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Abstract. Graph rewriting formalisms are well-established models for
the representation of biological systems such as protein-protein inter-
action networks. The combinatorial complexity of these models usually
prevents any explicit representation of the variables of the system, and
one has to rely on stochastic simulations in order to sample the possi-
ble trajectories of the underlying Markov chain. The bottleneck of sto-
chastic simulation algorithms is the update of the propensity function
that describes the probability that a given rule is to be applied next.
In this paper we present an algorithm based on a data structure, called
extension basis, that can be used to update the counts of predefined
graph observables after a rule of the model has been applied. Extension
basis are obtained by static analysis of the graph rewriting rule set. It is
derived from the construction of a qualitative domain for graphs and the
correctness of the procedure is proven using a purely domain theoretic
argument.

1 Introduction

1.1 Combinatorial Models in Systems Biology

As the quest for a cure for cancer is progressing through the era of high through-
put experiments, the attention of biologists has turned to the study of a collection
of signaling pathways, which are suspected to be involved in the development of
tumors.

These pathways can be viewed as channels that propagate, via protein-
protein interactions, the information received by the cell at its surface down
to the nucleus in order to trigger the appropriate genetic response. This sim-
plified view is challenged by the observation that most of these signaling cas-
cades share components, such as kinases (which tend to propagate the signal)
and phosphatases (which have the opposite effect). This implies that signaling
cascades not only propagate information, but have also evolved to implement
robust probabilistic “protocols” to trigger appropriate responses in the presence
of various (possibly conflicting) inputs [1].

As cancer is now believed to be caused by a deregulation of such protocols,
usually after some genes coding for the production of signaling components have
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mutated, systems biologists are accumulating immense collections of biological
facts about proteins involved in cell signaling1. The hope of such data accumu-
lation is to be able to identify possible targets for chemotherapy that would be
specialized to a specific oncogenic mutation.

Although biological data are being massively produced thanks to high
throughput experiments, the production of comprehensive models of cell sig-
naling is lagging. One of the reasons for the unequal race between data produc-
tion and data integration is the difficulty to make large combinatorial models
executable.

1.2 Rule-Based Modeling

Site (or port) graph rewriting techniques, also called rule-based modeling [2,3],
provide an efficient representation formalism to model protein-protein interac-
tions in the context of cell-signaling. In these approaches, a cell state is abstracted
as a graph, the nodes of which correspond to elementary molecular agents (typ-
ically proteins). Edges of site graphs connect nodes through named sites (some-
times called ports) that denote a physical contacts between agents. Biological
mechanisms of action are interpreted as rewriting rules given as pairs of (site)
graphs patterns.

Importantly, rules are applied following a stochastic strategy, also known
as SSA or Gillespie’s algorithm for rule-based formalisms [4]. KaSim [5] and
NFSim [6] are two efficient rule-based simulators that implement this algorithm.

A critical part of the stochastic rewriting procedure is the maintenance, after
each rewriting event, of all possible matches that rules may have in the current
state of the system, which is a (large) site graph called mixture2. This number
determines the probability that a rule is to be applied next. In general we call
observables the graph patterns the matches of which need to be updated after
each rewriting event. If all rules’s left hand sides are mandatory observables, any
biologically relevant observation the modeler wishes to track over time has to be
declared as an observable as well.

1.3 Rewrite and Update

Beside the initialization phase where all observable matches are identified in the
initial graph, observable matches need to be updated after a state change. The
update phase can be split into two steps: the negative update in which observable
matches that no longer hold in the new state are removed, and the positive update
in which observable matches that have been created by a rule application should
be added.
1 More than 18,000 papers mentioning the protein EGFR, a major signaling protein,

either in their title or abstract have been published since 2012. For the year 2015
only there are nearly 5,000 papers for EGFR (source pubmed).

2 To fix the intuition, let us say that a realistic model of cell signaling would have a
few million agents of about a hundred protein types, and several hundreds of rewrite
rules, possibly thousands when refinements are automatically generated.
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Contrarily to multiset rewriting, in graph rewriting the effect of a rule on
a mixture cannot be statically determined. Once a rule has been applied it is
necessary to explore the vicinity of the modification to detect potential new or
obsolete matches. During this exploration, one may restrict to searching for graph
patterns that have a chance to be added (resp. removed) by the modification. In
the algorithm presented in Ref. [4], a relation called activation (resp. inhibition)
is computed statically during the initialization phase of a simulation. After a
rule r has been applied, the algorithm will look for new instances of observable o
only if r activates o. Similarly, a given instance of an observable o′ may disappear
after the application of r only if r inhibits o′.

There are two essential problems left aside by this simple update method:
first, knowing that a new instance of an observable might be created (or deleted)
as a consequence of a rewrite does entail one knows in how many ways this
observable can be found. In particular when dealing with a large amount of pos-
sible symmetries, there might be several equivalent ways to find a new match.
So the first problem to deal with is of combinatorial nature: we wish to statically
identify all the different manners an observable can be discovered, starting the
exploration from a particular sub-graph of this observable (which corresponds
to part that may be created or erased by a rewrite). The second issue is to avoid
having redundant explorations of the graph after a rewrite: with the classical
method sketched above, each observable activated (or inhibited) by the occur-
rence of a rule need to be searched for. Yet several observables might share
sub-graphs. This is particularly true in models that present a lot of refinements
of the same rule [7]. In other terms, we wish to design an update method that
factors explorations of the graph that can be shared by several observables.

1.4 Outline

This paper presents a novel method for incremental graph rewriting that
addresses both issues listed above. We first introduce a domain of concrete graphs
(Sect. 2), which can be tuned to various types of graphs and, importantly for the
application case of this work, to site-graphs.

This domain will serve as mathematical foundation in order to specify the
incremental update function (Sect. 3).

We will then describe extension bases (Sect. 4), which can be viewed as a rep-
resentation of the activation and inhibition relations taking into account sharing
and conflict between observables.

These extension bases enable us to implement our incremental update pro-
cedure (Sect. 5), and we eventually check that the method is correct using the
domain theoretic argument developed in Sect. 3.



204 P. Boutillier et al.

2 Concrete Domain

O1 O2

x

y

z

t

u

v

x

yv

t

uz

y

zu

v

Observables
(abstract graphs)

(concrete)
Graph state K

Two instances
of O1 in K

One instance
of O2 in K

Graph terms can be viewed in two dif-
ferent manners: observables of the system
(for instance the left hand sides of the
rules) are understood as abstract graphs,
while the graph representing the state that
is to be rewritten is concrete. In abstract
graphs, nodes identifiers are used up-to con-
sistent renaming, and two isomorphic observ-
ables denote in fact the same observable, for
instance any graph in the shape of a triangle
or a rectangle (see right figures).

The state of the rewriting system, however, can be viewed as a concrete
graph in the sense that its nodes are used as a reference to track (potentially
isomorphic) observables.

Thus, observable instances in the state are concrete: a new instance may
appear in the state although isomorphic instances existed before.

Since the present work deals with the problem of updating observable
instances in a graph state, following a rewriting event, we begin by establishing a
simple mathematical framework, which enables us to describe in an extensional
fashion, the universe in which concrete graphs live.

2.1 Graphs as Sets

Let N be a countable set of nodes with meta-variables {u, v, . . . }. Edges E ⊆
P2(N ) are unordered pairs of nodes with meta-variables {e, e′ . . . }. We say that
e and e′ are connected, whenever e ∩ e′ �= ∅. We use meta-variables G,H, . . . to
denotes elements of P(E).

We consider a coherence predicate Coh : P(E) → 2, which is downward
closed by inclusion, i.e. Coh G and H ⊆ G implies Coh H. A concrete graph
is a coherent element of P(E). We use G ⊆ P(E) to denote the set of concrete
graphs, i.e. G =def {G ∈ P(E) | Coh G} and for all G ∈ G, we use the notation
|G| =def

⋃ {e ∈ G}.
Concrete graphs and set inclusion form the concrete domain of coherent

graphs. Note that G is an instance of Girard’s qualitative domain [8]. For all
H ⊆ G, we use ↑H and ↓H to denote the upper and lower sets of H in G. Note
that in particular ↓{G} = P(G).

For all graphs G,H we say that G is more abstract than H (resp. more
concrete) whenever G ⊆ H (resp. H ⊆ G).

Kappa Graphs. Since efficient Kappa graph rewriting is the main motivation of
the present work, we spend some time now to describe Kappa and show how the
formalism fits into our general framework.

Kappa graphs are particular kinds of coherent graphs where a node denotes a
protein patch, which can either be free (i.e. not connected to any other protein)
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or in contact with another protein patch. We encode this by adding a bit of
structure to nodes, taking N ⊆ A × N where A =def {a, b, . . . } is a countable
set of agents (protein individuals) that are sorted by the map κ : A → K, where
K = {A,B,C, . . . , free} is a finite set of node kinds (the biological name of the
protein) with a distinguished element free. Therefore in Kappa, a node is of
the form u = (a, i) where i ∈ N is called the site of agent a (a patch of a).
A signature Σ : K → N maps a kind to a (finite) sequence of sites identified by
natural numbers, with Σ(free) =def 1.

The coherence relation for Kappa is Coh =def Sorted ∧ ConfFree, where:

Sorted(G) =def ∀e ∈ G. ((a, i) ∈ e =⇒ i ≤ (Σ ◦ κ)a)
ConfFree(G) =def ∀e, e′ ∈ G. (e = e′ ∨ e ∩ e′ = ∅)

A

B B

A

Free Free

(a, 1)

(b, 0)

(b, 1)

(c, 0) (c′, 0)

(b′, 1)

(b′, 0)

(a′, 1)

We picture on the right an example of a Kappa graph.
Nodes (small circles) sharing an agent are depicted
attached to the same large circle, named after the kind
of the agent. The node (b, 1) that is connected to a free
node encodes the fact that this protein patch is avail-
able for a future interaction. The corresponding graph
is obtained as the union of {{(a, 1), (b, 0)}, {(b, 1), (c, 0)}}
and {{(a′, 1), (b′, 0)}, {(b′, 1), (c′, 0)}}.

2.2 Effects

In the graph rewriting literature, techniques to decide whether a rule can be
applied to a graph come in various flavors [9–11]. In the present work, we do not
need to discuss this problem and focus on what happens after a rule has been
applied to a graph: we call this the effect of a rewrite. The only important point
here is that we only consider deterministic effects. For the reader knowledgeable
in graph rewriting techniques, they correspond to effects induced by double
pushout rewriting [9], where the only way to delete a node is to explicitly delete
all edges in which the node appears.

The effect, η, η′, . . . , of a rewrite can be decomposed as a triple of the form
(G,H−,H+) ∈ G3 where G is the sub-graph that is tested by η, and where H−

and H+ are respectively the abstraction and concretization steps of η. Intuitively,
G are the edges that are required for the rewrite to take place (the match of
the left hand side of a rule), H− and H+ are the edges that are respectively
removed and added during the rewrite step. We do not consider side-effects, i.e.
those that do not satisfy H− ⊆ G. An effect η = (G,H−,H+) occurs on a graph
K if:

– It is valid, i.e.: G ⊆ K
– It is visible, i.e.: K ∩ H+ = ∅
– It is defined, i.e.: (K\H−) ∪ H+ ∈ G
For all such effect η and graph K, we define η · K =def (K\H−) ∪ H+. For
all effect η = (G,H−,H+) and for all graph K in which η occurs, we define



206 P. Boutillier et al.

pre(η) =def G, the set of edges that are necessarily present in K. Similarly we
define post(η) =def (G\H−) ∪ H+ which is the set of edges that are necessarily
present in η · K. For the remaining of the paper we only discuss defined effects
which are both valid and visible3.

Kappa Effects. To conclude this section and in order to illustrate effects in the
context of Kappa, we show below an effect η and its occurrence in the graph K
(Fig. 1).

Fig. 1. Illustrating effect in Kappa: η = (G, H−, H+) occurs in K, with K′ = η · K.

2.3 The Update Problem

Let Φ denote the set of possible effects over graphs in G and consider a fixed
set O ⊆ G of observable graphs. Let Obs : G → P(O) be the observation map
defined as Obs G =def {O ∈ O | O ⊆ G}.

A macroscopic effect ℵ ∈ P(O) × P(O) is a pair of observable sets ℵ =
〈Ω−, Ω+〉 satisfying Ω− ∩ Ω+ = ∅. For all O′ ⊆ O, we define ℵ � O′ =def

(O′\Ω−) ∪ Ω+. Intuitively a macroscopic effect describes the set of observables
that should be removed (in Ω−) and added (in Ω+) after a rewrite has occurred.

We are now in position to state the incremental update problem: let K be a
graph and η an effect such that η · K is defined. We wish to define a function

Δ : Φ → G → P(O) × P(O)

that satisfies the following equation:

(Δ η K) � (Obs K) = Obs (η · K) (1)
3 All rewriting techniques satisfy these properties, although only double pushout guar-

antees the absence of side effect.
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Application. Whenever all possible effects η ∈ Φ satisfy pre(η) ∈ O, and given the
set OK of observables that have an occurrence in a graph K, the a priori costly
function Obs (η · K) can be evaluated by computing (Δ η K) � (Obs K). This
is a property that is desirable for any efficient implementation of the stochastic
simulation algorithm (SSA) [4], in which OK needs to be updated after each
rewrite step in order to evaluate the propensity function.

The function Δ will be characterized as a fixpoint of an incremental (one-
step) update function on a particular directed sub-domain of G. We turn now to
its specification.

3 Exploration Domains

O1

O2

O3

O4

O5

Exploration
domain
(pos.)

Exploration
domain
(neg.)

Invariant
observables

False
positive

(neg. upd.)

False
positive

(pos. upd.)

H−
i H+

i

Ki Ki+1During a sequence of rewrites K0,K1, . . . , Kn,
the effect ηi = (Gi,H

−
i ,H+

i ) that occurs
during the transition from Ki to Ki+1 pro-
vides the starting point of the update pro-
cedure: the observables that should disap-
pear are those that are above H−

i and below
Ki, while the observables that should appear
are at those above H+

i and below Ki+1 (see
the diagram on the right). Notice that both
observables O4 and O5 are above H+

i but only
O4 is also in ↓{Ki+1}. In this case O5 is not
created by the effect and we call it a false pos-
itive. In the same example, the instance O3 is preserved by the effect, as a con-
sequence it cannot be above either H−

i or H+
i .

In the following of this section we assume a fixed graph K and an effect
η =def (G,H−

η ,H+
η ) such that η · K is defined. In order to emphasize the symme-

try between positive and negative update, we introduce the notation K− =def K,
K+ =def η · K, π−

η =def pre(η) and π+
η =def post(η) (see Sect. 2.2). In the follow-

ing, the informal superscript ε can be replaced globally by either − or +

in order to specialize the mathematical description to the negative or positive
update.

3.1 Observable Witnesses

Define first the set of witness graphs (W,W ′, . . . ), the presence of which will
serve as a proof of negative or positive update of an observable, induced by the
occurrence of η:

Wε
η =def {W ∈ G | ∃O ∈ O, O ∩ Hε

η �= ∅ ∧ W = O ∪ πε
η}

For all W ∈ Wε
η , we say that W is an η-witness of O ∈ O if O ∩ Hε

η �= ∅ and
W = O ∪ πε

η and we write W �ε
η O. Notice that W may be the η-witness of

several observables.
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Proposition 1. For all W ∈ W−
η and O ∈ O such that W �−

η O:

W ⊆ K− ⇐⇒ O ∈ (Obs K−) ∧ O �∈ (Obs K+) (2)

Similarly, for all W ∈ W+
η and O ∈ O such that W �+

η O:

W ⊆ K+ ⇐⇒ O �∈ (Obs K−) ∧ O ∈ (Obs K+) (3)

Proposition 1 guarantees that after η has occurred on K, it is sufficient to
extend the graph πε

η with edges taken from Kε in order to reach a witness in
Wε

η . For each W ⊆ Kε that are more concrete than πε
η, the observable O ∈ O

that satisfies W �ε
η O is (positively or negatively) updated.

3.2 Exploration Boundaries

The updatable witnesses after the occurrence of η are the witnesses that are
more abstract than Kε. Since ↓{Kε} forms a complete lattice (it is simply the
sub-parts of Kε), the graph:

Ŵ ε
η,K =def

⋃
{W ∈ Wε

η | W ⊆ Kε}
is always defined and corresponds to the union of all witnesses that are present
in Kε.

Definition 1 (Optimal update domain). We call:

X ε
η,K =def ↓{Ŵ ε

η,K} ∩ ↑{πε
η}

the optimal (negative or positive) update domain for η and K.

Proposition 2. For all witness W ∈ Wε
η , W ⊆ Kε if and only if W ∈ X ε

η,K .

Proposition 2 indicates that after an effect η has occurred, X ε
η,K is the small-

est domain one needs to explore in order to discover all updatable witnesses.
Yet, one cannot hope that a realistic update procedure stays within the bound-
aries of X ε

η,K because some witnesses may seem to be updatable given πε
η, but

are in fact not reachable within Kε (they are the false positives, discussed in
the introduction of this section). The remaining of this section is dedicated to
the specification of the directed set that is being explored during the update
procedure, and that is defined as an over-approximation of X ε

η,K .
We first define the η-domain which is coarsening of the optimal update

domain:

Definition 2 (η-Domain). For all H ⊆ G, we define the ∪-closure of H, writ-
ten ↑∪ H, as:

↑∪ H =def max{G ∈ G | G =
⋃

i

Hi ∈ H}

where for all H ⊆ G, max H is the set of maximal graphs in H. We use this
construction to define the η-domain:

Dε(η) =def ↓(↑∪ Wε
η) ∩ ↑{πε

η}
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Notice that ↑∪ H =
⋃ H when H has a supremum.

Contrary to the optimal update domain X ε
η,K (Definition 1), the η-domain

Dε(η) is independent of Kε. By itself it is not a correct over-approximation of
the optimal update domain, since it is not in general a directed set. However
we get a fine grained approximation of the optimal update domain when one
restricts (on the fly) explorations of Dε(η) to graphs that are also below Kε (see
Fig. 2 for illustration):

Proposition 3 (Over-approximation). For all effect η and graph K such
that η occurs on K, the following directed sets are ordered by inclusion:

X ε
η,K ⊆ (Dε(η) ∩ ↓{Kε}) ⊆ ↓{Kε} (4)

∅

X ε
η,K

↓{Kε}

πε
η

Dε
η

Ŵ ε
η,K

Kε

⋃
(Dε

η ∩ ↓ {Kε})

Fig. 2. An exploration of X ε
η,K (leftmost dotted line) and an exploration of Dε(η) ∩

↓{Kε} (rightmost dotted line). Circles denote witnesses. In the first exploration all
edges that are added along the exploration belong to a witness that is also within Kε.
The exploration stops exactly at the supremum of all reachable witnesses, i.e. the sup
of the optimal update domain (Definition 1). The rightmost exploration correspond to
a path where edges are added only if the resulting graph belong to the η-domain Dε(η)
(Definition 2) and is present in ↓{Kε}. The difference between the endpoints of the
rightmost and leftmost explorations corresponds to the edges that have been inspected
with no corresponding updatable witness.

3.3 Specifying the Incremental Update Function

We have now everything in place to specify the incremental update function Δ
of Sect. 3. In order to do so, we require that a call to (Δ η K) be the fixpoint of
a one-step exploration function that we specify now. Consider a function incε

η,K :

incε
η,K : Dε(η) × P(Wε

η) → Dε(η) × P(Wε
η)
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such that whenever
incε

η,K〈X,R〉 = 〈X ′,R′〉
the following properties hold:

X ′ = X ∪ G if there exists G ⊆ Kε satisfying G ∩ X = ∅ and G ∈ Dε(η)
X ′ = X otherwise (5)

R′ = {W ∈ Wε
η | W ⊆ X} (6)

Intuitively, the first argument of the function is a graph X (for explored)
corresponding the current endpoint of the exploration of Dε(η) ∩ ↓{Kε}. The
second argument R (for reached) correspond to the set of observable witnesses
that have been discovered so far. Condition (5) ensures that the explored sub-
graph X of Kε grows uniformly, and inside the boundaries of Dε(η) until it
reaches its supremum. In the meantime, Condition 6 is making sure that all
witnesses that are below X have been collected.

Lemma 1. Any implementation of incε
η,K satisfying the above specification

admits a least fixpoint of the form:

〈�ε
η,K , ↓{Kε} ∩ Wε

η〉
where �ε

η,K =def

⋃
(Dε(η) ∩ ↓{Kε}).

Lemma 1 ensures that the iteration of the one-step incremental update func-
tion terminates and returns a pair, the second argument of which is precisely
the set of updatable witnesses, i.e. those that are the same time above πε

η and a
sub-graph of Kε.

Definition 3 (Incremental update function). For all effect η and all graph
K such that η · K, and all correct implementation of incε

η,K , let:

(inc−
η,K)ω〈pre(η), ∅〉 = 〈 ,R−〉

(inc+η,K)ω〈post(η), ∅〉 = 〈 ,R+〉
let also Ωε : P(Wε

η) → P(O) be:

Ωε R =def {O ∈ O | ∃W ∈ R.W �ε
η O}

we define the incremental update function as:

Δ η K =def 〈(Ω− R−), (Ω+ R+)〉
Theorem 1. For all effect η and all graph K such that η · K,

(Δ η K) � (Obs K) = (Obs η · K)

Theorem 1 concludes this section by stating that, provided our one-step incre-
mental update function satisfies its specification, its fixpoint correspond to the
macroscopic effect 〈Ω−, Ω+〉 that we are looking for.



Incremental Update for Graph Rewriting 211

4 Abstraction

Although Dε(η) is an invariant domain, it cannot be used as a data structure per
se (it is an infinite object). For the update algorithm we use a data structure that
can be viewed as a quotient of Dε(η) in which isomorphic graphs are identified.
This quotienting of the concrete domain is naturally described using a categorical
terminology.

4.1 Graph: a category of graphs

A graph homomorphism, f : G → H, is an injective function on nodes f : |G| →
|H| that preserves edges, i.e.:

{u, v} ∈ G =⇒ {f(u), f(v)} ∈ H

We call Graph the category that has graphs as objects and we use Hom(G) to
denote the set of its arrows. We use φ, ψ, . . . for graph isomorphisms.

A Category for Kappa Graphs. In order to tune Graph to Kappa we require that
morphisms should be injective on agents and preserve sorting, i.e. κ ◦ f = κ (see
Fig. 5 for an example).

Property 1 (Pullbacks). For all co-span:

f : 〈f1 : G1 → H, f2 : G2 → H〉

there is a unique span:

pb(f ) : 〈g1 : H0 → G1, g2 : H0 → G2〉

satisfying f1g1 = f2g2 and such that for any alternative
span g ′ there is a unique morphism h that makes the right
diagram commute.

H

G1

f1
�������

G2

f2
�������

H0

g1
�������

g2
�������

H1

!h

��
g′
1

��

g′
2

��

We follow now the relative pushout terminology introduced in the context of
bigraphical reactive systems [12]. A span:

f : 〈f1 : H → G1, f2 : H → G2〉

admits a bound :
g : 〈g1 : G1 → H ′, g2 : G2 → H ′〉

whenever g1f1 = g2f2. Given a span f and a bound g , we say that f has a
bound:

h : 〈h1 : G1 → H ′′, h2 : G2 → H ′′〉
relative to g , if there exists a morphism h : H ′′ → H ′ such that hh1 = g1 and
hh2 = g2. We call the triple (h,h) a g -relative bound of f .
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Property 2 (Relative pushout). A span f that
admits bound g also admits a best g -relative
bound (h,h) such that for all alternative g -
relative bound (k, k), there exists a unique mor-
phism j such that jh1 = k1 and jh2 = k2.
This best g -relative bound (h,h) is called a g -
relative pushout for f (see right diagram).

H ′

K

k

�����������

G1

g1

��

h1

��

k1

�������������
H ′′

!j

		

h

��

G2
h2





k2
�������

g2

��

H
f1

						 f2

��









Note in particular that if (h,h) is a g -relative pushout for f , then h is a
bound for f . So in the above diagram we have that (idH′′ ,h) is an h-relative
pushout for f and we simply say that h is an idem pushout for f , written
IPOf (g).

Define the multi-pushout of a span f as the set of its idem pushouts, i.e.:

Mpo(f ) =def {g | IPOf (g)}

The following proposition states that any bound for a span f factors uniquely
(up-to iso) through one member of Mpo(f ). In other words, elements of the
multi-pushout of f are either isomorphic, or conflicting.

Proposition 4. Let g be a bound for f. For all h,h′ ∈ Mpo(f) if there exists k, k′

such that khf = k′h′f = gf then there exists a unique iso φ such that φhf = h′f.

Proof. (sketch). The proof is a straightforward application of the relative
pushout properties. Since both h and h ′ are g -relative pushouts, there is a unique
morphism j and a unique morphism j′ such that jhf = h ′f and hf = j′h ′f .
Since j and j′ are injective they are also isos. ��
We will need one final construction which defines the gluings of two graphs. It
is obtained by first using the pullback construction, and then building a multi-
pushout:

Definition 4 (gluing). Let:

Inter(G,H) =def {f : 〈f1 : I → G, f2 : I → H〉 | I �= ∅ ∧ ∃g s.t f = pb(g)}

We define:
Gluings(G,H) =def

⋃

f∈Inter(G,H)

Mpo(f)

We conclude this section by illustrating Fig. 3, the concept of multi-pushout in
the context of Kappa, previously described in Ref. [13].
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Fig. 3. The multi-pushout of the lower span contains 2 possible bounds (up-to iso).
All closed diagrams are commuting.

4.2 Extension and Matching

We wish now to define a way to capture a notion of “abstract exploration”.
Such exploration is defined by means of extension steps (see Definition 7 of this
section) along a statically computed “chart”, called an extension basis. We illus-
trate Fig. 4 the main ideas of this extension basis. In order to build an extension
basis, we need a first notion of morphism equivalence called extension equiv-
alence that equates morphisms that denote the same “way” of discovering a
graph starting from a smaller one. In order to use the extension basis during
the update procedure we need a second notion of equivalence called matching
equivalence that equates morphisms that denote the same instance (or match)
of a graph into the concrete state. With extension and matching morphisms, we
define a procedure, called extension step, that produces an exploration of the
concrete domain, which is at the core of the update procedure (see Fig. 4 for an
example).

Definition 5 (Extension equivalence). Two morphisms f :
G → H and g : G → H ′ are equivalent with respect to extension,
written f ∼ext g, if there exists an iso φ : H → H ′ that makes the
right diagram commutes. Whenever f ∼ext g we say that f and g
denote the same extension.

G
f ��

g ���
��

��
� H

φ
��

H ′

Extension classes come with the dual notion of matching classes that enables
one to count different instances of a graph into another one.

Definition 6 (Matching equivalence). Two morphisms f :
G → H and g : G′ → H are equivalent with respect to match-
ing, written f ∼mat g, if there exists an iso φ : G → G′ that makes
the right diagram commutes. Whenever f ∼mat g we say that f
and g denote the same match.

G
f ��

φ
��

H

G′
g

��������

Another way to describe matching equivalence between f and g is that their
codomain coincide:

Property 3. Two morphisms f : G → H and g : G′ → H are matching equivalent
if and only if f(G) = g(G′).
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Fig. 4. An extension basis (thick arrows) describing how to “discover” G1 and G2

starting from G0. The colored A node helps tracking the identity of A through the
basis: note here that the basis has two distinct ways of discovering G1 from G0, each
of which has its own extension into G2. Given an initial match g0 into K, one may
extend g0 into g1 through f , and then g1 into g2 through the extension h. Note that
f ′ fails to extend g0 in K.

For all f ∈ Hom(G), for all g, h ∈ Hom(G), we say that g is extended by f into
h, whenever g = hf . We say that the extension is trivial when f is an iso.

Importantly, two maps g : G → K and g′ : G → K denoting the same match
can be respectively extended by a map f : G → H into distinct matches of H
into K (Fig. 6, left diagram). Similarly, two distinct matches g : G → K and
g′ : G → K might be extended by f : G → H into maps that denote the same
match (Fig. 6, right diagram).

Definition 7 (Extension step). Let Γ ⊆ Hom(G,K) and Γ ′ ⊆ Hom(H,K)
for some G,H,K ∈ G. For all F ⊆ Hom(G), the pair (Γ, Γ ′) defines an F-
extension step if Γ ′ = ExtF,K(Γ ) with:

ExtF,K(Γ ) =def {h : H → K | ∃(f : G → H) ∈ F ,∃g ∈ Γ : g = hf}
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Fig. 5. Two morphisms f and g that belong to the same extension class (since f = φg)
but define two distinct matchings of G in H (there is no iso ψ such that f = gψ).

For all set S and ≈ ⊆ S × S an equivalence relation over elements of S, we
define:

[S]≈ =def {S ′ ⊆ S | ∀s ∈ S,∃!s′ ∈ S ′ : s ≈ s′}

Definition 8 (Extension basis). Consider a set of morphisms F ⊆ Hom(G).
We say that F is an extension basis if it satisfies [F ]ext = {F}.
In Definition 7, ExtF,K(Γ ) extends an arbitrary set of maps Γ into all possible
extensions of g ∈ Γ by a map in F . This raises two issues: first, we wish to build
extension steps between sets of matches into K and not all equivalent ways of
denoting the same match. So one may wonder what one obtains if, instead of
computing ExtF,K(Γ ), one were to compute ExtF,K(Γ ′) for some Γ ′ ∈ [Γ ]mat.
Second, the set F might be arbitrarily large, and we wish to compute the same
extension step with a smaller set of maps.

The Extension theorem below provides an answer to these two issues: com-
puting ExtF,K(Γ ) is essentially equivalent to computing ExtF ′,K(Γ ′) if one picks
F ′ ∈ [F ]ext and Γ ′ ∈ [Γ ]mat.

Theorem 2 (Extension). Let F ⊆ Hom(G,H), and Γ ⊆ Hom(G,K). For all
Γ ′ ∈ [Γ ]mat, for all extension basis F ′ ∈ [F ]ext, we have:

ExtF ′,K(Γ ′) = ∅ ⇐⇒ ExtF,K(Γ ) = ∅ (7)

[ExtF ′,K(Γ ′)]mat ⊆ [ExtF,K(Γ )]mat (8)

Importantly, replacing F by an arbitrary extension basis and Γ by an arbitrary
member of [Γ ]mat is not a neutral operation with respect to extension step.
However the resulting set of maps is indistinguishable from ExtF,K(Γ ) if one
equates matching equivalent maps.
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Fig. 6. Left diagram (loosing symmetry): two equivalent matches g and g′ can be
extended by f into two distinct matches. Right diagram (gaining symmetry): two dis-
tinct matches g and g′ can be extended by f into the same match.

Notice also that although [Γ ′]mat = {Γ ′} (Γ ′ is already stripped of any redun-
dant map), in general [ExtF ′,K(Γ ′)]mat �= {ExtF ′,K(Γ ′)} because one exten-
sion step, even using purely non equivalent extensions, may produce matching-
equivalent maps (see Fig. 6, right example). However we can prove that it is not
possible to extend the same map g into two matching-equivalent h and h′ unless
one has used extension-equivalent maps to do so:

Proposition 5. Consider the commuting diagram on the right, if
there exists an iso φ : H → H ′ such that h = h′φ, then φf = f ′.
As a consequence h ∼mat h′ =⇒ f ∼ext f ′.

H
h

����
��

φ

��

G

f ������

f ′ ���
��

� = K

H ′ h′

������

Proof. By hypothesis we have hf = h′f ′. Suppose we have h = h′φ for some
iso φ. So we have h′φf = h′f ′ by substituting h in the hypothesis. Since h′ is
injective, we deduce φf = f ′ and f ∼ext f ′ follows by Definition 5. ��
In combination with the example of Fig. 6 (right diagram), this proposition essen-
tially guarantees that, when using an extension basis, the only way to produce
matching-equivalent extensions is to start from two maps that were not match-
ing equivalent. This remark will become handy when we describe our update
algorithm in Sect. 5.

4.3 Proof of the Extension Theorem

We begin by a lemma that shows one cannot lose any match into K after the
extension step if one disregards extension-equivalent maps in F :

Lemma 2. Consider the commuting diagram on the right, if there
exists an iso φ : H → H ′ such that f ′ = φf , then there exists
h′′ ∼mat h′ such that g = h′′f .

H
h

����
��

φ

��

G

f ������

f ′ ���
��

�= K

H ′ h′

������
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Eventually we need a Lemma that shows it is also not possible to lose a match
into K after the extension step, if one disregards matching-equivalent maps in
Γ .

Lemma 3. Let g : G → K, f : G → H and h : H → K an f-extension of g.
The following proposition holds:

∀g′ ∼mat g,∃h′ ∼mat h s.t either

{
g′ = h′f or
∃f ′ �∼ext f s.t g′ = h′f ′

We are now in position to prove the Extension Theorem.

Proof (Theorem 2). We first prove Eq. (7).

– Suppose ExtF ′,K(Γ ′) = ∅, by definition this implies:

{h | ∃f ∈ F ′ : hf ∈ Γ ′} = ∅

This can be either true because Γ ′ = ∅ (point 1) or because no f in F ′ satisfies
hf ∈ Γ ′ for some h (point 2).
1. Since Γ ′ = ∅ and Γ ′ ∈ [Γ ]mat, we have that Γ = ∅. In turn, this entails

that ExtF,K(Γ ) = ∅.
2. Looking for a contradiction, suppose that some f ∈ F is such that hf ∈ Γ

for some h. Since we supposed that no f ∈ F ′ satisfies hf ∈ Γ ′ necessarily
f �∈ F ′. But since F ′ ∈ [F ]ext there exists f ′ ∈ F ′ such that f ′ ∼ext f .
According to Lemma 2, there exists h′ ∼mat h such that h′f ′ ∈ Γ ′ which
entails a contradiction. Therefore no f in F satisfies hf ∈ Γ for any h
and Γ = ∅.

– Suppose that ExtF,K(Γ ) = ∅. Since Γ ′ ⊆ Γ it follows immediately that
ExtF ′,K(Γ ′) ⊆ ExtF ′,K(Γ ′) and hence ExtF ′,K(Γ ′) = ∅. ��

We now prove Eq. (8). Note that it is equivalent to proving:

∀h ∈ ExtF,K(Γ ), h �∈ ExtF ′,K(Γ ′) =⇒ ∃h′ ∼mat h : h′ ∈ ExtF ′,K(Γ ′) (9)

So let us suppose there is some h such that h ∈ ExtF,K(Γ ) and h �∈ ExtF ′,K(Γ ′).
Recall that h ∈ ExtF,K(Γ ) implies that hf ∈ Γ for some f ∈ F . In addition,
h �∈ ExtF ′,K(Γ ′) implies that for all f ′ ∈ F ′, hf ′ �∈ Γ ′. Now there are several
cases to consider:

– f ∈ F ′ and hf ∈ Γ ′. This would imply that h ∈ ExtF ′,K(Γ ′) which would
contradict our hypothesis.

– f ∈ F ′ and hf �∈ Γ ′. Since Γ ′ ∈ [Γ ]mat we know there exists g ∈ Γ ′ such that
g ∼mat hf . We apply Lemma 3 to deduce that there exists h′ ∼mat h and f ′

such that h′f ′ = g. Still according to Lemma 3, either f ′ = f (point 1) or
f ′ �∼ext f (point 2).
1. Since f ∈ F ′ we have that h′ ∈ ExtF ′,K(Γ ′).
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2. Since F ′ ∈ [F ]ext, f ′ �∼ext f implies there is f ′′ ∼ext f ′ such that f ′′ ∈ F ′.
We apply Lemma 2 to deduce that there exists h′′ ∼mat h′ such that
f ′′h′′ ∈ Γ ′. By transitivity of ∼mat we have h′′ ∼mat h and we do have
h′′ ∈ ExtF ′,K(Γ ′).

– f �∈ F ′ and hf ∈ Γ ′. Since F ′ ∈ [F ]ext we know there exists f ′ ∈ F ′ that
satisfies f ′ ∼ext f . We apply Lemma 2 to deduce that there is h′ ∼mat h such
that h′f ′ ∈ Γ ′. It entails that h′ ∈ ExtF ′,K(Γ ′).

– f �∈ F ′ and hf �∈ Γ ′ and we proceed by combining the arguments of the two
previous points. ��

5 The Update Algorithm

In this section we show how to utilize extension bases and extension steps to
implement the incremental update function specified in Sect. 3. We describe
Fig. 7 the interplay of extension steps and exploration of the concrete domain.

Fig. 7. Extension steps and domain exploration. The occurrence of η on K provides
a map g : G0 → K and the concrete identity of G0 in K. The algorithm looks for
all possible extension steps above G0 in the statically computed basis. The extensions
that succeed are represented with plain line arrows. Those that fail are represented
with dotted line arrows. For instance no extension step is able to provide a match for
G4 in K.

5.1 Abstract Effects

Graph rewriting systems are given as a set of rewriting rules of the form

r : L ⇀ R

where r is a partial map between L ∈ G and R ∈ G. Formally such a partial map
is given as a span r = 〈lhs : D → L, rhs : D → R〉 where D ∈ G is the domain of
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definition of r and lhs (resp. rhs) stands for the left hand side map of r (resp.
right hand side). For all such span r , we define:

H+
r =def R\rhs(D) H−

r =def L\lhs(D)

Definition 9 (abstract effect). Let r be a rule. The abstract effect of r, writ-
ten η�

r, is the pair of maps:

η�
r =def 〈f−

r : H−
r → L, f+

r : H+
r → R〉

where fε
r is the identity on its domain.

We give Fig. 8 an example of the derivation of an abstract effect from a Kappa
rule.

Fig. 8. Deriving an abstract effect from a Kappa rule. The Kappa rule is given as a
partial map r : L ⇀ R (upper part). The corresponding abstract effect is a pair of
maps (f−

r , f+
r ) describing respectively the edges that are removed and added by the

rule.

Definition 10 (K-occurrence). Consider an abstract effect

η�
r = 〈f−

r : H−
r → L, f+

r : H+
r → R〉

For all concrete state K, a K-occurrence mK,r of η�
r is a pair of maps:

mK,r =def (g− : L → K, g+ : R → K)

and we write mK,r(η�
r) = η whenever:

η = (g−(L), g−f−
r (H−

r ), g+f+
r (H+

r ))
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5.2 Extension Basis Synthesis

Recall from Sect. 2.3 that we consider a set O ⊆ G of observable graphs. Since the
observables (including any match of the left hand sides of a rule) are intentionally
given as a finite set of abstract graphs (see Sect. 2), we may assume that every
elements of [O]iso is finite, where ∼iso is the graph isomorphism equivalence
relation. Let us thus consider an arbitrary Ô ⊆ G such that Ô ∈ [O]iso.

For all rule r , we define now the procedure to build a negative and positive
r -extension basis, respectively B+

r ⊆ Hom(G) and B−
r ⊆ Hom(G).

Similarly to Sect. 3 we adopt the following naming convention: for all r : L ⇀
R we write π+

r =def R and π−
r =def L and the superscript ε should be globally

replaced by either + or − to specialize a definition to the positive or negative
update.

Procedure 1: “Backbone” extension basis synthesis (see Sect. 4.1 for the cate-
gorical constructions used in the procedure).

Input: a rule r and the set of (abstract) observables Ô.

1. Compute the abstract effect η�
r = 〈f−

r : H−
r → π−

r , f+
r : H+

r → π+
r 〉

2. For all O ∈ Ô, build Λε
O ∈ [Gluings(Hε

r , O)]ext
3. For all 〈f : O → G,h : Hε

r → G〉 ∈ Λε
O, build Λε

O,h ∈ [Mpo(h, fε
r )]ext

4. Bε
r =def {f | ∃O,∃h,∃g s.t 〈g, f〉 ∈ Λε

O,h}
5. return Bε

r

An important point with respect to combinatorial explosion is the following:

Proposition 6. At step 3 and for all h, Λε
O,h contains at most one element.

In a nutshell, at step 2 one computes all possible gluings of Hε
r with some

observable O. At step 3 we build abstract witnesses by means of multi-pushout
construction. Finally step 4 assembles into Bε

r all extensions f : πε
r → W that

are the left component of an idem-pushout built in the previous step. We provide
and example, Fig. 9, of the construction of the “backbone” extension basis in the
context of Kappa.

We call this extension basis a “backbone” because it only contains direct
extensions from πε

r to some witness. We will see shortly how to enrich this back-
bone basis into a new basis that takes into account sharing between witnesses.

In the meantime, we may readily state a lemma that guarantees that exten-
sions steps along Bε

r produce concrete witnesses. Consider a basis Bε
r build from

a rule r and a set of abstract observables following Procedure 1. Recall that any
K-occurrence of η�

r is a pair of maps (g−
0 , g+0 ) that identify the edges that are

respectively removed and added in K. Whenever the Bε
r -extension of {gε

0} (see
Definition 7) builds a non empty set Γ of witness matches into K, then those
matches indeed provide η-witnesses (see Sect. 3.1) that are also below Kε.

Lemma 4 (Soundness). Let r be a rule with an abstract effect η�
r. Let also

mK,r =def (g−
0 , g+0 ) be a K-occurrence of r with η = mK,r(η�

r) a concrete effect.
For all (h : W → K) ∈ ExtBε

r ,Kε({gε
0}), there exists fK : O → K such that:

h(W ) �ε
η fK(O)
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Fig. 9. Construction of the “backbone” extension basis Bε
r = {f1}. Grey coloring of

nodes helps tracking nodes of Hε
r through the morphisms (all closed diagrams are

commuting). In dotted line, the maps that are used for the construction of the basis
but that are not morphisms of Bε

r . Consistently with Proposition 6, the multi-pushouts
in the upper part of the diagram have at most one element (Λε

O,h1 = {W1}, the other
gluings are incompatible with πε

r ).

A simple saturation procedure enables one to add sharing between graphs of the
“backbone” extension basis we have constructed so far:

Procedure 2: Add sharing to an extension basis.

Input: an extension basis B.

1. if there exists f, f ′ ∈ B and g, h, h′ �∈ B such that f = hg and f ′ = h′g then
B = B ∪ {g, h, h′} and go to 1.

2. else return B.

We write G <1
B H if there exists f ∈ B such that f : G → H. The relation

≤B is the transitive and reflexive closure of <1
B and denotes a partial order.

5.3 Implementing the Incremental Update Function

This section is dedicated to the implementation of the incremental update func-
tion, according to the specification that was given Sect. 3.3. The algorithm relies
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on a pre-computation of the r -extension bases (with sharing) of all rule r con-
tained in the rule set:

Procedure 3: Compute the extension bases.

Input: a finite rule set R.

1. For all r ∈ R, build Bε
r following Procedure 1.

2. For all Bε
r , add sharing following Procedure 2.

3. return
⋃

r{Bε
r}.

Each time a rule r is applied to a graph K, one obtains the corresponding K-
occurrence mK,r = (g+0 : π+

r → K, g+0 : π+
r → K). We use gε

0 as an input to the
update procedure, which is a breadth-first traversal of the extension basis Bε

r :

Procedure 4: Incremental update.

Input: a basis Bε
r , a K-occurrence gε

0 : πε
r → K of η�

r , and a predicate w : G → 2
such that w(G) holds if G is an abstract witness of Bε

r . For all set of morphisms
F ⊆ Bε

r we define:

min(F) =def {f ∈ F | f : G → H ∧ ∀(g : G′ → H ′) ∈ F : H ′ �≤B H}

1. Initialize γ : G → P(Hom(G)) as γ(G) := ∅ for all G �= πε
r and γ(πε

r ) := {g0}
2. F := ∅ (for the extensions yet to explore), x := πε

r (for the current point in
the basis) and W := ∅ (for the reached witnesses).

3. if w(x) then W := W ∪ {x}
4. for all (f : x → G) ∈ Bε

r do F := F ∪ {f}
5. if F �= ∅ then
6. choose (f : G → H) ∈ min(F)
7. γ(H) := [γ(H) ∪ Ext{f},Kε(γ(G))]mat

8. F := F\{f} and x := H
9. go to step 3.

10. else return Wε
η,K where:

Wε
η,K :=

⋃
{W | ∃G ∈ W,∃g ∈ γ(G) : g(G) = W}.

The procedure builds the function γ that maps the graphs of the basis to
the matches they have in K. Initially only πε

r has a match given by gε
0 and γ is

updated at step 7 each time an extension step is performed. We give Fig. 10 an
example of the construction of the map γ for a specific extension basis.

We conclude this section by proving that the above procedure complies with
the specification of the incremental update function given Sect. 3.3.
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Fig. 10. An extension basis (left) for the observables O1 (line), O2 (square), O3 (tri-
angle) and O4 (house) and πε

r = Hε = G0 (creation or deletion of a single edge). A
concrete graph state Kε (middle) and a representation of the final γ map (right). The
concretization is performed using the initial match G0 �→ {u, z} (the edge {u, z} of
Kε has been created or deleted by the effect occurrence). Colored nodes help tracking
the identity of the nodes of G0 (all closed diagrams are commuting). Overall 5 new
instances of O1 were found, 1 instance of O2, 2 instances of O3 and 3 instances of O4.

5.4 Correctness Proof

We essentially need to follow the guidelines of Sect. 3.3. Let:

X(γ) =def

⋃
{H | ∃(g : G → K) ∈ γ(G) : g(G) = H}

and
R(γ,W) =def

⋃
{H | ∃W ∈ W,∃g ∈ γ(W ) : g(W ) = H}

We write incε
η,K(X0,R0) = (X1,R1) if at step 3 we have X(γ) = X0 and

R(γ,W) = R0 and the next values of X(γ) and R(γ,W) are respectively X1

and R1.
We begin by proving that incε

η,K(X0,R0) = (X1,R1) satisfies the require-
ments for Xi. After one loop of the procedure we have two cases:

– if Step 5 was satisfied, then at step 7, X1 = X0 ∪ X where:

X =
⋃

{G′ ⊆ Kε | ∃g ∈ γ(H) : G′ = g(H)}

by construction X ⊆ Kε and X ∩X0 �= ∅ since a new extension step has been
performed. Furthermore X ∈ Dε(η) by construction of the basis: it is either
itself an abstract witness or it is below some other witnesses. Therefore we
satisfy Eq. (5) (Sect. 3.3).

– if Step 10 was satisfied then X0 = X1 since γ is not modified.
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We need to prove now that incε
η,K(X0,R0) = (X1,R1) satisfies the require-

ments for Ri. The only step where W is modified is at step 3. Using Lemma 4
we know that for all G ∈ W, we have:

g : W → K ∈ γ(G) =⇒ g(W ) �ε
η O

for some concrete observable O ⊆ Kε. Thus we have either R0 = R1 or:

R1 = R0 ∪ {g(W ) | g(W ) �ε
η O}

and therefore the Eq. (6) is also satisfied. ��

6 Conclusion

We have investigated in this paper the problem of efficiently updating observable
counts in a graph after a rewrite step has occurred. We believe our approach has
several merits.

Fig. 11. A comparison between the average time of KaSim 3 runs (in red) vs. KaSim
4 runs (in blue) on successive variants of the “ring assembly” model. KaSim 4. Scales
linearly with the maximal size of the largest observable (the left hand side of the largest
rule), while KaSim 3. Scales with the total number of rules in each model. (Color figure
online)

The first one is of methodological nature: to our knowledge it is the first
attempt to describe a problem that is usually treated in a purely algorithmic
fashion [14], using domain theoretic arguments for proofs and categorical con-
structions for the implementation. In particular algorithmic approaches tend to
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consider quite concrete graphs, represented by their adjacency matrices, while
graph rewriting literature uses morphisms to track node identity. We have seen
here that it is possible to conciliate both worlds through the interplay between
extension maps and matchings.

The second merit is of qualitative nature. The incremental update proce-
dure that is described in this paper has been implemented in the version 4.x
of KaSim, a stochastic simulator for the rewriting of Kappa models. We show
Fig. 11 a comparison between runs of KaSim 3 vs. 4. On variations of the “ring
assembly model” that is designed to highlight the benefits of sub-graph sharing:
the number of rules each variants of the model has, grows exponentially with the
size of their largest left hand side: each variant of the model is characterized by
the length of a ring-like graph it is trying to form. The first variant is forming
all rings up-to length 10, while the last variant is forming all rings up-to length
36. Forming all possible rings up-to length n requires !n rules, and the largest
left hand side of these rules has length n.

As usual there are multiple continuations of this work one may envision.
Just to mention a promising one, it would be interesting to see what happens if
instead of incrementally maintaining OK (the observable that are present in state
K) one were to maintain ↓OK . In theory one could benefit from having partial
observables already explored in order to minimize what remains to be discovered
after an effect has occurred. From an implementation point of view this may lead
to potentially memory intensive data structures but to very minimalist update
phases.
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Appendix

Proofs Omitted in Section 3

Proof (Proposition 1). We first prove Eq. (2), ⇒. By unfolding the def. of W�−
η O

and by W ⊆ K we have O ∪ pre(η) ⊆ K. As a consequence, O ⊆ K and by def.
of Obs (Sect. 3) we have O ∈ (Obs K). Still by definition of W �−

η O we have
O ∩ H−

η �= ∅ (i). By def. of η · K (Sect. 2.2) we have O\H−
η ∪ H+

η ⊆ η · K (ii).
In addition H−

η ∩ H+
η = ∅. By (i) and (ii) we have O �⊆ η · K and consequently

O �∈ (Obs η · K).
We now prove Eq. (2), ⇐. By def. W = O ∪ pre(η) (i), and by hyp. we

have O ∈ (Obs K) implies O ⊆ K (ii). Moreover since η · K is defined we have
pre(η) ⊆ K (iii). From (i)–(iii) we get O ∪ pre(η) ⊆ K. In order to conclude
that W = O ∪ pre(η) ∈ W−

η we need to additionally show that O ∩ H−
η �= ∅.
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Since O �∈ (Obs η · K) and O ∈ (Obs K) we have O �⊆ (O\H−
η ∪ H+

η ) (iv). Since
H−

η ∩ H+
η = ∅ by def. of η, the only possibility to satisfy (iv) is O ∩ H−

η �= ∅. ��
Proofs Omitted in Section 4

Proof (Lemma 2). It suffices to take h′′ = h′φ which, by Definition 6 implies that
h′′ ∼mat h′. By hypothesis we have g = h′f ′ and f ′ = φf . From these equalities
we get g = h′φf . By substituting h′φ by h′′ we obtain g = h′′f . ��
Proofs Omitted in Section 5

Proof (Lemma 3). By hypothesis we start from the following commuting dia-
gram:

Since g′ ∼mat g, by Definition 6, we have g = g′φ for some iso φ. We have
two cases:

H h
��

= K

G

f

��

g

������

– either f is φ-preserving and there exists an iso ψ such that fφ = ψf . Then
by construction hψ−1f = g′ and we can conclude by noticing that h′ =def

hψ−1 ∼mat h (by Definition 6).
– or f is not φ-preserving and there is no iso ψ such that fφ = ψf . It entails

that fφ �∼ext f (by Definition 5) and (by symmetry) f ′ =def fφ−1 �∼ext f .
Now we can conclude, since by construction hf ′ = g′. ��

Proof (Proposition 6). We have the following diagram:

G πε
r

O =

h′

��������
Hε

r

h

�������� fε
r

��

I

��������

��������

where h = 〈h′, h〉 is a gluing of O and Hε
r . Now the procedure attempts to build

the multi-pushout of the span f = 〈h, fε
r 〉. Suppose it has at least two elements,

we have the following diagram:

U U ′

G

i

��

=

j k

��

πε
r

��

l

��

O =

h′

��������
Hε

r

h

�������� fε
r

��

I

��������

��������
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where 〈ih′, kfε
r 〉 and 〈jh′, lfε

r 〉 are bounds for h = 〈h, h′〉. By construction h is a
relative pushout, therefore, by Proposition 4, there exists an iso φ : U → U ′ that
equates the bounds 〈i, k〉 and 〈j, l〉. This would entail i ∼ext j which contradicts
the hypothesis. ��
Proof (Lemma 4). Recall from Sect. 3.1 that a (concrete) η-witness W for a
(concrete) observable O must satisfy:

O ∩ Hε
η �= ∅ ∧ W = O ∪ πε

η (10)

By construction of the basis, and using the hypothesis of the lemma we have the
following diagram:

Hε
r

πε
rO

fε
r

I �= ∅

G

K

W

gε
0

hf

=

= =f1

f2

h1

h2

We take fK =def hf2f1, gε = gε
0f

ε
r , and we have:

fK(O) ∩ gε(Hε
r ) = gεh2(I) = fKh1(I) �= ∅

and
h(W ) = fK(O) ∪ gε

0(π
ε
r) = fK(O) ∪ πη

which verifies Eq. (10). ��
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14. Varró, G., Varró, D.: Graph transformation with incremental updates. ENTCS
109, 71–83 (2004). Proceedings of the Workshop on Graph Transformation and
Visual Modelling Techniques (GT-VMT 2004)

http://dx.doi.org/10.1007/978-3-319-09108-2_10

	Incremental Update for Graph Rewriting
	1 Introduction
	1.1 Combinatorial Models in Systems Biology
	1.2 Rule-Based Modeling
	1.3 Rewrite and Update
	1.4 Outline

	2 Concrete Domain
	2.1 Graphs as Sets
	2.2 Effects
	2.3 The Update Problem

	3 Exploration Domains
	3.1 Observable Witnesses
	3.2 Exploration Boundaries
	3.3 Specifying the Incremental Update Function

	4 Abstraction
	4.1 Graph: a category of graphs
	4.2 Extension and Matching
	4.3 Proof of the Extension Theorem

	5 The Update Algorithm
	5.1 Abstract Effects
	5.2 Extension Basis Synthesis
	5.3 Implementing the Incremental Update Function
	5.4 Correctness Proof

	6 Conclusion
	References


