 2. The SOA delegates a right to user A, who delegates it further to user
B, who delegates it further to user C. Now A plans to delete the authorization she
has issued to user B, and at the same time, the SOA plans to perform a Strong
Local Negative revocation of B’s rights. Depending on which user performs the
planned action first, the outcome will be different in Hagstrom et al.’s framework.
If the Strong Local Negative is performed first, C will conserve his access right
even after the deletion of the authorization from A to B. But if A deletes the
authorization to B first, then user C will lose his access right.

One way to explain why this behaviour of the Strong Local Resilient is prob-
lematic is to note that the deletion of the authorization from A to B is a non-
resilient revocation. Hagstrom et al. say about non-resilient revocations that
after the revocation, “no trace remains of the fact that the authorization has
been granted and then revoked”. But in Example 2, there does remain a trace of
the authorization from A to B, namely the fact that C has access right (which
materializes through an auxiliary authorization from the SOA to C, which is
created only because there exists an authorization from A to B at the moment
of the local revocation).

Another way to explain why this behaviour of the Strong Local Resilient is
problematic is to note that while for a Strong Local Resilient revocation of B’s
rights the timing of delegations performed by B with respect to the revocation
is relevant (as it is a local revocation), the timing of other actions that affect B
with respect to the revocation should not make a difference, as the revocation
is strong and resilient.

(3) Hagstrom et al. motivate the distinction between delete and negative revo-
cations mainly through the notion of resilience as defined in Sect. 2.1. However,
this definition renders the notion of a weak resilient revocation contradictory,
since a weak revocation does not affect authorizations issued by others than the
revoker. (Hagstrom et al. motivate the usage of weak negatives by pointing out
that they are useful for temporary revocations, but as discussed in Cramer et al.
[7], a better way to make temporary revocations possible is to not delete the
forward chain in a delete revocation.)

Furthermore, p-t-p and strong deletes would have undesirable effects, as illus-
trated by the following example:

Example 3. User A issues an authorization to user B, and gives user C the right
to perform strong revocations. User C performs a Strong Global Delete on B,
removing without traces the authorization provided to B by A. Later A realizes
that C cannot be trusted to perform strong revocations, and takes away B’s
right to do so through a Strong Global Delete revocation. Even though C can
no longer perform strong revocations, the effect of his strong delete persist: B
does not have the right originally issued to him by A until someone issues a new
authorization to him.

Postulates for Revocation Schemes 237

Hence we do not have a p-t-p or strong delete revocation in our framework, but
instead have the distinction between a resilient and a non-resilient negative for
p-t-p and strong revocations. To conclude, if the dominance of a revocation is p-
t-p or strong, there are two options along the resilience dimension, non-resilient
and resilient, both of which are defined through negative authorizations. But if
the dominance is weak, the value of the resilience dimension has to be “non-
resilient”. A weak non-resilient revocation is defined through the deletion of a
positive authorization, and is therefore also called a “weak delete”.

(4) Hagstrom et al. do not allow negative authorizations to be inactivated.
The reason they give is that they “do not want a revocation to result in a subject
having more permissions than before the revocation”. However, the deletion of
negative authorizations is allowed, even though it may have the same effect.
We do allow negative authorizations to be inactivated, but the only kind of
revocation that can result in a subject having more permissions than before is
a revocation of someone’s right to perform strong revocations, and in this case
this is a desirable property.

2.3 Revocations and Denials

A revocation of a principal’s rights removes rights that the principal already has.
A denial of rights on the other hand can be issued even when the principal does
not yet have the concerning rights, and has the effect that other principals will
no longer be able to effectively grant rights to the affected principal.

Negative authorizations can function as a form of denial. When, for example,
j does not yet have the rights in question and 7 issues a negative authorization
for those rights to j, this negative authorization functions like a denial rather
than like a revocation. The work in this paper applies to negative authoriza-
tions independently of whether they are used to revoke existing rights or deny
rights. We will for the rest of this paper only use the term “revocation” and not
“denial”, in order to be consistent with the terminology used in the papers that
we extensively refer to.

3 Postulates for Delegation and Revocation

In this section we formally define four postulates for delegation and revocation
that formalize desirable properties of a delegation-revocation framework. The
postulates are justified on the basis of the intended meaning of the possible
values along the three revocation dimensions. Our justification of the postulates
is partially based on the discussion of the problems considered in Sect. 2.2.

From a formal point of view, the role of a delegation-revocation framework
is to specify which users will have access given that certain delegations and
revocations have been performed in a certain temporal order. In order to make
this more precise, we first introduce some notation.

238 M. Cramer and G. Casini

3.1 Preliminaries

Let S be the set of principals (subjects) in the system, let O be the set of objects
in the system and let A be the set of access types. For every object o € O, there
is a source of authority (SOA), i.e. the manager of object o.

For any o« € A and o € O, the SOA of o can grant the right to access «
on object o to other principals in the system. Secondly, the SOA can delegate
this granting right further. Thirdly, the SOA can grant the right to perform
strong revocations and to delegate this right further. Accordingly we have three
permissions: access right (A), delegation right (D) and strong revocation right
(S). We assume that delegation right implies access right. The set {A, D, S} of
permissions is denoted by P.

There is no interaction between the rights of principals concerning different
access-object pairs («, 0). For this reason, we can consider a and o to be fixed
for the rest of the paper, and no longer explicitly mention them. We use W, P,
S, L, G, N and R as abbreviations for weak, p-t-p (predecessor-takes-precedence),
strong, local, global, non-resilient, resilient and delete respectively. We define 2™
to be the set {W, P, S} x {L, G} x {N, R}, i.e. the set of all conceivable combi-
nations of revocation dimension values (assuming that there are three possible
values for the dominance dimension as explained at the end of Sect. 2.1).

Let ¢ and 7 be two principals, and let m be a permission w. We write
grant(i, j,) for i’s action of granting permission 7 to j. Given (9,p,t) € X*,
we write revoke(i, 7, 7,0, p, t) for i’s action of revoking permission 7 from j with
dominance 9, propagation p and resilience v. We say that the actions grant(, j, 7)
and revoke(i, j,m, 0,p,t) are performed by the principal ¢ and targeted at the
principal j.

Since delegation right implies access right, an action grant(i, j, D) can only be
performed in combination with the action grant(z, j, A). By taking the contrapos-
itive, the connection is reversed for revocations: The action revoke(i, j, 4,0,p,)
can only be performed in combination with the action revoke(i, j, D, 0, p, t).

We define a delegation-revocation profile to be a sequence of delegation and
revocation actions such that directly before any action of the form grant(i, j, D)
there is an action of the form grant(i, j, A), and directly before any action of the
form revoke(i, j, A, 0, p, t) there is an action of the form revoke(i, j, D, 0, p, t). For
example, the profile

(grant(A,B, A), grant(A,C, S), revoke(C,B, a, S,G,N), revoke(A,C, S, S,G,N))

formally expresses the delegation and revocation actions that were taken in
Example 3 in Sect. 2.2 as well as there temporal ordering. Given two delegation-
revocation profiles IT; and Il5, we write I1; & Il for the profile resulting from
concatenating the sequence I1; with the sequence I1s.

Let X C X* be some set of revocation dimension combinations. We say
that a profile IT is over X if for every revocation action revoke(i, j,m,0,p,t)
in IT, {0,p,t} € X. A delegation-revocation framework over X is a function F
that takes as input a delegation-revocation profile IT over X', and outputs a set
F(II) of principals that encodes the information which principals have access

Postulates for Revocation Schemes 239

and which ones do not have access if delegation and revocation actions have
been performed as specified by I1.

For example, the Hagstrom et al. [11] define two delegation-revocation frame-
works: The one that describes the behaviour of the revocations when pos-
itive revocations have precedence is a delegation-revocation framework over
{W, P} x {L, G} x {N, R} (even though they use the terms “strong”, “delete”
and “negative” instead of “p-t-p”, “non-resilient” and “resilient”), while the
framework that describes the behaviour of the revocations when negative autho-
rizations have precedence is in place is a delegation-revocation framework over
{S}x{L,G}x{N, R}. Below we call these two delegation-revocation frameworks
H* and H~ respectively. In Cramer et al. [7] a delegation-revocation framework
(called C below) over the set X' := ({W} x {L, G} x {N}) U ({P, S} x {L, G} x
{N,R}) is defined, whereas in Cramer et al. [6], the restriction of this framework
over {(P,G,R)} is defined (i.e. the only revocation considered is P-t-p Global
Resilient). The set X’ is also the most extensive set over which we define a
delegation-revocation framework in this paper. The reason for not defining a
delegation-revocation framework over the full set X* of conceivable revocation
dimension combinations is that weak resilient revocations do not make sense, as
discussed under point (3) in Sect. 2.2.

Delegation-revocation frameworks are usually defined with the help of a
delegation-revocation graph, i.e. a graph whose nodes are principals and whose
labelled edges encode relevant information about the granting and revocation
actions taken by principals. The delegation-revocation framework specifies how
the graph is to be modified given a certain action, and how to determine who
has access given a certain graph.

One might be tempted to think that delegation-revocation profiles are prac-
tically the same thing as delegation-revocation graphs. However, the distinction
between them is central to our methodology. It is a distinction akin to the dis-
tinction between the syntax and the semantics of a formal logical language.
The delegation-revocation profiles play the role of the syntax: They encode the
observable granting and revocation action of the principals, independently of
how we decide to interpret these actions. One could be tempted to think that
the semantics of a delegation-revocation profile should just be the set of princi-
pals that get access based on that profile. But that information is not enough as
a semantic structure, because two profiles that lead to the same principals hav-
ing access can nevertheless behave differently: Further actions that are added to
one of these two profiles can lead to different access rights depending on which
profile the actions were added to. The delegation-revocation graphs give us the
additionally structural information that is needed to semantically distinguish
profiles that behave differently over time: They allow us to interpret what a
sequence of actions means, both in the sense of allowing us to determine who
has access after that sequence of actions, as well as allowing us to determine who
will have access if certain further actions are taken.

240 M. Cramer and G. Casini

3.2 The Four Postulates

Given that any function from the set of delegation-revocation profiles to the pow-
erset of the set of principals counts as a delgation-revocation framework, there
are many different ways of defining delegation-revocation frameworks. However,
we are not really interested in arbitrary delegation-revocation frameworks, but
only in those frameworks that behave in a way that meets our expectations of
what it means to grant a permission and to revoke a permission with a cer-
tain combination of revocation dimension values. The goal of the axiomatic
approach that we take is to formalize some of these expectations so that we
can study which graph-theoretic definitions of delegation-revocation frameworks
meet which expectations. Following the belief revision literature, whose method-
ological approach we follow, we call the formalized formulation of these expec-
tations postulates.

We should stress that in this paper we are not aiming at formalizing all
our expectations about what granting and the revocation dimensions mean, nor
to specify a set of postulates that uniquely determines a delegation-revocation
framework. The latter aim was achieved by Cramer et al. [7], but at the expense
of specifying a very complicated postulate based on a dedicated logic (Trust
Delegation Logic) with many non-trivial design choices. The present paper com-
plements that approach by formulating simpler postulates, whose meaning can
be understood more readily.

The first postulate that we consider is called Locality, as it formalizes a
central desirable feature of local revocation schemes: a local revocation should
only affect the principal at which it is targeted. Formally, the fact that the
delegation-revocation framework F' satisfies Locality can be expressed as follows:

Locality. Let Y C X* be a set of revocation dimension combinations.
Then for any delegation-revocation profile IT over X and any i,j € S,
7€ P, 0e€{WPS} and v € {N,R} such that (0,L,t) € X,

F(IT & (revoke(i, j, 7,0, L,e))) U{j} = F(IT) U {j}.

The second postulate that we consider is called Resilience Indifference, as
it formalizes the idea that when a revocation is at then end of a delegation-
revocation profile, it does not make a difference whether it is a resilient or a
non-resilient revocation. Formally:

Resilience Indifference. Let > C X* be a set of revocation dimension
combinations. Then for any delegation-revocation profile IT over X and
any 7,5 € S, 7 € P, 0 € {W,P,S} and p € {L,G} such that (9,p,N) € X
and (0,p,R) € X,

F(II & (revoke(i, 7, m,0,p,N))) = F(IT @ (revoke(s, j, m,0,p,R))).

The motivation for this postulate is that the intended difference between a
resilient and a non-resilient revocation is that the non-resilient revocation can be
overridden by a later granting action, whereas a resilient revocation cannot be

Postulates for Revocation Schemes 241

overridden in this way. As this difference only plays a role when there is some
granting action after the revocation, it cannot make a difference when the revo-
cation is the last action that has been performed.

The third postulate is called Access from Revocation, and formalizes the idea
that the only revocation that can lead to any principal having more access than
before the revocation is a revocation of permission S (the right to perform a
strong revocation). Formally:

Access from Revocation. Let X C X* be a set of revocation dimension
combinations, and let IT be a delegation-revocation profile over X. Let a
be a revocation action concerning a permission other than S. Then

F(IT & (a)) € F(I).

As explained in the discussion of problem (4) in Sect.2.2, this postulate is a
weakening of an idea of Hagstrom et al., who “do not want a revocation to
result in a subject having more permissions than before the revocation”, but
who nevertheless define delete revocations that do not satisfy this property.

The fourth and last postulate that we consider is called Timing Indifference,
as it formalizes ideas about the conditions under which the relative timing of
two actions does not make a difference. The explanations of problems (1) and
(2) in Sect.2.2 were partially based on considerations of timing indifference.
Those explanations suggest the following characterization of timing indifference
between a revocation and another action:

— For a global non-resilient revocation targeted at principal [, the temporal
ordering between this revocation and any action targeted at a principal other
than ! does not matter.

— For a local resilient revocation targeted at principal [, the temporal ordering
between this revocation and any action performed by a principal other than [
does not matter.

— For a global resilient revocation, the temporal ordering between the revocation
and another action does not matter.

— For a local non-resilient revocation targeted at principal [, the temporal order-
ing between this revocation and any action that performed by and targeted
at a principal other than [does not matter.

If both actions considered for timing indifference are revocations, the above
conditions need to be satisfied in both directions. If both actions are granting
actions, the timing between them should never make a difference.

The above criteria for timing indifference can be formalized in a single pos-
tulate as follows:

Timing Indifference. Let Y C X* be a set of revocation dimension
combinations, and let IT; and IIs be delegation-revocation profiles over
X, Suppose that a; is a granting or revocation action performed by i and
targeted at j, and that as is a granting or revocation action performed by
k and targeted at [such that the following properties are satisfied:

242 M. Cramer and G. Casini

ay is either a granting action or a global revocation action, or k # j.
ay is either a granting action or a resilient revocation action, or [# j.
ag is either a granting action or a global revocation action, or i # [.
. ag is either a granting action or a resilient revocation action, or j # [.

Then

o

F(Hl (&) <a1,a2> b HQ) = F(Ul &, <02,al>) HZ)

3.3 The Postulates Applied to Existing Frameworks

Both H* and H~ (the two delegation-revocation frameworks by Hagstrom et al.
depending on the precedence of positive or negative authorizations) as well as
C (the delegation-revocation framework by Cramer et al. [7]) satisfy the Local-
ity postulate, because in a local revocation these three frameworks add auxiliary
authorizations from the principal performing to the revocation to any principal not
targeted by the revocation that would otherwise be affected by the revocation.

While H+ and C satisfy Resilience Indifference, H~ does not satisfy it, due to
problem (4) from Sect. 2.2. Suppose the SOA gives A access right and gives B the
right to issue negative authorizations (i.e. to perform strong revocations), and B
uses this right to revoke A’s access right through a Strong Global Negative revo-
cation. Suppose further that after this the SOA revokes the right to issue negative
authorizations from B. If this revocation is a delete revocation (i.e. non-resilient),
it will according to Hagstrém et al. also delete the negative authorization from
B to A, thus giving back access to A. But if this revocation is a negative autho-
rization (i.e. resilient), it will not inactivate the authorization from B to A due to
Hagstrom et al.’s principle that negative authorizations cannot get inactivated,
so A will not get back access right. So A’s access right depends on whether the
final action is a resilient or non-resilient revocation, thus contradicting Resilience
Indifference. Note that modifying H~ by allowing negative authorizations to get
inactivated will ensure satisfaction of Resilience Indifference.

H7 and H~ fail to satisfy Timing Indifference in multiple ways. For example,
problem (1) from Sect. 2.2 shows how they fail to satisfy it for a Strong Global
Delete (i.e. Non-Resilient) revocation, and problem (2) shows how they fail to
satisfy it for a Strong Local Negative (i.e. Resilient) revocation. C' also does
not satisfy Timing Indifference, because it behaves in the same way as HT and
H~ on the example from problem (2) in Sect.2.2. But unlike in H* and H,
the global revocations in C' do satisfy Timing Indifference. More formally, the
restriction of C' to a delegation-revocation graph over ({W} x {G} x {N}) U
({P, S} x {G} x {N,R}) satisfies Timing Indifference.

To conclude, H ™~ only satisfies two of the four postulates that we have defined,
while H* and C satisfy the first three of them. C only fails Timing Indifference
in the case of local revocations. This suggests that it might be possible to define a
delegation-revocation framework that satisfies all four postulates by modifying
the treatment of local revocations in C. This is what we will do by defining
the framework DPR in Sect. 6. To build up to that task, we first define a basic
delegation-revocation framework over {(S,G,R), (P,G,R), (W,G,N)} called Dom,
which we then extend stepwise.

Postulates for Revocation Schemes 243

4 The Basic Framework Dom

In this section we define the basic delegation-revocation framework Dom that
distinguishess three revocations based on the dominance dimension. Dom will be
extended to delegation-revocation frameworks incorporating first the Resilience
dimension (Sect.5), and then the Propagation dimension (Sect.6).

The three revocations in Dom are Strong Global Resilient (SGR), P-t-p Global
Resilient (SGR) and Weak Global Delete (WGD). In other words, the value of
the propagation dimension is fixed to Global, and the value of the resilience
dimension is fixed to Resilient when possible (as explained in Sect. 2.2, it does not
make sense to have weak resilient revocations). So formally Dom is a delegation-
revocation framework over the set {(S,G,R),(P,G,R), (W,G,N)} of revocation
dimension combinations.

As the delegation-revocation frameworks defined by Hagstrom et al. [11] and
Cramer et al. [7], Dom is defined in a graph-theoretical way, where the nodes
of the graph are the principals, and the labelled edges of the graph are autho-
rizations that principals have granted to each other. Dom admits for one kind
of positive authorization, denoted +, and two kinds of negative authorization,
denoted —gr and —pgr (the R in the subscript means “resilient”; it is used here
as we will define extensions of Dom that have non-resilient negative authoriza-
tions). The set {4+, —gr, —pr } of authorization types is denoted by T pom.

Definition 1. An authorization is a tuple (i,j,7,7), where i,5 € S, 7 € Tpom,
e P.

From a graph-theoretical point of view, an authorization is an edge from 14
to j labelled 7, 7. The graph consisting of the principals and the authorizations
is called the authorization specification. As the set of principals is constant, we
also use the term authorization specification to refer to the set of authorizations
that are in place.

In Dom, i’s action of granting a permission 7 to j corresponds to adding
(4,4, 4,) to the authorization specification. ¢’s action of revoking permission
from j through an SGR or PGR revocation corresponds to adding (i, j, —sr,) or
(i,4, —pr, m) respectively to the authorization specification. i’s action of revok-
ing permission 7w from j through a WGN revocation corresponds to deleting
(i,7,+,m) from the authorization specification. These correspondences induc-
tively define a function A p,,, that maps any delegation-revocation profile IT
over {(S,G,R), (P,G,R),(W,G,N)} to an authorization specification (the base
case is that A p,,,(()) is the empty authorization specification).

Since in a delegation-revocation profile IT a granting action of a delegation
right can only occur directly after a granting action of a corresponding access
right (see Sect. 3.1), an authorization (i, j, 4+, D) can only be present in an autho-
rization specification A p,,,(II) if the authorization (i, j,+, A) is also present.
Conversely, an authorization (i, j, 7, A) for 7 € {—gr, —pr} can only be present
if an authorization (i, j, —sr, D) is present.

We visualize an authorization specification as in Example4, in which A is
the SOA. For every authorization (i,j,7,7) in the authorization specification,

244 M. Cramer and G. Casini

this graph contains an edge from i to j labelled 7, 7. We refrain from showing
the authorizations that can be implied to exist by the considerations explained
in the previous paragraph (for example, additionally to the depicted authoriza-
tion (A, B,+, D), there must also be an authorization (A, B, +, A), which is not
depicted).

Ezample 4. An authorization specification

+, A

K—\ +.D
H—>.—>. \ /
Ty

We define a relation R on P x (T pom X P) such that R(m, (7, 7)) formalizes
the notion that permission 7 is a prerequisite for being a legal grantor of an
authorization of type 7 and permission 7’:

Definition 2. R(mw, (7,7")) holds iff one of the following conditions is satisfied:

- 7=D, T+# —5sgr and either 7’ = A or ©' = D.
-7=S,7#—sg and 7 =S.
*WZSGTZdTI*SR.

In order to evaluate which principals have access given a certain authorization
specification, we need to consider which authorizations are active and which ones
are inactivated. For an authorization to be active, one prerequisite is that it must
be connected back to the SOA through a chain of active authorizations that
ensure that each principal along the chain is a legal grantor of the authorization
in the chain granted by that principal. Additionally, a negative authorization
(i,4, —sr, m) inactivates every positive authorization from some principal k to
J (as this negative authorization means that ¢ has performed a Strong Global
Resilient revocation onto j).

In order to formally specify which authorizations get inactivated when issuing
a negative authorization, we define through a simultaneous inductive definition
the notions of an authorization being active and an authorization being directly
inactivated in Definitions 3 and 4.2 The auxiliary notion of a directly inactivated

2 These definitions inductively depend on each other. They should be read as an
inductive definition with the well-founded semantics [8]. As discussed in Appendix A
of Cramer et al. [7], there are exist paradoxical cases in which the well-founded
semantics is three-valued rather than two-valued, so that for some authorizations it
is undecided whether they are active or not. Such paradoxical cases only arise when
strong revocation of the permission S depend on each other in a circular way. For
the purpose of this paper we stipulate that undecided is treated as false, so that the
principals directly affected by such a paradoxical situation will not have access until
the paradoxical situation is resolved.

Postulates for Revocation Schemes 245

authorization captures the idea of an authorization from k to j being inactivated
by a negative authorization from 7 to j.

Definition 3. Let A be an authorization specification. An authorization
(i,4,7,7) is active in A if it is not directly inactivated in A and there are
nodes p1,...,DPn,Pn+1 Satisfying the following properties:

- p1 =804, p, =i and ppt1 = j.

— For 1 <1 < n there is an authorization (p;,pi41,+,7) in A that is not
directly inactivated, where R(x’, (1, m)).

— There do not exist l,m such that 1 <
(pt, Pm+1, — PR, ™) in A such that T =
that R(w’, (7, 7)) otherwise.

IN

l m < n and an authorization
+ and ™ = w if m = n, and such

Definition 4. Let A be an authorization specification. An authorization
(i,4,+,m) is directly inactivated in A if there is an active authorization
(kvja _SR77T) in A.

The notion of an active authorization is used in the definition of access right:

Definition 5. Let A be an authorization specification. A principal j has access
right in A iff j is the SOA or there is an active authorization of the form
(4,4, 4+, A) for some node i.

Now we are in a position to define the delegation-revocation framework Dom:

Definition 6. Given a delegation-revocation profile IT over {(S,G,R), (P, G,R),
(W,G,N)}, we define

Dom(IT) := {i € S| i has access right in Apem(II)}.

Ezxample 5. Consider the authorization specification in Example 4. Let the prin-
cipal B perform an action revoke(B,C, A, S,G,R), that is, a global revocation of
access rights targeting the principal C (see Fig. 1). The result of the action in
the graph we add a negative authorization (B,C, —gr, A) (that implies also the
negative authorization (B,C, —ggr, D)). Such a negative authorization is active,
making the positive authorizations targeting C directly inactivated, and con-
sequently making also the authorization previously issued by C, (C,E,+, D),
inactive.

Dom satisfies all four postulates from Sect. 3.2. Locality and Resilience Indif-
ference are satisfied vacuously, as Dom does not support any local revocation
nor any pair of revocations that differ only in the resilience dimension.

Theorem 1. Dom satisfies Locality, Resilience Indifference, Access from Revo-
cation, and Timing Indifference.

246 M. Cramer and G. Casini

Fig. 1. Example 5

5 Adding Non-resilient Revocation: DR

In this section we extend Dom to a delegation framework DR that introduces
into the framework also the possibility of performing non-resilient revocations.
DR is defined by making the following modifications to Dom:

— New negative authorization types —gn and —py are introduced i.e. Tpgr :=
{+, —sr, —Pr; —sN, —PN}.

— We introduce a new element in the authorization specification, the shields,
which protect a positive authorization from being inactivated by an earlier
non-resilient negative authorization (see below).

— We redefine how performing a granting action modifies the authorization spec-
ification, introducing also the possibility of the shields.

— We modify the definition of active and directly inactivated in order to account
for the shields.

The addition of the authorization types —gn and —pn means that T p,,, gets
replaced by T pg in the definitions of authorization and R, and that “7 # —gr”
gets replaced by “7 ¢ {—gr, —sn}” in the definition of R.

The behaviour of the global non-resilient revocations is the same in DR as in
the delegation-revocation framework C' from Cramer et al. [7]. However, Cramer
et al. defined this behaviour without reference to shields. Instead, they included
time stamps on the authorizations that indicate when an authorization was
issued, and that were used to get the same effect as we get in DR through the
use of shields. The reason why we use shields instead of time stamps is that time
stamps include a lot of additional information into the authorization specification
that is not relevant for determining access rights. By using shields we encode
in the authorization specification only that part of the information about the
temporal ordering of actions that is needed to correctly define access right.

A shield is a pair ((z,4,+,7), (k,j, —pn, ")) for p € {S, P}, i.e. a pair con-
sisting of a positive authorization and a non-resilient negative authorization that
target the same principal. In order to have the shields in the authorization speci-
fication, we need to redefine the authorization specification to be a more complex
structure than a graph: An authorization specification is a structure consisting
of a graph (with vertices and edges as in Sect. () plus a binary relation & on
the edges of the graph, where we require that S((¢,, 7, 7), (k,{,7’,7’)) can only
hold if 7 =+, 7/ € {—pr,—sr} and | = j.

Postulates for Revocation Schemes 247

A shield ((4, j, +,7), (k, j, —pn, 7)) represents the fact that (i, 7, +, 7) results
from a granting action performed after the revocation action that gave rise
to (k,j,—pn,7'), which by the intuitive meaning of non-resilient means that
(t,j,+,m) cannot be inactivated by (k,j, —pn, 7). In order to ensure that the
right shields are in the authorization specification, we need to modify the effect
that performing a granting action has on the authorization specification. When-
ever a granting action grant(z, j,) is performed:

— (4,4,4+,m) is added to the authorization specification.

— If in the authorization specification there is a non-resilient negative authoriza-
tion (k, j, —sn, '), then add S((4, j,+, 7), (k, j, —s~, 7)) to the authorization
specification.

The last step in the definition of DR is to modify the definition of active and
directly inactivated in order to account for the shields:

Definition 7. Let A be an authorization specification with shield relation S. An
authorization (i,j,7,7) is active in A if it is not directly inactivated in A and
there are nodes p1,...,Pn, Pnt1 Satisfying the following properties:
- p1 = SOA, p, =1 and ppy1 = J.
— For 1 <1 < n there is an authorization (p;,pi41,+,7) in A that is not
directly inactivated, where R(x’, (1, m)).
— There do not exist I,m such that 1 < I < m < n and an authorization
(pt, Pms1, 7', 7)) in A such that
e 7' € {—pr,—pPn},
o ((pm,pm+1,+,7"), (01, Pms1, 7, 7")) & S, where 7" = 7 if m = n, and
R(w", (1,m)) otherwise,
e T=+and 7 =7 ifm=n, and
o R(n',(1,m)) if m # n.
Definition 8. Let A be an authorization specification with shield relation S. An
authorization (i, j, +,) is directly inactivated in A if there is an active authoriza-
tion (k, j,7,7) in A such that T € {—sgr, —sn} and ((i,j, +,7), (k, j,7,7)) ¢ S).

Ezample 6. The starting point is the graph in Example 4. B issues a non-resilient
strong revocation of A targeted at C.

Let D re-issue the positive authorization (D,C,+, A); since there is a non-
resilient negative authorization (B,C, —gN, A) targeting C, a shield ((D,C, +, A),
(B,C, —sn, A)) is issued.

Following Definition 8, the authorization (D,C,+, A) is not directly inacti-
vated by (B,C, —gn, A) since there is a shield from the former to the latter.
(D,C, 4+, A) is actually active, and C’s access rights are restored.

248 M. Cramer and G. Casini

The framework DR satisfies all four postulates defined in Sect. 3.2 (Locality
is satisfied vacuously due to the lack of local revocations):

Theorem 2. DR satisfies Locality, Resilience Indifference, Access from Revo-
cation, and Timing Indifference.

6 Adding Local Revocations: DPR

In this section we extend the framework DR to a delegation-revocation frame-
work DPR over X*. In other words, DPR fully covers all three revocation dimen-
sions, i.e. it can handle all ten revocation actions defined in Sect.3.1. For this,
we need to specify how DR gets modified so as to support local revocations.
As seen at the end of Sect. 4, the definition of local revocations presented by
Cramer et al. [7] does not satisfy the postulate of Timing Indifference. The goal
of this section is to define the local revocations in such a way that this postulate
is satisfied. We do this by extending the framework Dom in the following way:

— We add a new set of nodes to the graph, the set B of bridges. A bridge can
be used in delegation chains in order to preserve the effect of authorizations
issued by a principal targeted by a local revocation.

— We introduce a new class of actions, Local Revocations.

— We appropriately modify the definition of the authorization specifications as
well as the definition of when an authorization is active.

We define the set of bridges to be
B := {bridge(i, j,0,¢,m)|i,j € S, (0,t) € ({S,P,W}x{R,N})\{W,R} and 7 € P}.

Following a local revocation action revoke(i,j,9,L,t,7), the purpose of
bridge(i, j, 0,¢,7) is to be a substitute for j in the delegation chains that ensure
that the principals whose access right previously depended on j is preserved.

We extend the definition of an authorization-specification from Sect.5 by
allowing bridges to be nodes of the graph as well, and adding shields to this
extended notion of a graph using the same definition that was used to add shields
in Sect. 5, only that 4, j, and k now refer to the new notion of a node (a principal
or a bridge) rather than to the old notion of a node (just a principal). The main
distinguishing factor between a principal and a bridge is that a bridge cannot
perform any action, as bridges cannot be mentioned in delegation-revocation
profiles. We say that a bridge bridge(i, j,0,t,7) is a bridge for the principal j,
and we indicate with B; the set of the bridges for j.

We change the definition of how the authorization specification gets modi-
fied when a granting action or a global revocation action targeting a principal
j is performed by adding not only an authorization ending in j, but also anal-
ogous authorizations ending in the bridges in B;. More precisely, the action
grant(i, j, w) results in adding not only (4, 7,4+,), but also (i,b,+,7) for any
b € B, to the authorization specification; and the action revoke(i, 7,9, G, ¢, 7)

Postulates for Revocation Schemes 249

results in adding not only (2,7, —o¢, ™), but also (4,0, —pc, w) for any b € B; to
the authorization specification.

In what follows we need to distinguish in the set B; the bridges that are
actually playing an active role in the graph, since they are associated to some
active negative authorizations, from the ones that are not relevant. We call the
former ones the active bridges for j, and denote the set of the active bridges for j
by B (see Definition 9 below). Informally, the main idea is the following: Given
a principal j, its bridges in B; record all the global authorizations targeting j. In
the moment a local revocation is performed by a principal ¢ toward j, resulting
into a negative authorization (7, j, —y¢,), all the authorizations issued by j up to
that point are ‘copied’ in the bridge bridge(i, j, —sr,), i.e. for every (j, k, 7', 7’)
in the authorization specification, an authorization (bridge(i, j, 0,t,7), k, 7/, 7')
is added to the authorization specification. In such a way, for every authorization
(j, k, 7', 7') that was active before the performing of a local revocation targeting
J, we introduce a new authorization (bridge(i, j, —sr,), k, 7', 7’) that is active
in the new graph. This ensures that whatever rights were granted by j before the
local revocation are still supported by an active delegation chain that ‘bypasses’
the principal j through a bridge for j.

Performing a local revocation revoke(i, j, 7, 0,L, t) has the following effects
on an authorization specification:

1. For every principal k and every authorization (j,k,7’,7’) in the authoriza-
tion specification, an authorization (bridge(i,j,0,t,m),k, 7', 7') is added to
the authorization specification.

2. For every principal k and every authorization (k,j,7’,7’) in the authoriza-
tion specification, an authorization (k, bridge(i, 7, 0,¢v,7), 7', 7') is added to
the authorization specification.?

3. (4,4, —or, m) is added to the authorization specification.

The constraints defining which authorization are active and which are inac-
tive must be changed in order to consider also the bridges, but only the active
ones. Apart from reinterpreting the meaning of the word node and the domain
of quantification of the variable i, j,p1,...,pn41 to include bridges as well as
principals, Definition 8 remains unchanged, while we change Definition 7 simply
adding the following condition:

— For 1 <1 <mn, if p, € B; for some principal j, then p, € Bj.

Note that the latter condition refers to the set of active bridges. So instead
of building a simultaneous inductive definition consisting of Definitions 3 and
4 as in Sect.4, here we build an analogous simultaneous inductive definition
using Definition 4, the modified version of Definition 3, and a third component,
Definition 9:

3 We add such a condition even though every authorization from k to j created due
to a granting or global revocation action already has a copy from k to any bridge for
7, because there can be authorizations from k to j created due to local revocations
that must be added at this point.

250 M. Cramer and G. Casini

Definition 9. Given a principal j, the set B is defined as follows: For every
bridge(i, j,0,t,m) € By, bridge(i, j,0,v,7) € B} if and only if (i, j, —or, T) is an
active authorization.

According to the above constraints, when a local revocation
revoke(i, j, 0, L, t) is performed, a negative authorization (i, j, —pe,) is issued
and a node bridge(i, j,0,t,7) is associated to (i,7,7,7). In case (%,], —pe, ™) 18
inactive, also bridge(i, j,0,t,7) is inactive and its presence is irrelevant. But if
(i,4, —ov, ™) is active, bridge(i, j, 7,) is active and ensures that all rights that
were granted by j before the revocation are preserved.

Ezxample 7. Consider the authorization specification in Example 4. Let the prin-
cipal B perform an action revoke(B,C, A, S,L,R), i.e. a local revocation of access
A targeting the principal C. If in the graph we simply added a negative autho-
rization (B,C, —gr, 4) as in Example 5, this would have the effect of a global
revocation, inactivating also the authorization (C,E,+, D) previously issued by
B. Now we use bridges to model the locality of the revocation. In the visualiza-
tion of the graph, we depict only the bridge that is relevant for the performed
local revocation revoke(B,C, A, S,I,R), namely bridge(B,C,S,R, A).

In step 1 of the three steps describing the effects of the local revocation
revoke(B,C, A,S,L,R), we add an authorization (bridge(B,C,S,R, A),j,7,7) for
every authorization (C, j, 7, 7). In this case we only have to replicate the autho-
rization (C,E, +, D) as (bridge(B,C,S,R, A), E, +, D). In step 2, we do not need
to add anything, because previously only non-local actions have been performed,
and all the non-local actions targeting C have already given rise to authoriza-
tions targeting bridge(B,C,S,R, A) (see Footnote 3). Finally, we add the negative
authorization (B,C, —ggr, A). The resulting graph is the following.

As the negative authorization (B,C, —gr, A) is active, the node bridge(B,C,S,R, A)
isalsoactive. Then it is easy to check that the principal E obtains through the bridge
the delegation right that C had previously granted to E, while C itself no longer has
access or delegation right.

The framework DPR satisfies all four postulates defined in Sect. 3.2:

Theorem 3. DPR satisfies Locality, Resilience Indifference, Access from Revo-
cation, and Timing Indifference.

Note that of the delegation-revocation frameworks that we have defined, DPR
is the only one which satisfies all four postulates in a non-vacuous way, and the
only one which supports all ten revocation actions defined in Sect. 3.1.

Postulates for Revocation Schemes 251

7 Conclusion and Future Work

Following an idea first proposed in Cramer et al. [7], we analyse delegation
revocation using the aziomatic method. In contrast to Cramer et al. [7], we define
relatively simple and readily understandable postulates. This way, our use of the
axiomatic method resembles more closely the standard way it is used in social
choice theory and belief revision. The four postulates that we define formalize
desirable features of revocation scheme, i.e. expectations about the behaviour of
various revocation schemes that are based on the intended meaning of the three
revocation dimensions first identified by Hagstrom et al. [11].

We have shown that none of the existing frameworks satisfies all four defined
postulates. Even the framework defined in Cramer et al. [7] fails to satisfy one of
the postulates in the case of local revocations. In order to define the delegation-
revocation framework DPR that satisfies all four postulates while supporting
all meaningful revocation schemes, we first defined the simple basic delegation-
revocation framework Dom that supports only three simple revocation schemes,
which we extended in a stepwise way first to DR and finally to DPR.

We believe that the approach taken in this paper can be a fruitful foundation
for future research. Concerning the specific topic of this paper, further research
should study the possibility of defining further postulates for relegation revoca-
tion frameworks and of proving representation results similar to those in belief
revision (see Rott [13]). Furhermore, the approach from the present paper based
on simple postulates could be combined with the approach from Cramer et al.
[7] that formulated a complex postulate based on a dedicated logic called Trust
Delegation Logic. Combining these approaches could lead to an improved vari-
ant of Trust Delegation Logic that fully characterizes a delegation-revocation
framework that additionally satisfies all the desirable simple postulates.

Finally, we consider the work presented in this paper as a proof of concept
showing the fruitfulness of applying the axiomatic method to problems in com-
puter security. We believe that other problems studied in computer security
could also profit from being analyzed using the axiomatic method.

Acknowledgements. The work of Marcos Cramer was supported by the Fonds
National de la Recherche, Luxembourg, via the INTER project Specification logics
and Inference tools for verification and Enforcement of Policies. The work of Giovanni
Casini has been supported by the Fonds National de la Recherche, Luxembourg, and
cofunded by the Marie Curie Actions of the European Commission (FP7-COFUND)
(AFR/9181001).

References

1. Aucher, G., Barker, S., Boella, G., Genovese, V., Torre, L.: Dynamics in delegation
and revocation schemes: a logical approach. In: Li, Y. (ed.) DBSec 2011. LNCS, vol.
6818, pp. 90-105. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22348-8_9

2. Barker, S., Boella, G., Gabbay, D., Genovese, V.: Reasoning about delegation and
revocation schemes in answer set programming. J. Logic Comput. 24(1), 89-116
(2014)

http://dx.doi.org/10.1007/978-3-642-22348-8_9

252

10.

11.

12.

13.

14.

15.

16.

M. Cramer and G. Casini

Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model for rela-
tional databases. IEEE Trans. Knowl. Data Eng. 9(1), 85-101 (1997)

Bertino, E., Jajodia, S., Samarati, P.: A Non-timestamped authorization model
for data management systems. In: Proceedings of the 3rd ACM Conference on
Computer and Communications Security, CCS 1996, pp. 169-178. ACM, New York
(1996). http://doi.acm.org/10.1145/238168.238211

Chander, A., Dean, D., Mitchell, J.C.: Reconstructing trust management. J. Com-
put. Secur. 12, 131-164 (2004)

Cramer, M., Hertum, P.V., Lapauw, R., Dasseville, 1., Denecker, M.: Resilient
delegation revocation with precedence for predecessors is NP-complete. In: 2016
IEEE 29th Computer Security Foundations Symposium (CSF), pp. 432-442; June
2016

Cramer, M., Ambrossio, D.A., van Hertum, P.: A logic of trust for reasoning
about delegation and revocation. In: Proceedings of the 20th ACM Symposium
on Access Control Models and Technologies, pp. 173-184 (2015). http://doi.acm.
org/10.1145/2752952.2752968

Denecker, M.: The well-founded semantics is the principle of inductive definition.
In: Dix, J., Cerro, L.F., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489,
pp. 1-16. Springer, Heidelberg (1998). doi:10.1007/3-540-49545-2_1

Fagin, R.: On an authorization mechanism. ACM Trans. Database Syst. 3(3), 10—
319 (1978). http://doi.acm.org/10.1145/320263.320288

Griffiths, P.P., Wade, B.W.: An authorization mechanism for a relational database
system. ACM Trans. Database Syst. 1(3), 242-255 (1976). http://doi.acm.org/10.
1145/320473.320482

Hagstrom, A., Jajodia, S., Parisi-Presicce, F., Wijesekera, D.: Revocations — a
classification. In: Proceedings of the 14th IEEE Workshop on Computer Security
Foundations, CSFW 2001, p. 44. IEEE Computer Society, Washington, DC (2001).
http://dl.acm.org/citation.cfm?id=872752.873508

Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: a logic-based approach to
distributed authorization. ACM Trans. Inf. Syst. Secur. 6, 128-171 (2003)

Rott, H.: Change, Choice and Inference: A Study of Belief Revision and Non-
monotonic Reasoning. Oxford University Press, Oxford (2001)

Tamassia, R., Yao, D., Winsborough, W.H.: Role-based cascaded delegation. In:
Proceedings of the 9th ACM Symposium on Access Control Models and Technolo-
gies (2004)

Yao, D., Tamassia, R.: Compact and anonymous role-based authorization chain.
ACM Trans. Inf. Syst. Secur. 12, 1-27 (2009)

Zhang, L., Ahn, G.J., Chu, B.T.: A rule-based framework for role-based delegation
and revocation. ACM Trans. Inf. Syst. Secur. 6(2), 201-231 (2003)

http://doi.acm.org/10.1145/238168.238211
http://doi.acm.org/10.1145/2752952.2752968
http://doi.acm.org/10.1145/2752952.2752968
http://dx.doi.org/10.1007/3-540-49545-2_1
http://doi.acm.org/10.1145/320263.320288
http://doi.acm.org/10.1145/320473.320482
http://doi.acm.org/10.1145/320473.320482
http://dl.acm.org/citation.cfm?id=872752.873508

	Postulates for Revocation Schemes
	1 Introduction
	2 Related Work
	2.1 Hagstöm et al.'s Framework
	2.2 Problems with Hagström et al.'s Framework
	2.3 Revocations and Denials

	3 Postulates for Delegation and Revocation
	3.1 Preliminaries
	3.2 The Four Postulates
	3.3 The Postulates Applied to Existing Frameworks

	4 The Basic Framework Dom
	5 Adding Non-resilient Revocation: DR
	6 Adding Local Revocations: DPR
	7 Conclusion and Future Work
	References

