
Model Checking Exact Cost for Attack Scenarios

Zaruhi Aslanyan(B) and Flemming Nielson

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{zaas,fnie}@dtu.dk

Abstract. Attack trees constitute a powerful tool for modelling secu-
rity threats. Many security analyses of attack trees can be seamlessly
expressed as model checking of Markov Decision Processes obtained from
the attack trees, thus reaping the benefits of a coherent framework and a
mature tool support. However, current model checking does not encom-
pass the exact cost analysis of an attack, which is standard for attack
trees.

Our first contribution is the logic erPCTL with cost-related opera-
tors. The extended logic allows to analyse the probability of an event
satisfying given cost bounds and to compute the exact cost of an event.
Our second contribution is the model checking algorithm for erPCTL.
Finally, we apply our framework to the analysis of attack trees.

Keywords: Attack trees · Markov Decision Processes · Probabilistic
model checking · Probabilistic temporal logic

1 Introduction

Securing systems and organisations against possible threats is a crucial problem,
which becomes increasingly difficult with their growing complexity and their
involvement in our everyday life. Tackling this problem demands a thorough
investigation of the attack scenarios threatening the system of interest.

Attack trees are a powerful graphical formalism for representing attack sce-
narios in a structured, hierarchical way by splitting a complex goal into sub-goals
and eventually basic attacks [19]. Attack trees are used to analyse attack sce-
narios. Analyses are performed by considering specific properties of the scenario
and augmenting the tree with attributes. Typical attributes include probability
and cost of an attack [16], that are computed by propagating the values of the
leaves to the root of the tree. For instance, evaluation of the cost, i.e., the sum
of the costs of basic actions leading to an attack, is used to identify the cheapest
attack or to compare the cost of executing an attack with the attacker’s budget.

Attack scenarios with both probability and cost attributes express a combi-
nation of nondeterministic and probabilistic behaviour, i.e., an attacker has the
nondeterministic choice of performing a basic action and paying the correspond-
ing cost, while the performed basic action succeeds with a certain probability.
Hence, it is natural to construe the corresponding attack trees as Markov Deci-
sion Processes (MDPs). On this line, many security analyses of attack trees
c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 210–231, 2017.
DOI: 10.1007/978-3-662-54455-6 10

Model Checking Exact Cost for Attack Scenarios 211

developed in the literature can be seamlessly expressed as probabilistic model
checking problems. This approach allows to reap the benefits of a coherent frame-
work – the many developments in the area of probabilistic model checking – and
a mature tool support.

In this context, Probabilistic Computation Tree Logic with rewards [13]
(rPCTL), an extension of CTL [9], can express many security properties of inter-
est. In particular, probabilistic model checking rPCTL [11] allows to establish
the probability of certain events occurring and a reward associated with them,
and therefore can encode analyses developed ad hoc for attack trees. However,
rPCTL only reasons about expected cost, i.e., the sum of the rewards along a
path multiplied with probabilities. Exact cost properties, which reason about the
sum of the costs along the path, are instead useful when studying attackers with
fixed resources as is typical for attack trees, but cannot be captured in rPCTL.

In order to address exact cost analysis, we extend rPCTL with cost-related
operators. We present a new exact cost operator C which allows to reason about
the cost of an event and to express properties such as “what is the minimum cost
of a successful attack?” or “is there a way to attack the system by spending no
more than the available budget?” Moreover, we consider a general notation for
a reward-bounded until operator and define a new operator which evaluates the
probability of an event satisfying the given cost bounds. Finally, we develop a
model checking algorithm for the extended logic erPCTL. The algorithm works
on standard MDPs and we show how to transform an attack tree into an MDP.

As a result, erPCTL model checking encompasses standard analyses on
attack trees, including exact cost analyses, thus offering a unifying framework
for different approaches to the analysis of attack trees.

We demonstrate our developments on an example of a cloud environment
studied in the project TREsPASS [20].

Related work. Different operators have been investigated to compute different
kinds of rewards. For instance, Forejt et al. [11] extend PCTL with new operators
that are used to evaluate instantaneous and cumulative expected reward, while
operators for expressing long-run and accumulated expected reward are presented
in [1].

Nevertheless, these extensions do not reason about the cumulative reward
along the path, i.e., they cannot express properties such as “the probability
of reaching the success state is at least 0.7, while the cumulative reward is at
most 50”. To overcome this limitation, rPCTL has been extended with the path
operator reward-bounded until [6, Chap. 10], [5,8]. The operator verifies if the
cumulative reward along a path satisfying the property meets the given bound.
Further development of the logic have been proposed to cope with multi-objective
model checking [12]. In particular, [21] introduced the concept of quantile for
computing expected rewards within given probability bounds.

Elsewhere, various studies have explored a state-based probabilistic model
for evaluation of attack and defence scenarios. In particular, Arnold et al. [2]
analysed the timing of attack scenarios using continuous-time Markov chains; [17]
used priced time automata and the Uppaal model checker to analyse attack trees,

212 Z. Aslanyan and F. Nielson

but without probabilities. More recently, [14] explored how stochastic timed
automata can be used to study attack-defence scenarios where timing plays a
central role. Along a similar line, Aslanyan et al. [4] proposed a game-theoretic
approach for the formal analyses of complex attack-defence scenarios, allowing to
both verify security properties of interest and to synthesise strategies for attacker
and defender with respect to some goal.

Organisation of the paper. In Sect. 2 we provide background material on
attack trees, Markov Decision Processes and rPCTL. The new logic erPCTL
and the model checking algorithm are presented in Sects. 3 and 4, respectively.
In Sect. 5 we describe our proposed translation from attack trees to MDPs and
their evaluation. We conclude and discuss future research directions in Sect. 6.

2 Preliminaries

2.1 Attack Trees

An attack tree is a graphical representation of an attack scenario. The root of
the tree represents the main goal of the attacker. The leaves represent the basic
actions that the attacker can perform in order to achieve his/her goal. The inter-
nal nodes show how the basic actions can be combined. For the sake of simplifying
the technical developments, we assume that the actions are independent.

The abstract syntax of an attack tree t is as follows [3]:

t ::= a | &∧(t1, t2) | &∨(t1, t2) | &true | &false

A tree is either a leaf or the application of a tree operator to one or two sub-
trees. A leaf a is a basic action of the attacker. We denote the set of basic actions
by Act. The special leaves true and false represent a trivially-successful and a
trivially-failed action, respectively.

As standard in the literature, tree operators include conjunction and disjunc-
tion. The conjunction operator t = &∧(t1, t2) requires that the goals of t1, t2 are
achieved in order for the goal of t to be achieved. The disjunction operator
t = &∨(t1, t2) requires that the goal of at least one sub-tree is achieved in order
for the goal of t to be achieved.

We associate each basic action a ∈ Act with a success probability p(a) in case
of performing a, p : Act → [0, 1]. Moreover, we associate with each basic action
a ∈ Act a cost c of performing a, c : Act → Q≥0.

2.2 Markov Decision Processes

In the following we recall the basic definitions on MDPs following [6,11].

Definition 1 (MDP). A Markov Decision Process is a tuple M =
(S, α, P, T, s0, AP,L) where we can find sets SA (of attacker nondeterministic
states), SP (of probabilistic states), and S� (of final states), such that

Model Checking Exact Cost for Attack Scenarios 213

– S = SA � SP � S�, where � denotes the finite disjoint union of sets;
– α is a finite, non-empty set of actions;
– P : SP × S → [0, 1] is a probabilistic transition function such that for all

probabilistic states s ∈ SP

∑
s′∈S P (s, s′) = 1;

– T : SA × α → S is a transition function;
– s0 ∈ S is the initial state;
– AP is a set of atomic propositions; and
– L : S → 2AP is a labelling function.

The probabilistic transition function P describes the probability P (s, s′) of
a transition from the state s to the state s′ in one step. The transition function
T is used to solve nondeterminism. For a state s and an action l ∈ α selected
nondeterministically, function T specifies the successor state s′, T (s, l) = s′. We
denote by α(s) the set of enabled actions in the state s ∈ SA, α(s) = {l ∈ α |
s ∈ SA and T (s, l) is defined}.

An infinite path in an MDP is a non-empty sequence of states π = s0s1 · · ·
where si ∈ S. A finite path is a finite sequence of states π = s0 · · · sn, where
si ∈ S. We denote by Pathfin

s and Paths the set of all finite and infinite paths
that start in state s, respectively, and by π[i] we denote the i-th state of the
path, π[i] = si.

A scheduler is a function σ : S∗SA → α that maps a finite path to an action. A
scheduler corresponds to one possible resolution of nondeterminism. A scheduler
σ is memoryless if for any π, π′ ∈ S∗ and s ∈ SA, σ(πs) = σ(π′s) = σ(s). We
denote by Σ the set of all possible schedulers of an MDP. A probability measure
Prσ

s under a scheduler σ is defined in the standard fashion [15].
We also define a reward structure of the form r : S → Q≥0, which we use to

model costs associated with an MDP model. For a finite path π = s0s1 · · · sn we
define its total cost as cost(π) =

∑
si∈π r(si).

2.3 Probabilistic Model Checking

For expressing the probability and cost-related properties of MDPs we shall use
the Probabilistic Computation Tree Logic with rewards (rPCTL) [6,11].

Definition 2 (rPCTL Syntax). The syntax of rPCTL is as follows:

φ::= true | a | ¬φ | φ1 ∧ φ2 | P��p(ψ) | Er
��x(Fφ)

ψ::= Xφ | φ1Uφ2

where a ∈ AP is an atomic proposition, �	∈ {≥, >,≤, <}, p ∈ Q∩[0, 1], x ∈ Q≥0,
and r : S → Q≥0 is a reward structure.

A formula defined in rPCTL can be either a state formula φ evaluated over
states, or a path formula ψ evaluated over paths. State formulae are used to
express the properties of the model, while path formulae are used only as the
parameter of the probabilistic operator P . The operator P reasons about the

214 Z. Aslanyan and F. Nielson

probability of paths satisfying a formula ψ, while the expected rewards operator
E is used to evaluate the expected cost of reaching a state that satisfies φ.

Path formulae are constructed with the operators next and until, denoted
by X and U , respectively. The path operator U allows to derive the new path
operator eventually, denoted by F , as follows: Fφ ≡ true U φ.

Definition 3 (rPCTL Semantics). Let M = (S, α, P, T, s0, AP,L) be an
MDP, σ a scheduler of M and s ∈ S. The satisfaction relation |= of rPCTL for
state formulae is defined inductively by:

s |= true ∀s ∈ S
s |= a iff a ∈ L(s)
s |= ¬φ iff s � φ
s |= φ1 ∧ φ2 iff s |= φ1ands |= φ2

s |= P��p(ψ) iff Prσ
s (ψ) �	 p for all schedulers σ ∈ Σ

s |= Er
��x(Fφ) iff Expσ

s (Zr
Fφ) �	 x for all schedulers σ ∈ Σ

where Prσ
s (ψ) = Prσ

s ({π ∈ Paths | π |= ψ}), and Expσ
s (Zr

Fφ) denotes the
expectation of the random variable Zr

Fφ : Paths → Q≥0 under scheduler σ with
respect to the probability measure Prσ

s ,

Zr
Fφ(π) =

{∞ ifπ[i] � φ for all i ∈ N
∑min{j|π[j] |= φ}−1

i=0 r(π[i]) otherwise

For a path π in M, the satisfaction relation is defined by:

π |= Xφ iff π[1] |= φ
π |= φ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

Operators P and E. We expand on the semantics of P and E defined above,
showing how queries over all schedulers reduce to reasoning over infimum and
supremum over all schedulers.

We are interested in computing the minimum and the maximum probabilities
and expected cost for certain formulae to hold. By the result in [6, Ch. 10],
we know that there exist memoryless schedulers σmin and σmax that minimise
and maximise, respectively, the probabilities of eventually reaching a state that
satisfies φ:

Prσmin
s (Fφ) = infσ∈Σ Prσ

s (Fφ)
Prσmax

s (Fφ) = supσ∈Σ Prσ
s (Fφ)

This holds for every state s. In particular we will have:

s |= P��p(ψ) ⇔ Prσmin
s (ψ) �	 p for �	∈ {≥, >}

s |= P��p(ψ) ⇔ Prσmax
s (ψ) �	 p for �	∈ {≤, <}

A similar reasoning holds for the operator E, where we are interested in
computing the minimum and the maximum expected cost values over all sched-
ulers. From [11] we know that there exist memoryless schedulers σmin and σmax

Model Checking Exact Cost for Attack Scenarios 215

that minimise and maximise, respectively, the expected cumulative reward of
reaching a state that satisfies φ:

Expσmin
s (Zr

Fφ) = inf
σ

Expσ
s (Zr

Fφ)

Expσmax
s (Zr

Fφ) = sup
σ

Expσ
s (Zr

Fφ)

In particular, we can write:

s |= Er
��x(Fφ) ⇔ Expσmin

s (Zr
Fφ) �	 x for �	∈ {≥, >}

s |= Er
��x(Fφ) ⇔ Expσmax

s (Zr
Fφ) �	 x for �	∈ {≤, <}

We refer the reader to [11] for full details on rPCTL. We shall follow the same
ideas when defining the model checking algorithms for erPCTL in Sect. 4.

3 The Logic erPCTL

In this section we introduce erPCTL (Probabilistic Computation Tree Logic with
Exact Rewards) for expressing probability as well as cost-related properties of
MDPs. The logic erPCTL is an extension of the temporal logic rPCTL. It allows
to reason about the properties over cost measures such as probability within a
cost bound or minimum exact cost of an execution.

Definition 4 (erPCTL Syntax). The syntax of the extended logic erPCTL is
defined as follows:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | P��p(ψ) | Er
��x(Fφ) | PJ(ψ | I) | CI(ψ)

ψ ::= Xφ | φ1Uφ2

where a ∈ AP , �	∈ {≥, >,≤, <}, p ∈ Q ∩ [0, 1], J ⊆ [0, 1] is a closed non-empty
interval with rational bounds, x ∈ Q≥0, I ⊆ Q≥0 is a non-empty interval with
rational bounds (allowing infinity as upper bound), and r : S → Q≥0 is a reward
structure.

Similarly to rPCTL, we differentiate between state formulae (φ) and path
formulae (ψ). The operators inherited from rPCTL have the same semantics.
The intuitive interpretation of the new operators is as follows. The probabilistic
operator with cost bound PJ(ψ | I) is used to evaluate the probability over the
paths satisfying the formula ψ and the cost bound I. The cost operator CI(ψ)
is used to evaluate the exact cost of the paths satisfying the formula ψ. These
operators allow us to check queries like “is the probability of an attack in the cost
interval [300,540] smaller than or equal to 0.85?” or “is the cost of all successful
attacks greater than 300?”. Such queries cannot be expressed in rPCTL if by
“cost” we mean “exact cost”.

For simplifying the technical developments, without loss of generality we
move from rational numbers to a sparse subset of the rationals for costs.

216 Z. Aslanyan and F. Nielson

Proposition 1. For any finite set Y ⊆ Q there exists N ∈ N>0 such that
Y ⊆ Z

N � Q, where Z

N is a set of rational numbers expressed as fractions of the
same non-zero denominator N .

Proposition 2. The set Z

N is closed under addition.

Proposition 3. All intervals in Z≥0

N are downwards closed (contain their own
infimum); all upward bounded intervals in Z≥0

N are upwards closed (contain their
own supremum).

Corollary 1. For all natural numbers N ∈ N>0 and sets Y ⊆ Z≥0

N it holds that

sup(Y) ∈

⎧
⎪⎪⎨

⎪⎪⎩

{−∞} if Y = ∅
{+∞} if Y not bounded

fromabove
Y otherwise

inf(Y) ∈
{{+∞} if Y = ∅

Y otherwise

Remark 1. The new operators of erPCTL are treated similarly to the operators
of rPCTL, reducing to the computation of infimum and supremum.

The cost operator CI(ψ) computes the exact cost of reaching a state that
satisfies ψ, where the cost values are summed along the path without multiplying
with probability, as opposed to the computation of the standard expected cost
operator of rPCTL. Hence, with the help of Propositions 2 and 3, we only need
to consider intervals of the form [c1, c2] and [c,∞).

A similar reasoning holds for the cost interval I in the probabilistic operator
with cost bound PJ(ψ | I). However, this is not the case for the probability
interval J . In the evaluation of the formula PJ(ψ | I) probabilities are multi-
plied along the path, hence we cannot use Corollary 1 as Z

N is not closed under
multiplication. Thus, we limit ourselves to consider only closed intervals J . ��

Quantitative extension of erPCTL. The operators PJ(ψ | I) and CI(ψ) are
validating whether or not the given bound is satisfied. They are not determining
the actual probability and cost values. However, as the model checking algorithm
is computing such values, we can extend the logic with quantitative operators
such as Pmin=?(ψ | I), Pmax=?(ψ | I), Cmin=?(ψ) and Cmax=?(ψ). Formally,
such formulae can be expressed as numeric state formulae [18].

The semantics of the propositional logic fragment and of probabilistic and
reward formulae is defined as for rPCTL. Below we will discuss the semantics of
the new operators PJ(ψ | I) and CI(ψ).

3.1 Probabilistic Operator with Cost Bound PJ(ψ | I)

We propose the operator PJ(ψ | I) for probability computation with cost bound,
where ψ is a path formula, J ⊆ [0, 1] is a closed non-empty probability interval
and I ⊆ Q≥0 is a non-empty cost interval of the form [c1, c2] or [c,∞).

Model Checking Exact Cost for Attack Scenarios 217

Before defining the formal semantics of PJ(ψ | I), let us introduce some
useful notation. We define the semantics of each path formula with cost interval
I as follows:

π |= IXφ iff π[1] |= φ ∧ cost(π[0 1]) ∈ I
π |= Iφ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

∧ cost(π[0 · · · j]) ∈ I

The semantics of the probabilistic operator with cost bound is as follows:

s |= PJ(ψ | I) iff Prσ
s (ψ | I) ∈ J for all schedulers σ ∈ Σ

where Prσ
s (ψ | I) = Prσ

s {π ∈ Pathσ
s | π |= Iψ}.

Intuitively, PJ(ψ | I) states that the probability of the paths starting from
state s and satisfying the formula ψ and cost bound I is in the interval J .

The formula PJ(ψ) is treated as a special case of the formula PJ(ψ | I):

PJ(ψ) ≡ PJ(ψ | [0,∞))

As mentioned above, the semantics considers all possible schedulers, but we
can rephrase it in terms of infimum and supremum. It is immediate that the
following equation holds:

P[p1,p2](ψ) ≡ P≥p1(ψ) ∧ P≤p2(ψ)

The result holds also in case of cost intervals on both sides of the equation:

P[p1,p2](ψ | I) ≡ P≥p1(ψ | I) ∧ P≤p2(ψ | I)

We are interested in computing the minimum and the maximum probability
values within given cost bounds:

s |= P≥p(ψ | I) ⇔ infσ∈Σ Prσ
s (ψ | I) ≥ p

s |= P≤p(ψ | I) ⇔ supσ∈Σ Prσ
s (ψ | I) ≤ p

where the clauses above hold thanks to the reduction of costs from Q≥0 to Z≥0

N
explained in Propositions 1, 3 and Corollary 1.

3.2 Cost Operator CI(ψ)

We propose the operator CI(ψ) for exact cost computation, where ψ is a path
formula and I ⊆ Q≥0 is a non-empty cost interval of the form [c1, c2] or [c,∞).

Before defining the formal semantics of CI(ψ), let us introduce some useful
notation. We define the cost set of an infinite path π = s0s1 · · · for each path
formula, denoted by cost(π, ψ), as follows:

cost(π,Xφ) = {cost(π[0 1]) | π[1] |= φ}
cost(π, φ1Uφ2) = {cost(π[0 · · · k]) | π[k] |= φ2 ∧ (0 ≤ i < k : π[i] |= φ1)}

When the path formula φ is not satisfied, then the set is empty. Otherwise, it
contains the set of possible costs.

218 Z. Aslanyan and F. Nielson

Fact 1. For a path π, a cost interval I and a path formula ψ it holds that

π |= I ψ ⇔ ∃c ∈ cost(π, ψ) : c ∈ I

Fact 2. For a path π and a path formula ψ it holds that

π |= ψ ⇔ π |= [0,∞)ψ

The semantics of the cost operator is as follows:

s |= CI(ψ) iff ∀σ ∈ Σ : ∀π ∈ Pathσ
s : ∀c ∈ cost(π, ψ) : c ∈ I

Intuitively, CI(ψ) states that the exact (cumulative) cost of paths starting in
state s and satisfying formula ψ under scheduler σ is in the interval I.

In order to verify the cost formula with a general cost interval, we reduce
the problem to intervals with only lower and upper bounds according to the
following equivalence result:

C[c1,c2](ψ) ≡ C≥c1(ψ) ∧ C≤c2(ψ)

Thus, to verify that the exact cost of each path satisfying the formula ψ is in
the interval it is sufficient to verify that the exact cost of each path satisfying ψ
meets the lower and upper bounds. Again, this problem can be reduced to verify
that the infimum (respectively the supremum) cost meets the bound:

s |= C≥c(ψ) ⇔ (infσ∈Σ infπ∈Pathσ
s

inf cost(π, ψ)) ≥ c

s |= C≤c(ψ) ⇔ (supσ∈Σ supπ∈Pathσ
s

sup cost(π, ψ)) ≤ c

where the clauses above hold thanks to the reduction of costs from Q≥0 to Z≥0

N
explained in Propositions 1, 3 and Corollary 1.

4 Model Checking erPCTL

To verify properties defined in erPCTL we develop a model checking algorithm.
Given a model of the system defined by an MDP M and a property specified
by an erPCTL state formula φ, model checking verifies whether the model M
satisfies the formula φ. For verification of the formula φ the model checking
algorithm automatically determines the states of M that satisfies φ. The algo-
rithm recursively traverses the parse tree of φ in a bottom-up fashion, where the
internal nodes of the parse tree represents the sub-formulae of φ and the leaves
correspond to the constant true or an atomic proposition a ∈ AP . For each sub-
formula φ′ of φ, the algorithm recursively computes the set of satisfying states
Sat(φ′) = {s ∈ S | s |= φ′}.

For atomic propositions, logical connectives, the probabilistic operator and
the reward operator the model checking algorithm is the same as for rPCTL [11].
In the following we will discuss the algorithm for the new operators.

Model Checking Exact Cost for Attack Scenarios 219

4.1 Model Checking the Operator PJ(ψ | I)

The algorithm for the probabilistic operator with a cost bound is reduced to the
computation of the minimum and the maximum values:

Sat(P≥p(ψ | I)) = {s ∈ S | infσ∈Σ Prσ
s (ψ | I) ≥ p}

Sat(P≤p(ψ | I)) = {s ∈ S | supσ∈Σ Prσ
s (ψ | I) ≤ p}

Here we explain how to determine the minimum probability satisfying the for-
mula in the cost interval, separately for each path formula ψ. The computation
for the maximum probability is performed analogously.
The Operator Next (ψ = Xφ). First, we consider the operator Next. For
computing the minimum probability of satisfying Xφ in the cost interval I,

xmin
s = inf

σ∈Σ
Prσ

s (Xφ | I)

we are solving the following equations:

xmin
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ S�∑
s′∈Sat(φ)

r(s)+r(s′)∈I

P (s, s′) if s ∈ SP

minl∈α

{
1 if T (s, l) ∈ Sat(φ) ∧ (r(s) + r(T (s, l))) ∈ I
0 otherwise if s ∈ SA

As the sets S�, SP , SA are disjoint and we identified the set of states for which
xmin

s equals 0, we can compute xmin
s as the unique solution of the system above.

The Operator Until (ψ = φ1Uφ2). Let us now discuss the computation
of PJ(ψ | I) for the operator Until. Again we are interested in computing
infσ∈Σ Prσ

s (ψ | I) and supσ∈Σ Prσ
s (ψ | I). Before presenting the computation,

it is worthwhile noticing that in many real-life scenarios the cost interval I has
only an upper bound or a lower bound. Thus, we develop the computation in
three different cases with respect to the cost bounds; only an upper bound [0, c2],
only a lower bound [c1,∞), or both bounds (cost interval) [c1, c2].
Case I = [0, c2]. Having only an upper bound c2 for cost, the values of interest
are infσ∈Σ Prσ

s (φ1Uφ2 | [0, c2]) and supσ∈Σ Prσ
s (φ1Uφ2 | [0, c2]). First, we define

xmin
s (c) = inf

σ∈Σ
Prσ

s (φ1Uφ2 | [0, c])

where c ≥ 0 is the maximum amount that may be spent, where initially c = c2.
The algorithm follows the corresponding one for the probabilistic operator in
rPCTL. The difference is that in each considered case (set of states) we examine
the cost bound as well. For instance, for the set of states for which Prσ

s (φ1Uφ2)
is 1 we need to ensure that their costs are within the threshold c (r(s) ≤ c):
instead, when their costs exceed the threshold (r(s) > c), these states are in the
set for which Prσ

s (φ1Uφ2) is 0. Thus, xmin
s (c) can be computed by solving the

following equation system:

220 Z. Aslanyan and F. Nielson

xmin
s (c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ Sat(φ2) ∧ r(s) ≤ c (1)
0 if s ∈ S0

min ∨ r(s) > c (2)∑
s′∈S P (s, s′) · xmin

s′ (c − r(s)) if s ∈ SP \(S0
min ∪ Sat(φ2))

∧ r(s) ≤ c (3)
minl∈α xmin

T (s,l)(c − r(s)) if s ∈ SA\(S0
min ∪ Sat(φ2))

∧ r(s) ≤ c (4)

where S0
min = {s ∈ S | ∃σ ∈ Σ : Prσ

s (φ1Uφ2) = 0}.
To better understand the system, let us look into the following table:

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))

≤ c (1) (2) (3) (4)

> c (2) (2) (2) (2)

The first row of the table illustrates the four disjoint sets of states (1–4). The
first column shows the cost threshold. As we have an upper cost bound, all costs
can be divided into two groups; those that are within the bound (≤ c) and those
that are outside the bound (> c). The table maps each possible combination of
a set of states and cost bound for a state with the corresponding equation.

We consider the minimum value of the equation system in case of multiple
solutions. However, the problem is similar to the stochastic shortest path prob-
lem, discussed in [7,10], and thus, the equation system has a unique solution.
Case I = [c1,∞). Let us present now the case when I has only a lower bound. We
are interested in computing the probability of the paths that have cost greater
than or equal to c1. In this case the values of interest are infσ∈Σ Prσ

s (φ1Uφ2 |
[c1,∞)) and supσ∈Σ Prσ

s (φ1Uφ2 | [c1,∞)).
We define

xmin
s (c) = inf

σ∈Σ
Prσ

s (φ1Uφ2 | [c,∞))

where c ∈ Q is the required minimum amount to be spent. First, we identify the
set of states for which Prσ

s (φ1Uφ2) is 0:

S0
min = {s ∈ S | ∃σ ∈ Σ : Prσ

s (φ1Uφ2) = 0}

Observe that having a lower cost bound it might happen that a prefix of a path
satisfies the formula but the required cost budget is not reached. We handle
this situation by continuing the computation until we find a point where both
the formula and the required cost budget are satisfied. Thus, for the set with
probability 1 we check the satisfiability of the cost budget. If a state satisfies
φ2 (s ∈ Sat(φ2)) and the required cost amount c (r(s) ≥ c), then we stop the
computation. Otherwise, we continue the iteration based on a type of the state.

Model Checking Exact Cost for Attack Scenarios 221

xmin
s (c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ Sat(φ2) ∧ r(s) ≥ c (1)
0 if s ∈ S0

min (2)∑
s′∈S P (s, s′) · xmin

s′ (c − r(s)) if s ∈ SP \(S0
min ∪ Sat(φ2))∨ (3a)

(s ∈ SP ∩ Sat(φ2) ∧ r(s) < c) (3b)
minl∈α xmin

T (s,l)(c − r(s)) if s ∈ SA\(S0
min ∪ Sat(φ2))∨ (4a)

(s ∈ SA ∩ Sat(φ2) ∧ r(s) < c) (4b)

We present the following table to associate each set of states and cost amount
for a state with the corresponding equation.

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))

≥ c (1) (2) (3a) (4a)

< c (3b), (4b) (2) (3a) (4a)

Observe that for the states in Sat(φ2) and cost < c there are two equations. The
Eqs. (3b) and (4b) correspond to the continuation of the computation in case
the formula is satisfied but the required cost amount is not reached.

In case of multiple solutions we consider the minimum value of the equation
system above.

Remark 2. Consider an MDP with one state s ∈ SA and r(s) = 0, like the
one presented in Fig. 1. We are interested in computing infσ∈Σ Prσ

s (true Uφ |
[10,∞)). Checking the conditions of the equations above, we can see that the
state s satisfies the condition (4b), as s ∈ Sat(φ) and r(s) < c. From the equation
system we have that xmin

s (c) = xmin
s (c), and thus the system above has infinitely

many solutions.

φstart
s

l

Fig. 1. The MDP
example discussed
in Remark 2.

For ensuring a unique solution of the equation system
we can use the techniques described in [10,11], where the
reader is referred for details. The main idea is to modify the
MDP by removing states with self-loop and zero cost.

General case I = [c1, c2]. Let us now present the general
case, where we have both lower and upper bounds. We are
interested in computing infσ∈Σ Prσ

s (φ1Uφ2 | [c1, c2]) and
supσ∈Σ Prσ

s (φ1Uφ2 | [c1, c2]), where c1 ≤ c2.
We define

xmin
s (c′, c′′) = inf

σ∈Σ
Prσ

s (φ1Uφ2 | [c′, c′′])

where c′ ∈ Q is the required minimum amount to be spent and c′′ ≥ 0 is the
maximum amount that may be spent. Similarly to previous cases, we examine
the cost amount for each set of states. For instance, the states in the set with
probability 1 should satisfy not only the formula φ2 but also be in the cost
interval [c′, c′′], while the states above the cost interval (r(s) > c′′) should be in
the set with probability 0.

222 Z. Aslanyan and F. Nielson

xmin
s (c′, c′′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ Sat(φ2) ∧ r(s) ∈ [c′, c′′] (1)
0 if s ∈ S0

min ∨ r(s) > c′′ (2)∑
s′∈S P (s, s′) · xmin

s′ (c′ − r(s), c′′ − r(s))
if (s ∈ SP \(S0

min ∪ Sat(φ2)) ∧ r(s) ≤ c′′) (3a)
∨ (s ∈ SP ∩ Sat(φ2) ∧ r(s) < c′) (3b)

minl∈A xmin
T (s,l)(c

′ − r(s), c′′ − r(s))
if (s ∈ SA\(S0

min ∪ Sat(φ2)) ∧ r(s) ≤ c′′) (4a)
∨ (s ∈ SA ∩ Sat(φ2) ∧ r(s) < c′) (4b)

We present the following table to associate each set of states and cost amount
for a state with the corresponding equation.

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))

≥ c′ and ≤ c′′ (1) (2) (3a) (4a)

> c′′ (2) (2) (2) (2)

< c′ (3b), (4b) (2) (3a) (4a)

Differently from the previous cases, here the cost values are divided into
three groups; those that are inside the cost interval, those that are below the
cost interval and those that are above the cost interval.

We consider the minimum solution of the equation system above. Like in
the case with only a lower bound, here as well the system above does not have
a unique solution. Again, we can use the techniques presented in [10,11] and
modify the MDP in order to ensure a unique solution.

4.2 Model Checking the Operator CI(ψ)

Let us now present the model checking algorithm for the operator CI(ψ). We
need to compute the exact cost of the paths satisfying the formula ψ and check
whether they are in I. The procedure reduces to the computation of the minimum
and the maximum values depending on the bound:

Sat(C≥c(ψ) = {s ∈ S | (inf
σ∈Σ

inf
π∈Pathσ

s

inf cost(π, ψ)) ≥ c}

Sat(C≤c(ψ) = {s ∈ S | (sup
σ∈Σ

sup
π∈Pathσ

s

sup cost(π, ψ)) ≤ c}

In the following we explain how to determine the minimum and maximum
cost, separately for each path formula ψ.
The Operator Next (ψ = Xφ). We start with the computation of the mini-
mum cost for the operator next. The minimum cost

ymin
s = inf

σ∈Σ
inf

π∈Pathσ
s

inf cost(π,Xφ)

Model Checking Exact Cost for Attack Scenarios 223

for each state s can be computed by means of the following equations:

ymin
s =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞ if s ∈ S�

minP (s,s′)>0

{
r(s) + r(s′) if s′ ∈ Sat(φ)
+∞ otherwise if s ∈ SP

minl∈α

{
r(s) + r(T (s, l)) if T (s, l) ∈ Sat(φ)
+∞ otherwise if s ∈ SA

The equation system above has a unique solution.
The computation of the maximum cost is performed analogously.

The Operator Until (ψ = φ1Uφ2). Similarly to the computations of the oper-
ator U for PJ(ψ | I), the minimum cost of a path satisfying the formula φ1Uφ2

can be computed recursively. For computing the minimum cost of a path, we stop
the first time φ2 is satisfied, i.e., we compute the cost of the path π = s0 · · · sj

where j = min{j | π[j] |= φ2 ∧ (∀k < j : π[k] |= φ1)}.
Thus, the computation of

ymin
s = inf

σ∈Σ
inf

π∈Pathσ
s

costinf(π, φ1Uφ2)

corresponds to solving the following equations:

ymin
s =

⎧
⎪⎪⎨

⎪⎪⎩

r(s) + min({ymin
s′ | s |= φ1 ∧ P (s, s′) > 0} ∪{0 | s ∈ Sat(φ2)})

if s ∈ SP ∨ s ∈ S�
r(s) + min({ymin

s′ | s |= φ1 ∧ T (s, l) = s′} ∪{0 | s ∈ Sat(φ2)})
if s ∈ SA

Note that the system is solved in the set Q ∪ {−∞,+∞}, where inf ∅ =
min ∅ = +∞. Thus, when there is no state satisfying the formula (the set of
solutions is empty), the system returns +∞. The equation system above might
give more than one solution. In this case we consider the maximum one.

The equations for computing supσ∈Σ supπ∈Pathσ
s

costsup(π, φ1Uφ2)) can be
obtained by replacing “min” with “max” in the system above. Observe that in
the computation of the maximum cost we do not stop the first time φ2 is satisfied
but we continue till the last time it is satisfied.

For a finite MDP M and an erPCTL formula φ, we expect the complexity
of the model checking algorithm to be polynomial in the size of M and linear in
the size of the formula φ.

5 Analysis of Attack Trees

So far we have defined the extended logic erPCTL and presented a model check-
ing algorithm for it. We now formalise the evaluation of attack scenarios using
probabilistic model checking of erPCTL. The basic idea is to transform attack
trees into MDPs, as an attack tree with probability and cost attributes encodes
behaviour encompassing both probabilistic and nondeterministic features.

224 Z. Aslanyan and F. Nielson

Before presenting the translation, it is worthwhile noticing that in an attack
tree the order in which the basic actions are performed is not fixed. However, in
the MDP this needs to be made explicit. Since we assume that the basic actions
of a tree are independent, we will also assume any linear order of the set of basic
actions Act.

5.1 From Attack Trees to MDPs

We construct an MDP M = (S, α, P, T, s0, AP,L) from an attack tree t accord-
ing to Table 1, where s0 = construct[t](Act, ∅, ∅). The set of states S is the dis-
joint union of sets SA, SP , S�, S = SA � SP � S�, while the set of actions
is α = {Y,N}. The transition functions P, T and the labelling function L
are constructed according to Table 1, and the set of atomic propositions is
AP = Act � {success, failure}. The target state space S is exponential in the
size of t, as often the size of a model is exponential in the size of the description
that gives rise to the model.

The call construct[t](Act, ∅, ∅) of the recursive function construct, defined in
Table 1, constructs an MDP from t. The procedure first constructs all nondeter-
ministic transitions of the target MDP, and then the probabilistic transitions.

Throughout the evaluation of the function we assume to have an
attack tree t as a global parameter. At each step of the evaluation of
construct[t](A,Done,Succ) the first parameter A corresponds to the remaining
set of attacker’s basic actions that has still to be evaluated, the second parame-
ter Done is the set of attempted actions, and the last parameter Succ is the set
of attempted and succeeded actions. The construction function is structurally
defined over the set of basic actions as explained below.

Table 1. The construction of an MDP from an attack tree

Model Checking Exact Cost for Attack Scenarios 225

If the set of remaining actions contains the action a, A = A′ ∪ {a}, we
create a nondeterministic state in the MDP labelled with a and with two out-
going transitions. One transition corresponds to attempting a and is labelled
with the action Y and cost c(a), while the other transition corresponds to not
attempting a and is labelled with the action N and cost 0. The successors of the
state are constructed recursively, by calling construct[t](A′,Done∪{a},Succ) and
construct[t](A′,Done,Succ), respectively.

If the set of remaining actions is empty, A = ∅, while the set of attempted
actions contains the action a, Done = Done′ ∪ {a}, we create a probabilistic
state labelled with a and with the outgoing transitions corresponding to the
success and the failure of the attempted action a. We label these transitions with
probabilities p(a) and 1−p(a), and construct the successor of the state by calling
construct[t](∅,Done′,Succ ∪ {a}) and construct[t](∅,Done′,Succ), respectively.

If both the set of remaining actions and the set of attempted actions are
empty, A = ∅,Done = ∅, then we are at the end of the procedure. We create a
final state and label it with the result of the evaluation of t over the success of
the basic actions, [[t]](Succ), where [[t]] is the Boolean formula of which the tree t
is a parse tree and the atoms in the formula are tt if the corresponding actions
are in the set Succ and ff otherwise.

Observe that MDPs constructed from attack trees are finite and acyclic.
Example. Let us introduce an example that we will develop in the following. We
consider a small fragment of the real-life scenario of cloud environment studied
in the project TREsPASS [20], where an attacker wants to steal money from a
cardholder by forcing him/her to pay for fake services. In order to do so, the
attacker needs to threaten or blackmail. For a successful threatening the attacker
should threaten the cardholder and access the household. In order to succeed in
blackmailing the attacker should collect necessary information and blackmail the
cardholder. The corresponding attack tree is shown in Fig. 2, where we label the
leaves to refer to them easily.

∨
Make cardholder pay

∧
threaten

∧
blackmail

access
household

a

threaten
card-
holder

t

collect
infor-
mation

c

blackmail
card-
holder

b

Fig. 2. An attack tree for forcing the cardholder to pay

The probability of success and cost values for the basic actions of the tree
are given in Table 2, and we consider the following linearly ordered set for basic

226 Z. Aslanyan and F. Nielson

Table 2. Probabilities and costs for the basic actions in the example

Label Name of the node Probability Cost

a Access household 0.6 70

t Threaten cardholder 0.3 30

c Collect information 0.55 50

b Blackmail cardholder 0.2 30

astart

t

t

Fig. 4(a)

Fig. 4(b)

Fig. 5(a)

Fig. 5(b)

Y

N

Y

N

Y

N

Fig. 3. The MDP Mt constructed from the tree t. Due to the size of Mt we have split
it into subfigures

actions, Act = {a, t, c, b}. Determining realistic estimates for the probabilities
and costs for basic actions is a research topic in itself and is outside the scope
of this work.

Let us construct an MDP from the tree t displayed in Fig. 2, by following the
rules described in Table 1. First, all nondeterministic transitions are constructed,
and then the probabilistic ones. The resulting MDP Mt is presented in Figs. 3,
4 and 5.

5.2 Evaluation of Attack Scenarios

In the previous section we have proposed a translation from attack trees to
MDPs. The main focus of this section is to show how to evaluate security prop-
erties by means of model checking erPCTL. We start with a discussion of the
security properties of interest and then discuss their representation in erPCTL.
Security properties. Attributes to basic actions play an important role in
the analysis of an attack scenario. They are used to express various properties of
interest. In this paper we characterise the basic actions of an attack scenario with
the success probability and the cost of performing the action. The properties we
study range from quantitative to qualitative as well as from one-objective to
multiple-objective properties. We formalise them in erPCTL.

We study probability-related properties such as “is the success probability of
an attack greater than or equal to 0.2?” or “what is the maximum probability
of an attack?”. The first qualitative property is expressed in erPCTL as the
formula P≥0.2(F success), while the second quantitative property is express as
the formula Pmax=?(F success).

Model Checking Exact Cost for Attack Scenarios 227

c

b

b

a

a

a

a

t

t

t

t

t

t

t

t

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b

b

b

b

b

Y

N

Y

N

Y

N

75

25

75

25

75

25

75

25

6

4

6

4

6

4

6

4

6

4

6

4

6

4

1

75

25

75

25

75

25

75

25

1

1

1

1

1

1

1

1

25
75

25
75
25
75
1

25

75

1

25
75
1

(a)

c

b

b

a

a

a

a

c

c

c

c

b

b

b

b

b

b

Y

N

Y

N

Y

N

75

25

75

25

75

25

1

75

25

75

25

1

1

1

1

25
75

1

25
75

1

(b)

Fig. 4. A fragment of the MDP Mt constructed from the tree t, where � stands for
success and ✗ stands for failure

The characterisation of basic actions with cost allows to compute the cheapest
attack, phrased as “what is the minimum cost of an attack?”. This property is
expressed by the formula Cmin=?(F success). Moreover, having a cost budget c
for the attacker, we can study more specific properties. For example, the attacker
might want to know if whatever he/she does the cost of all successful attacks
is in I, i.e., whether the attacker can always succeed by spending no more than
the budget. We can express such property with the question “is the cost of
all successful attacks within the budget c?” and phrase it in erPCTL with the
formula C[0,c](F success). On the other hand, a defender who is looking at the
attack scenario might want to verify whether all successful attacks are outside
the attacker’s budget, i.e., “is the cost of all successful attacks greater than or
equal to c?”. The corresponding formula is C[c,∞)(F success).

So far the cost-related properties we considered are evaluated over all attacks.
However, the (clever) attacker might want to know if there exists at least one suc-
cessful attack within the budget c. We can express this property as the formula
¬C[c,∞)(F success).

Our framework allows also to study multiple-objective properties such as “is
there an attack with success probability at least 0.4 and cost at most 1500?” or

228 Z. Aslanyan and F. Nielson

c

b

b

t

t

t

t

c

c

c

c

b

b

b

b

b

b

Y

N

Y

N

Y

N

6

4

6

4

6

4

1

75

25

75

25

1

1

1

1

25

75

1

25

75

1

(a)

c

b

b

c

c

b

b

b

Y

N

Y

N

Y

N

75

25

1

1

1

25

75

1

(b)

Fig. 5. A fragment of the MDP Mt constructed from the tree t

“what is the maximum probability of an attack with cost at most 1500?”. They
expressed by the formulae P≥0.4(F success | [0, 1500]) and Pmax=?(F success |
[0, 1500]), respectively.
Example. Consider the MDP given in Fig. 3. We exploit the model check-
ing algorithm of erPCTL to verify the security properties mentioned above.
For example, the verification of the probabilistic query P≥0.2(F success) returns
“false”, meaning that there exists at least one attack with success probability
less than 0.2. We compute the maximum success probability of an attack with
the query Pmax=?(F success), which is 0.549.

Assume the attacker has a cost budget equal to 1500 and let us check whether
all successful attacks are within the budget. The query C≤1500(F success) returns
“false” meaning that there exists a successful attack with cost greater than the
budget. We can also compute the minimum cost of a successful attack with the
query Cmin=?(F success), which is 900.

Finally, we verify multi-objective queries, such as P≥0.4(F success | [0, 1500])
and Pmax=?(F success | [0, 1500]). The first property evaluates to “false” meaning
that there is no attack with probability at least 0.4 and cost at most 1500, while
the second property computes the maximum probability of an attack with cost
at most 1500, which is 0.18.

6 Conclusion

Attack trees constitute a useful tool to study attack scenarios and to present
the behaviour of an attacker in an intuitive way. Security attributes, associated
with basic actions of attack trees, provide the basis for various types of analysis.
Many analyses focus on the evaluation of an exact cost, i.e., the sum of the costs
of basic actions leading to an attack, which allows to investigate the required
resources for an attack. Exact cost analyses are used to identify the cheapest
attacks or to verify that a successful attack is within an attacker’s budget.

Model Checking Exact Cost for Attack Scenarios 229

Probabilistic model checking is used to verify automatically whether or not
a model satisfies properties of interest specified in rPCTL. This logic allows to
reason about probability and expected rewards, thus encompassing many secu-
rity properties typically investigated on attack trees. However, rPCTL operators
cannot evaluate exact cost, preventing to rely on probabilistic model checking as
a general framework for attack trees analysis.

In this work, we extended rPCTL with cost-related operators. In the extended
logic erPCTL the defined cost-bounded probabilistic operator evaluates the
probability of an event satisfying the given cost bounds, while the exact cost
operator analyses the cost of the occurrence of an event. Moreover, we developed
a model checking algorithm for the novel operators of erPCTL. The algorithm
works on standard MDPs, that we obtain from attack trees with a transformation
detailed in the paper.

Since we have considered a standard attack tree model, most properties of
interest concern reachability of a success state, i.e., the path formula has the
form (F success). However, other path formulae allow to capture more elaborate
scenarios. For instance, considering the notion of a detected attack, then we
would verify whether the property (¬detected U success) holds or not.

The benefit of our contribution is two-fold. On the one hand, we have
described a unifying framework where different analyses of attack trees can be
seamlessly encoded, studied, and compared. On the other hand, the tool support
available for model checking problems can be leveraged to analyse attack trees,
and perhaps the features of the tools can inspire new interesting analyses.

As future work, we plan to provide a proof-of-concept implementation of
our framework. Moreover, strategy synthesis seems a natural extension to the
framework, so as to obtain explicitly what are the attacks that satisfy a given
erPCTL property, if any. As for improving the model checking algorithm, the
formula CI(ψ) could be verified by resorting to weighted-CTL techniques, as
probabilities play no role. Finally, it would be worth moving from attack trees
and MDPs to attack-defence trees and games, and propose a logic for evaluating
exact cost properties of an attack-defence scenario.

Acknowledgment. Part of the research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 318003 (TRESPASS). Special thanks also go to Roberto Vigo for
valuable comments.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-40903-8 8

2. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54792-8 16

http://dx.doi.org/10.1007/978-3-540-40903-8_8
http://dx.doi.org/10.1007/978-3-642-54792-8_16

230 Z. Aslanyan and F. Nielson

3. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7 6

4. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, 27 June–1 July 2016, pp. 105–119 (2016).
http://dx.doi.org/10.1109/CSF.2016.15

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the logical characterisa-
tion of performability properties. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.)
ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000). doi:10.
1007/3-540-45022-X 65

6. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008). http://mitpress.mit.edu/9780262026499

7. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991). http://dx.doi.org/10.1287/moor.16.3.580

8. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013)

9. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logics of Programs, Workshop, pp. 52–71.
Yorktown Heights, New York, May 1981. http://dx.doi.org/10.1007/BFb0025774

10. De Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford,
CA, USA (1998). AAI9837082

11. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21455-4 3

12. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 11

13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994). http://dx.doi.org/10.1007/BF01211866

14. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49635-0 9

15. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
New York (1976)

16. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense
trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp.
49–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37682-5 5

17. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via
priced timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS
2015. LNCS, vol. 9268, pp. 156–171. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-22975-1 11

18. Nielsen, B.F., Nielson, F., Nielson, H.R.: Model checking multivariate state
rewards. In: Seventh International Conference on the Quantitative Evaluation of
Systems, QEST 2010, Williamsburg, Virginia, USA, 15–18 September 2010, pp.
7–16 (2010). http://dx.doi.org/10.1109/QEST.2010.10

19. Schneier, B.: Attack Trees: Modeling Security Threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999). http://www.ddj.com/security/184414879

http://dx.doi.org/10.1007/978-3-662-46666-7_6
http://dx.doi.org/10.1109/CSF.2016.15
http://dx.doi.org/10.1007/3-540-45022-X_65
http://dx.doi.org/10.1007/3-540-45022-X_65
http://mitpress.mit.edu/9780262026499
http://dx.doi.org/10.1287/moor.16.3.580
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-3-642-19835-9_11
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.1007/978-3-642-37682-5_5
http://dx.doi.org/10.1007/978-3-319-22975-1_11
http://dx.doi.org/10.1007/978-3-319-22975-1_11
http://dx.doi.org/10.1109/QEST.2010.10
http://www.ddj.com/security/184414879

Model Checking Exact Cost for Attack Scenarios 231

20. The TREsPASS Project (2014). https://www.trespass-project.eu
21. Ummels, M., Baier, C.: Computing quantiles in markov reward models. In:

Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 353–368. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37075-5 23

https://www.trespass-project.eu
http://dx.doi.org/10.1007/978-3-642-37075-5_23

	Model Checking Exact Cost for Attack Scenarios
	1 Introduction
	2 Preliminaries
	2.1 Attack Trees
	2.2 Markov Decision Processes
	2.3 Probabilistic Model Checking

	3 The Logic erPCTL
	3.1 Probabilistic Operator with Cost Bound PJ(I)
	3.2 Cost Operator CI()

	4 Model Checking erPCTL
	4.1 Model Checking the Operator PJ(I)
	4.2 Model Checking the Operator CI()

	5 Analysis of Attack Trees
	5.1 From Attack Trees to MDPs
	5.2 Evaluation of Attack Scenarios

	6 Conclusion
	References

