
A Higher-Order Logic for Concurrent
Termination-Preserving Refinement

Joseph Tassarotti1(B), Ralf Jung2(B), and Robert Harper1(B)

1 Carnegie Mellon University, Pittsburgh, USA
jtassaro@andrew.cmu.edu, rwh@cs.cmu.edu

2 MPI-SWS, Saarland Informatics Campus, Saarbrücken, Germany
rwh@cs.cmu.edu

Abstract. Compiler correctness proofs for higher-order concurrent lan-
guages are difficult: they involve establishing a termination-preserving
refinement between a concurrent high-level source language and an
implementation that uses low-level shared memory primitives. However,
existing logics for proving concurrent refinement either neglect proper-
ties such as termination, or only handle first-order state. In this paper,
we address these limitations by extending Iris, a recent higher-order con-
current separation logic, with support for reasoning about termination-
preserving refinements. To demonstrate the power of these extensions,
we prove the correctness of an efficient implementation of a higher-order,
session-typed language. To our knowledge, this is the first program logic
capable of giving a compiler correctness proof for such a language. The
soundness of our extensions and our compiler correctness proof have been
mechanized in Coq.

1 Introduction

Parallelism and concurrency impose great challenges on both programmers and
compilers. In order to make compiled code more efficient and help programmers
avoid errors, languages can provide type systems or other features to constrain
the structure of programs and provide useful guarantees. The design of these
kinds of concurrent languages is an active area of research. However, it is fre-
quently difficult to prove that efficient compilers for these languages are correct,
and that important properties of the source-level language are preserved under
compilation.

For example, in work on session types [8,14,16,38,41], processes communi-
cate by sending messages over channels. These channels are given a type which
describes the kind of data sent over the channel, as well as the order in which
each process sends and receives messages. Often, the type system in these lan-
guages ensures the absence of undesired behaviors like races and deadlocks; for
instance, two threads cannot both be trying to send a message on the same
channel simultaneously.

Besides preventing errors, the invariants enforced by session types also per-
mit these language to be compiled efficiently to a shared-memory target lan-
guage [39]. For example, because only one thread can be sending a message
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 909–936, 2017.
DOI: 10.1007/978-3-662-54434-1 34

910 J. Tassarotti et al.

on a given channel at a time, channels can be implemented without perform-
ing locking to send and receive messages. It is particularly important to prove
that such an implementation does not introduce races or deadlocks, since this
would destroy the very properties that make certain session-typed languages so
interesting.

In this paper, we develop a higher-order program logic for proving the cor-
rectness of such concurrent language implementations, in a way that ensures that
termination is preserved. We have used this program logic to give a machine-
checked proof of correctness for a lock-free implementation of a higher-order
session-typed language, i.e., a language in which closures and channels can be
sent over channels. To our knowledge, this is the first such proof of its kind.

As we describe below, previously developed program logics cannot be used
to obtain these kinds of correctness results due to various limitations. In the
remainder of the introduction, we will explain why it is so hard to prove refine-
ments between higher-order, concurrent languages. To this end, we first have to
provide some background.

Refinement for concurrent languages. To show that a compiler is correct, one
typically proves that if a source expression E is well-typed, its translation ̂E
refines E. In the sequential setting, this notion of refinement is easy to define1:
(1) if the target program ̂E terminates in some value v, we expect E to also have
an execution that terminates with value v, and (2) if ̂E diverges, then E should
also have a diverging execution.

In the concurrent setting, however, we need to change this definition. In
particular, the condition (2) concerning diverging executions is too weak. To see
why, consider the following program, where x initially contains 0:

while (*x == 0) {} || *x = 1;

Here, || represents parallel composition of two threads. In every execution where
the thread on the right eventually gets to run, this program will terminate. How-
ever, the program does have a diverging execution in which only the left thread
runs: because x remains 0, the left thread continues to loop. Such executions are
“unrealistic” in the sense that generally, we rely on schedulers to be fair and
not let a thread starve. As a consequence, for purposes of compiler correctness,
we do not want to consider these “unrealistic” executions which only diverge
because the scheduler never lets a thread run.

Formally, an infinite execution is said to be fair [23] if every thread which
does not terminate in a value takes infinitely many steps.2 In the definition of
refinement above, we change (2) to demand that if ̂E has a fair diverging execu-
tion, then E also has a fair diverging execution. We impose no such requirement
about unfair diverging executions. This leads us to fair termination-preserving
refinement.
1 Setting aside issues of IO behavior.
2 This definition is simpler than the version found in Lehmann et al. [23], because

there threads can be temporarily disabled, i.e., blocked and unable to take a step. In
the languages we consider, threads can always take a step unless they have finished
executing or have “gone wrong”.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 911

Logics for proving refinement. To prove our compiler correct, we need to reason
about the concurrent execution and (non)termination of the source and target
programs. Rather than reason directly about all possible executions of these
programs, we prefer to use a concurrent program logic in order to re-use ideas
found in rely-guarantee reasoning [18] and concurrent separation logic [29]. How-
ever, although a number of concurrency logics have recently been developed for
reasoning about termination and refinements, they cannot be used to prove our
compiler correctness result because they either:

– are restricted to first-order state [15,24–26,31],
– only deal with termination, not refinement [15,31], or
– handle a weaker form of refinement that is not fair termination-preserving

[25,26,36].

Although the limitations are different in each of the above papers, let us
focus on the approach by Turon et al. [36] since we will build on it. That paper
establishes a termination-insensitive form of refinement, i.e., a diverging pro-
gram refines every program. Refinement is proven in a higher-order concurrent
separation logic which, in addition to the usual points-to assertions l ↪→ v, also
provides assertions about the source language’s state. For instance, the assertion3

source(i, E) says thread i in the source language’s execution is running expres-
sion E. A thread which “owns” this resource is allowed to modify the state of the
source program by simulating steps of the execution of E. Then, we can prove
that e refines E by showing:

{source(i, E)} e {v. source(i, v)}

As usual, the triple enforces that the post-condition holds on termination of e.
Concretely for the triple above, the soundness theorem for the logic implies that
if target expression e terminates with a value v, then there is an execution of
source expression E that also terminates with value v. However, the Hoare triple
above only expresses partial correctness. That means if e does not terminate,
then the triple above is trivial, and so these triples can only be used to prove
termination-insensitive refinements.

Ideally, one would like to overcome this limitation by adapting ideas from log-
ics that deal with termination for first-order state. Notably, Liang et al. [24] have
recently developed a logic for establishing fair refinements (as defined above).

However, there is a serious difficulty in trying to adapt these ideas. Seman-
tic models of concurrency logics for higher-order state usually involve step-
indexing [2,5]. In step-indexed logics, the validity of Hoare triples is restricted
to program executions of arbitrary but finite length. How can we use these to
reason about fairness, a property which is inherently about infinite executions?

In this paper, we show how to overcome this difficulty: the key insight is
that when the source language has only bounded non-determinism, step-indexed
Hoare triples are actually sufficient to establish properties of infinite program

3 The notation in Turon et al. [36] is different.

912 J. Tassarotti et al.

executions. Using this observation, we extend Iris [19,20], a recent higher-
order concurrent separation logic, to support reasoning about fair termination-
preserving refinement. The soundness of our extensions to Iris and our case
studies have been verified in Coq.

Overview. We start by introducing the case study that we will focus on in this
paper: a session-typed source language, a compiler into an ML-like language,
and the compiler’s correctness property – fair, termination-preserving refine-
ment (Sect. 2). Then we present our higher-order concurrent separation logic
for establishing said refinement (Sect. 3). We follow on by explaining the key
changes to Iris that were necessary to perform this kind of reasoning (Sect. 4).
We then use the extended logic to prove the correctness of the compiler for our
session-typed language (Sect. 5). Finally, we conclude by describing connections
to related work and limitations of our approach that we hope to address in future
work (Sect. 6).

2 Session-Typed Language and Compiler

This section describes the case study that we chose to demonstrate our logic:
a concurrent message-passing language and a type system establishing safety
and race-freedom for this language. On top of that, we explain how to imple-
ment the message-passing primitives in terms of shared-memory concurrency,
i.e., we define a compiler translating the source language into an ML-like target
language. Finally, we discuss the desired correctness statement for this compiler.

2.1 Source Language

The source language for our compiler is a simplified version of the language
described in Gay and Vasconcelos [14]. The syntax and semantics are given in
Fig. 1. It is a functional language extended with primitives for message pass-
ing and a command fork{E} for creating threads. The semantics is defined by
specifying a reduction relation for a single thread, which is then lifted to a con-
current semantics on thread-pools in which at each step a thread is selected
non-deterministically to take the next step.

Threads can communicate asynchronously with each other by sending mes-
sages over channels. For example, consider the following program (which will be
a running example of the paper):

let (x, y) = newch in
(

fork{send(x, 42)}; let (, v) = recv(y) in v
)

(1)

The command newch creates a new channel and returns two end-points
(bound to x and y in the example). An end-point consists of a channel id c
and a side s (either left or right), and is written as cs. Each channel is a pair of
buffers (b→, b←), which are lists of messages. Buffer b→ stores messages travel-
ing left-to-right (from x to y, in the example above), and b← is for right-to-left
messages, as shown in the visualization in Fig. 1.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 913

Fig. 1. Syntax, semantics, and session type system of message-passing source language

914 J. Tassarotti et al.

A thread can then use send(cs, V) to send a value V along the channel c, with
the side s specifying which buffer is used to store the message. For instance, when
s is left, it inserts the value at the end of the first buffer (SendLeft). This value
will then later be taken by a thread receiving on the right side (RecvRight).
Alternatively, if the buffer is empty when receiving, recv takes an “idle” step and
tries again (RecvRightIdle). (The reason send and recv return the end-point
again will become clear when we explain the type system.)

In the example above, after creating a new channel, the initial thread forks
off a child which will send 42 from the left end-point, x. Meanwhile, the parent
thread tries to receive from the right end-point y, and returns the message it
gets. If the parent thread does this recv before the child has done its send, there
will be no message and the parent thread will take an idle step. Otherwise, the
receiver will see the message and the program will evaluate to 42.

2.2 Session Type System

A type system for this language is shown in Fig. 1. This is a simplified version of
the type system given in Gay and Vasconcelos [14].4 In addition to base types Int
and Unit, we have pair types τ1⊗τ2, function types τ1 � τ2, and session types S.
Session types are used to type the end-points of a channel. These types describe
a kind of protocol specifying what types of data will flow over the channel, and
in what order messages are sent. Notice that this type system is higher-order
in the sense that both closures and channel end-points are first-class values and
can, in particular, be sent over channels.

Session types. The possible session types are specified by the grammar in Fig. 1.
If an end-point has the session type !τ. S, this means that the next use of this
end-point must be to send a value of type τ (Send). Afterward, the end-point
that is returned by the send will have type S. Dually, ?τ. S says that the end-
point can be used in a receive (Recv), in which case the message read will have
type τ , and the returned end-point will have type S. Notice that this is the same
end-point that was passed to the command, but at a different type. The type of
the end-point evolves as messages are sent and received, always representing the
current state of the protocol. Finally, end is a session type for an end-point on
which no further messages will be sent or received.

When calling newch to create a new channel, it is important that the types of
the two end-points match: whenever one side sends a message of type τ , the other
side should be expecting to receive a message of the same type. This relation
is called duality. Given a session type S, its dual S is the result of swapping
sends and receives in S. In our example (1), the end-point x is used to send a
single integer, so it can be given the type !Int. end. Conversely, y receives a single
integer, so it has the dual type !Int. end = ?Int. end.

4 For the reader familiar with that work: we leave out subtyping and choice types.
Also, we present an affine type system instead of a linear one.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 915

Affinity. The type system of the source language is affine, which means that
a variable in the context can be used at most once. This can be seen, e.g., in
the rule Fork: the forked-off thread Ef and the local continuation E are typed
using the two disjoint contexts Γ1 and Γ2, respectively.

One consequence of affinity is that after using an end-point to send or receive,
the variable passed to send/recv has been “used up” and cannot be used anymore.
Instead, the program has to use the channel returned from send/recv, which has
the new “evolved” type for the end-point.

The type system given here ensures safety and race-freedom. However, it does
not guarantee termination. We discuss alternative type systems guaranteeing
different properties in the conclusion.

2.3 Compilation

We now describe a simple translation from this session-typed source language to
a MiniML language with references and a forking primitive like the one in the
source language. We omit the details of the MiniML syntax and semantics as
they are standard.

Our translation needs to handle essentially one feature: the implementation
of channel communication in terms of shared memory references.

The code for the implementation of the channel primitives is shown in
Fig. 2. We write ̂E for the translation in which we replace the primitives of the
source language with the corresponding implementations. Concretely, applying
the translation to our running example program we get:

let (x, y) = newch in let (x, y) = heapNewch in

fork{send(x, 42)}; ⇒ fork{heapSendx 42};
let (, v) = recv(y) in v let (, v) = heapRecv y in v

Each channel is implemented as a linked list which represents both buffers.
Nodes in this list are pairs (l, v), where l is a reference to the (optional) next
node, and v is the message that was sent. Why is it safe to use just one list?
Duality in the session types guarantees that if a thread is sending from one
end-point, no thread can at the same time be sending a message on the other
end-point. This ensures that at least one of the two buffers in a channel is always
empty. Hence we just need one list to represent both buffers.

heapNewch �
let l = ref none in (l, l)

heapSend l v �
let (l′, v′) = (l, v) in

let lnew = ref none in

l′ := some (lnew, v′);

lnew

heapRecv � rec f l.

match !l with

| none ⇒ f l

| some (l′, v) ⇒ (l′, v)

end

Fig. 2. Implementation of message passing primitives.

916 J. Tassarotti et al.

The implementation of newch, given by heapNewch, creates a new empty
linked list by allocating a new reference l which initially contains none. The
function heapSend implements send by appending a node to the end (l′) of the
list, and returning the new end. Meanwhile, for recv, heapRecv takes an end-point
l and waits in a loop until it finds that the end-point contains a node.

2.4 Refinement

Having given the implementation, let us now clarify what it means for the com-
piler to be correct. Intuitively, we want to show that if we take a well-typed source
expression E, all the behaviors of its translation ̂E are also possible behaviors
of E. We say that ̂E refines E.

Before we come to the formal definition of refinement, we need to answer
the question: which behaviors do we consider equivalent? In our case, the only
observation that can be made about a whole program is its return value, so
classifying “behaviors” amounts to relating return values. Formally speaking:

n ≈ n () ≈ () l ≈ cs λx.e ≈ λx.E
v1 ≈ V1 v2 ≈ V2

(v1, v2) ≈ (V1, V2)

For integer and unit values, we expect them to be exactly equal; similarly,
pairs are the same if their components are. Coming to locations/end-points and
closures, we do not consider them to be interpretable by the user looking at the
result of a closed program. So, we just consider all closures to be equivalent,
and all heap locations to relate to all channel end-points. Of course, the proof of
compiler correctness will use a more fine-grained logical relation between source
and target values.

Based on this notion of equivalent observations, we define what it means
for a MiniML program e to refine a source program E, written e � E. When
executing from an initial “empty” state ∅, the following conditions must hold:

1. If ([e], ∅) →∗ ([e1, . . . , en], σ) then no ei is stuck in state σ.
In other words: the target program does not reach a stuck state.

2. If ([e], ∅) →∗ ([v1, . . . , vn], σ) then either:
(a) ([E], ∅) →∗ ([V1, . . . , Vm], Σ) and v1 ≈ V1, or
(b) there is an execution of ([E], ∅) in which some thread gets stuck.
That is, if all threads of the target program terminate with a value, then either
all threads of the source program terminate in some execution and the return
values of the first (main) source thread and target thread are equivalent; or
the source program can get stuck.

3. If ([e], ∅) has a fair diverging execution, then ([E], ∅) also has a fair diverging
execution. Recall that an infinite execution is fair if every non-terminating
thread takes infinitely many steps. This last condition makes the refinement
a fair, termination-preserving refinement.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 917

To understand why we have emphasized the importance of fair termination-
preservation, suppose we had miscompiled our running example as:

let (x, y) = heapNewch in let (, v) = heapRecv y in v

That is, we removed the sender thread. We consider this to be an incorrect com-
pilation; i.e., this program should not be considered a refinement of the source
program. But imagine that we removed the word “fair” from condition (3) above:
then this bad target program would be considered a refinement of the source.
How is that? The program does not get stuck, so it satisfies condition (1).
Condition (2) holds vacuously since the target program will never terminate; it
will loop in heapRecv y, forever waiting for a message. Finally, to satisfy condi-
tion (3), we have to exhibit a diverging execution in the source program. Without
the fairness constraint, we can pick the (unfair) execution in which the sender
source thread never gets to run.

Notice that this unfair execution is very much like the example we gave in
the introduction, where a thread waited forever for another one to perform a
change in the shared state.

We consider such unfair executions to be unrealistic [23]; they should not give
license to a compiler to entirely remove a thread from the compiled program.
That’s why our notion of refinement restricts condition (3) to fair executions,
i.e., executions in which all non-terminating threads take infinitely many steps.

Compiler correctness. We are now equipped to formally express the correctness
statement of our compiler:

Theorem 1. For every well-typed source program E, we have that:

̂E � E

We prove this theorem in Sect. 5. In the intervening sections, we first develop
and explain a logic to help carry out this proof.

3 A Logic for Proving Refinement

Proving Theorem 1 is a challenging exercise. Both the source and the target
program are written in a concurrent language with higher-order state, which is
always a difficult combination to reason about. Moreover, the invariant relating
the channels and buffers to their implementation as linked lists is non-trivial and
relies on well-typedness of the source program.

The contribution of this paper is to provide a logic powerful enough to prove
theorems like Theorem 1. In this section, we will give the reader an impression of
both the logic and the proof by working through a proof of one concrete instance
of our general result: we will prove that the translation of our running example
is in fact a refinement of its source.

918 J. Tassarotti et al.

3.1 Refinement as a Hoare Logic

Our logic is an extension of Iris [19,20], a concurrent higher-order separation
logic. We use the ideas presented by Turon et al. [36] to extend this (unary)
Hoare logic with reasoning principles for refinement. Finally, we add some further
extensions which become necessary due to the termination-preserving nature of
our refinement. We will highlight these extensions as we go.

The following grammar covers the assertions from our logic that we will
need:5

P ::= False | True | P ∨ P | P ∗ P | A(P) | ∃x. P | ∀x. P | l ↪→ v | source(i, E, d) |
Stopped | c ↪→s (b→, b←) | StsSt(s, T) | {P } e {x. Q} | P � Q | P �� Q | . . .

Many of these assertions are standard in separation logics, and our example
proof will illustrate the non-standard ones.

Recalling the example and its translation,we want to prove:

let (x, y) = heapNewch in let (x, y) = newch in

fork{heapSendx 42}; � fork{send(x, 42)};
let (, v) = heapRecv y in v let (, v) = recv(y) in v

or, for short, eex � Eex. Following Ht-refine (Fig. 3), it is enough to prove

{source(i, Eex, d)} eex {v.∃V. source(i, V, 0) ∗ v ≈ V } (2)

In other words, we “just” prove a Hoare triple for eex (the MiniML pro-
gram). In order to obtain a refinement from a Hoare proof, we equip our logic
with assertions talking about the source program E. The assertion source(i, E, d)
states that source-level thread i is about to execute E, and we have delay d left.
(We will come back to delays shortly.) The assertion c ↪→s (b→, b←) says that
source-level channel c currently has buffer contents (b→, b←). As usual in sepa-
ration logic, both of these assertions furthermore assert exclusive ownership of
their thread or channel. For example, in the case of c ↪→s (b→, b←), this means
that no other thread can access the channel and we are free to mutate it (i.e.,
send or receive messages) – we will see later how the logic allows threads to share
these resources. Put together, these two assertions let us control the complete
state of the source program’s execution.

So far, we have not described anything new. However, to establish
termination-preserving refinement, we have to add two features to this logic:
step shifts and linear assertions.

5 Note that many of these assertions are not primitive to the logic, but are themselves
defined using more basic assertions provided by the logic. For instance, the Hoare
triple is actually defined in terms of a weakest precondition assertion. See Jung et
al. [19,20] for further details.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 919

Step shifts. The rules given in Fig. 3 let us manipulate the state of the source pro-
gram’s execution by taking steps in the source program. Such steps are expressed
using step shifts ��. Every step shift corresponds to one rule in the opera-
tional semantics (Fig. 1). For example, src-newch expresses that if we have
source(i,K[newch], d) (which means that the source is about to create a new
channel), we can “execute” that newch and obtain some fresh channel c and
ownership of the channel (c ↪→s ([], [])). We also obtain source(i,K[c], d′), so we
can go on executing the source thread.

Crucially, having P �� Q shows that in going from P to Q, the source has
taken a step. We need to force the source to take steps because the refinement
we show is termination-preserving. If a proof could just decide not to ever step
the source program, we could end up with a MiniML program e diverging, while
the corresponding source program E cannot actually diverge. That would make
Ht-refine unsound. So, to avoid this, all rules that take a step in the MiniML
program (Fig. 3) force us to also take a step shift.

A strict implementation of this idea requires a lock-step execution of source
and target program. This is too restrictive. For that reason, the source assertion
does not just record the state of the source thread, but also a delay d. Decre-
menting the delay counts as taking a step in the source (src-delay). When we
take an actual source step, we get to reset the delay to some new d′ – so long
as d′ is less than or equal to some fixed upper bound D that we use throughout
the proof. There are also rules that allow executing multiple source steps when
taking just a single step in the target program; we omit these rules for brevity.
For the remainder of this proof, we will also gloss over the bookkeeping for the
delay and just write source(i, e).

The assertion Stopped expresses that a source thread can no longer take
steps. As expected, this happens when the source thread reaches a value
(src-stopped).

Linearity. There is one last ingredient we have to explain before we start the
actual verification: linearity. Assertions in our logic are generally linear, which
means they cannot be “thrown away”, i.e., P ∗ Q
 P does not hold generically
in P and Q. As a consequence, assertions represent not only the right to perform
certain actions (like modifying memory), but also the obligation to keep perform-
ing steps in the source program. This ensures that we do not “lose track” of a
source thread and stop performing step shifts justifying its continued execution.

The modality A(P) says that we have a proof of P , and that this is an affine
proof – so there are no obligations encoded in this assertion, and we can throw
it away. Some rules are restricted to affine assertions, e.g., rules for framing
around a Hoare triple or a step shift (Ht-frame and step-frame). Again, this
affine requirement ensures that we do not “smuggle” a source thread around
the obligation to perform steps in the source. All the base assertions, with the
exception of source(i, e), are affine.

Coming back to the Hoare triple (2) above that we have to prove, the pre-
condition source(i, Eex) expresses that we start out with a source program exe-
cuting Eex (and not owning any channels), and we somehow have to take steps

920 J. Tassarotti et al.

Step Shift Rules: (all d and d′ must be ≤ some fixed upper-bound D)

src-newch
source(i, K[newch], d) �� ∃c. source(i, K[(cleft, cright)], d′) ∗ c ↪→s ([], [])

src-recv-right-miss
source(i, K[recv(cright)], d) ∗ c ↪→s ([], b←) �� source(i, K[recv(cright)], d′) ∗ c ↪→s ([], b←)

src-recv-right-hit
source(i, K[recv(cright)], d) ∗ c ↪→s (v b→, b←) �� source(i, K[(cright, v)], d′) ∗ c ↪→s (b→, b←)

src-send-left
source(i, K[send(cleft, v)], d) ∗ c ↪→s (b→, b←) �� source(i, K[cleft], d′) ∗ c ↪→s (b→ v, b←)

src-fork
source(i, K[fork{E}], d) �� ∃j. source(i, K[()], d′) ∗ source(j, E, df)

src-delay
d′ < d � source(i, K[E], d) �� source(i, K[E], d′)

src-pure-step
e1 → e2

source(i, e1, d) �� source(i, e2, d′)
src-stopped
source(i, V, 0) � Stopped

(Symmetric rules and side-condition on d′ omitted.)

Basic Hoare Triples:

ml-alloc
∀x. P �� Q

{P } ref v {x. Q ∗ x ↪→ v}

ml-load
P �� [v/y]Q

{P ∗ x ↪→ v} !x {y. Q ∗ x ↪→ v}

ml-store
P �� Q

{P ∗ x ↪→ v} x := w {Q ∗ x ↪→ w}

ml-fork
P �� Q0 ∗ Q1

{Q0} e {Stopped} {Q1} e′ {R}
{P } fork{e}; e′ {R}

ml-rec
P �� P ′ (∀v. {P } (rec f x. e) v {w. Q}) ⇒ ∀v. {P ′} [rec f x. e/f, v/x]e {w. Q}

∀v. {P } (rec f x. e) v {w. Q}

Ht-frame
{P } e {v. Q}

{P ∗ A(R)} e {v. Q ∗ A(R)}

step-frame
P �� Q

P ∗ A(R) �� Q ∗ A(R)

Ht-csq
P � P ′ {P ′} e {v. Q′} ∀v. Q′ � Q

{P } e {v. Q}

Refinement Rule:

Ht-refine
{source(i, E, d)} e {v. ∃V. source(i, V, 0) ∗ v ≈ V }

e
 E

Fig. 3. Selection of rules for step shifts and Hoare triples

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 921

in the source program to end up with source(i, V) such that V is “equivalent”
(in the sense defined in Sect. 2.4) to the return value of the target program.
Intuitively, because we can only manipulate source by taking steps in the source
program, and because we end up stepping from source(i, Eex) to “the same”
return value as the one obtained from e, proving the Hoare triple actually estab-
lishes a refinement between the two programs. Furthermore, since source is linear
and we perform a step shift at every step of the MiniML program, the refinement
holds even for diverging executions.

3.2 Proof of the Example

The rest of this section will present in great detail the proof of our example (2).
The rough structure of this proof goes as follows: after a small introduction cov-
ering the allocation of the channel, we will motivate the need for state-transition
systems (STS), a structured way of controlling the interaction between cooper-
ating threads. We will define the STS used for the example and decompose the
remainder of the proof into two pieces: one covering the sending thread and one
for the receiving thread.

Getting started. The first statement in both source and target program is the
allocation of a channel. The following Hoare triple that’s easily derived from
ml-alloc summarizes the action of heapNewch: It allocates a channel in both
programs.

{source(i,K[newch])} heapNewch

{x.∃l, c. x = (l, l) ∗ l ↪→ none ∗ c ↪→s ([], []) ∗ source(i,K[(cleft, cright)])} (3)

Let us pause a moment to expand on that post-condition. On the source side,
we have a channel c with both buffers being empty; on the target side we have
a location l representing the empty buffer with none. The return value x is a
pair with both components being l. Finally, the source thread changed from
K[newch] in the pre-condition to K[(cleft, cright)], meaning that the newch has
been executed and the context can now go on with its evaluation based on the
pair (cleft, cright).

We apply this triple for heapNewch with the appropriate evaluation context
K for the source program, and the post-condition of (3) becomes our new context
of current assertions. Next, we reduce the let on both sides, so we end up with

l ↪→ none ∗ c ↪→s ([], []) ∗ source(i, ecomm(c)) (4)

where
ecomm(c) � fork{send(cleft, 42)}; let (, v) = recv(cright) in v

and the remaining MiniML code is

fork{heapSend l 42}; let (, v) = heapRecv l in v

922 J. Tassarotti et al.

(In the following, we will perform these pure reduction steps and the substitu-
tions implicitly.)

As we can see, both programs are doing a fork to concurrently send and
receive messages on the same channel. Usually, this would be ruled out by the
exclusive nature of ownership in separation logic. To enable sharing, the logic
provides a notion of protocols coordinating the interaction of multiple threads on
the same shared state. The protocol governs ownership of both l (in the target)
and c (in the source), and describes which thread can perform which actions on
this shared state.

State-transition systems. A structured way to describe protocols is the use of
state-transition systems (STS), following the ideas of Turon et al. [36]. An STS
S consists of a directed graph with the nodes denoting states and the arrows
denoting transitions.

The STS for our example is given in Fig. 4. It describes the interaction of our
two threads over the shared buffer happening in three phases. In the beginning,
the buffer is empty (init). Then the message is sent by the forked-off sending
thread (sent). Finally, the message is received by the main thread (received).

The STS also contains two tokens. Tokens are used to represent actions that
only particular threads can perform. In our example, the state sent requires the
token [S]. The STS enforces that, in order to step from init to sent, a thread
must provide (and give up) ownership of [S]. This is called the law of token
preservation [36]: Because sent contains more tokens than init, the missing
tokens have to be provided by the thread performing the transition. Similarly,
[R] is needed to transition to the final state received.

To tie the abstract state of the STS to the rest of the verification, every STS
comes with an interpretation ϕ. For every state, it defines an affine assertion that
has to hold at that state. In our case, we require the buffer to be initially empty,
and to contain 42 in state sent. Once we reach the final state, the programs no
longer perform any action on their respective buffers, so we stop keeping track.

We need a way to track the state of the STS in our proof. To this end, the
assertion StsSt(s, T) states that the STS is at least in state s, and that we own
tokens T . We cannot know the exact current state of the STS because other
threads may have performed further transitions in the mean time. The proof
rules for STSs can be found in the appendix [34]; in the following, we will keep
the reasoning about the STS on an intuitive level to smooth the exposition.

Plan for finishing the proof. Let us now come back to our example program. We
already described the STS we are going to use for the verification (Fig. 4). The
next step in the proof is thus to initialize said STS.

Remember our current context is (4). When allocating an STS, we get to
pick its initial state – that would be init, of course. We have to provide ϕ(init)
to initialize the STS, so we give up ownership of l and c. In exchange, we obtain
StsSt and the tokens. Our context is now

StsSt(init, {[S], [R]}) ∗ source(i, ecomm(c)) (5)

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 923

The next command executed in both programs is fork. We are thus going to
apply ml-fork and prove the step shift using src-fork. The two remaining
premises of ml-fork are the following two Hoare triples:

{StsSt(init, [S]) ∗ source(j, send(cleft, 42))} heapSend l 42 {Stopped} (6)

{StsSt(init, [R]) ∗ source(j, let (, v) = recv(cright) in v)}
let (, v) = heapRecv l in v

{n. n = 42 ∗ source(j, 42)}
(7)

Showing these will complete the proof. The post-condition Stopped of (6) is
mandated by ml-fork; we will discuss it when verifying that Hoare triple. Note
that we are splitting the StsSt to hand the two tokens that we own to two
different threads.

Verifying the sender. To prove the sending Hoare triple (6), the context we
have available is StsSt(init, [S]) ∗ source(j, send(cleft, 42)), and the code we wish
to verify is (unfolding the definition of heapSend, and performing some pure
reductions):

let lnew = ref none in l := some (lnew, 42); lnew

The allocation is easily handled with ml-alloc, and it turns out we don’t
even need to remember anything about the returned lnew.

The next step is the core of this proof: showing that we can change the value
stored in l. Notice that we do not own l ↪→ ; the STS “owns” l as part of its
interpretation. So we will open the STS to get access to l.

Looking at Fig. 4, we can see that doing the transition from init to sent
requires the token [S], which we own – as a consequence, nobody else could
perform this transition. It follows that the STS is currently in state init. We
obtain ϕ(init), so that we can apply ml-store with src-send-left, yielding

l ↪→ some (l′, 42) ∗ c ↪→s ([], []) ∗ source(j, cleft) (8)

To finish up accessing the STS, we have to pick a new state and show that
we actually possess the tokens to move to said state. In our case, we cannot pick
received, since we do not own the token [R] necessary for that step. Instead, we
will pick sent and give up our token. This means we have to establish ϕ(sent).
Doing so consumes most of our context (8), leaving only source(j, cleft). What
remains to be done? We have to establish the post-condition of our triple (6),

S � init
sent
[S]

received
[S], [R]

ϕ(init) � l ↪→ none ∗ c ↪→s ([], [])

ϕ(sent) � l ↪→ some (, 42) ∗ c ↪→s ([42], [])

ϕ(received) � True

Fig. 4. STS for the example

924 J. Tassarotti et al.

which is Stopped. By src-stopped, this immediately follows from the fact that
we reduced the source thread to cleft, which is a value.

Notice that this last step was important: We showed that when the MiniML
thread terminates, so does the source thread. The original fork rule for Iris allows
picking any post-condition for the forked-off thread, because nothing happens
any more with this thread once it terminates. However, we wish to establish
that if all MiniML threads terminate, then so do all source threads – and for
this reason, ml-fork forces us to prove Stopped, which asserts that all the
threads we keep track of have reduced to a value. This finishes the proof of the
sender.

Verifying the receiver. The next (and last) step in establishing the refinement
(2) is to prove the Hoare triple for the receiving thread (7). This is the target
code to verify:

let (, v) = heapRecv l in v

Since heapRecv is a recursive function, we use ml-rec, which says that we can
assume that recursive occurrences of heapRecv have already been proven correct.
It may be surprising to see this rule – after all, rules like ml-rec are usually
justified by saying that all we do is partial correctness. Notice, however, that we
are not showing that Eex terminates. All we show is that, if Eex diverges, then so
does eex. That is, we are establishing termination-preservation, not termination.

In continuing the proof, we thus get to assume correctness of the recursive
call. Our current context is

StsSt(init, [R]) ∗ source(j, let (, v) = recv(cright) in v) (9)

and the code we are verifying is

match !l with none ⇒ heapRecv l | some (l′, v) ⇒ (l′, v) end

with post-condition (, n). n = 42 ∗ source(j, 42).
The first command of this program is !l. To access l, we have to again open

the STS. Since we own [R], we can rule out being in state received. We perform
a case distinction over the remaining two states.

– If we are in init, we get l ↪→ none ∗ c ↪→s ([], []) from the STS’s ϕ(received).
We use ml-load with src-recv-right-miss. Notice how we use c ↪→s ([], [])
to justify performing an “idle” step in the source. This is crucial – after all,
we are potentially looping indefinitely in the target, reading l over and over;
we have to exhibit a corresponding diverging execution in the source.
Since we did not change any state, we close the invariant again in the init
state. Next, the program executes the none arm of the match: heapRecv l.
Here, we use our assumption that the recursive call is correct to finish the
proof.

– Otherwise, the current state is sent, and we obtain l ↪→ some (, 42) ∗ c ↪→s

([42], []). We use ml-load with src-recv-right-hit; this time we know that
the recv in the source will succeed. We also know that we are loading (, 42)

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 925

from l. We pick received as the next state (giving up our STS token), and
trivially establish ϕ(received). We can now throw away ownership of l and
c as well as StsSt(received) since we no longer need them – we can do this
because all these assertions are affine.
All that remains is the source thread:

source(j, let (, v) = (cright, 42) in v)

Next, the target program will execute the some branch of the match. To finish,
we need to justify the post-condition: (, n). n = 42 ∗ source(j, 42). We already
established that the second component of the value loaded from l is 42, and
the source thread is easily reduced to 42 as well.

This finishes the proof of (7) and therefore of (2): we proved that eex � Eex.

4 Soundness of the Logic

We have seen how to use our logic to establish a refinement for a particular
simple instance of our translation. We now need to show that this logic is sound.

As already mentioned, our logic is an extension of Iris, so we need to adapt
the soundness proof of Iris [19]. The two extensions that were described in
Sect. 3.1 are:

1. We add a notion of a step shift, which is used to simulate source program
threads.

2. We move from an affine logic to a linear logic. This is needed to capture the
idea that some resources (like source) represent obligations that cannot be
thrown away.

In this section we describe how we adapt the semantic model of Iris to han-
dle these changes. Although our extensions sound simple, the modification of
the model requires some care. Many of the features we used in Sect. 3, such
as STSs [20] and reasoning about the source language, are derived construc-
tions that are not “baked-in” to the logic. As we change the model, we need to
ensure that all of these features can still be encoded. We also strive to keep our
extensions as general as possible so as to not unnecessarily restrict the flexibility
of Iris.

Brief review of the Iris model. We start by recalling some aspects of the Iris
model [19] that we modify in our extensions. A key concept is the notion of a
resource. Resources describe the physical state of the program as well as addi-
tional ghost state that is added for the purpose of verification and used, e.g., to
interpret STSs or the assertions talking about source programs. Resources are
instances of a partial commutative monoid-like algebraic structure; in particular,
two resources a, b can be composed to a · b. This operation is used to combine
resources held by different threads. When the composition a · b is defined, the
elements a and b are said to be compatible. Iris always ensures that the resources
held by different threads are compatible. This guarantees that, e.g., different

926 J. Tassarotti et al.

threads cannot own the same channel or the same STS token. The operation
also gives rise to a pre-order on resources, defined as a1 � a2 � ∃a3. a1 ·a3 = a2,
i.e., a1 is included in a2 if the former can be extended to the latter by adding
some additional resource a3.

Ideally, we would just interpret an assertion P as a set of resources. For
technical reasons (that we will mostly gloss over), Iris needs an additional com-
ponent: the step-index n. An assertion is thus interpreted as a set of pairs (n, a)
of step-indices and resources. We write n, a |= P to indicate that (n, a) ∈ P ,
and read this as saying that a satisfies P for n steps of the target program’s
execution.

Iris furthermore demands that assertions (interpreted as sets) satisfy two
closure properties: They must be closed under larger resources and smaller step-
indices. Formally:

1. If n, a |= P and a � a′, then n, a′ |= P .
2. If n, a |= P and n′ ≤ n, then n′, a |= P .

The first point above makes Iris an affine as opposed to a linear logic: we can
always “add-on” more resources and continue to satisfy an assertion. Put dif-
ferently, there is no way to state an upper bound on our resources. The second
point says that if P holds for n steps, then it also holds for fewer than n steps.

To give a model to assertions like l ↪→ v, we need a function HeapRes(l, v)
describing, as a resource, a heap which maps location l to v. We then define:

n, a |= l ↪→ v iff HeapRes(l, v) � a

Notice the use of �, ensuring that the closure property (1) holds.

Equipping Iris with linear assertions. In order to move to a linear setting with
minimal disruption to the existing features of Iris, we replace the judgment
n, a |= P with n, a, b |= P . That is, assertions are now sets of triples: a step-
index and two resources. The downward closure condition on n and the upward
closure condition on a still apply, but we do not impose such a condition on b:
this second resource will represent the “linear piece” of an assertion. Crucially,
whereas affine assertions like l ↪→ v continue to “live” in the a piece, the linear
source resides in b:

n, a, b |= l ↪→ v iff HeapRes(l, v) � a ∧ b = ε

n, a, b |= source(i, E, d) iff SourceRes(i, E, d) = b

where ε is the unit of the monoid. We assume SourceRes(i, E, d) to define, as a
resource, a source thread i executing E with d delay steps left.

As we can see, source describes the exact linear resources b that we own,
whereas ↪→ merely states a lower bound on the affine resources a (due to the
upwards closure on a). Notice that a and b are both elements of the same set
of resources; it is just their treatment in the closure properties of assertions
which makes one affine and the other linear. Because there is no upward closure

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 927

condition on the second monoid element, the resulting logic is not affine: if
n, a, b |= P ∗ Q, then it is not necessarily the case that n, a, b |= P .

We define the affine modality by:

n, a, b |= A(P) iff n, a, b |= P ∧ b = ε

This says that in addition to satisfying P , b should equal the unit of the monoid.
That is, the linear part is “empty”; there are no obligations encoded in P . That
makes it sound to throw away P or to frame it.

The advantage of this “two world” model is that it does not require us to
change many of the encodings already present in Iris, like STSs.

Step Shifts. We are now ready to explain the ideas behind the step shift. Remem-
ber the goal here is to account for the steps taken in the source program, in a
way that we can prove refinements by proving Hoare triples (Ht-refine). This
is subtle because by the definition of refinement (Sect. 2.4), we need to make
statements even about infinite executions, i.e., executions that never have to
satisfy the post-condition.

The key idea is to equip the resources of Iris with a relation that represents
a notion of taking a (resource) step. We write a � b, and say that a steps to b.
We will then pick the resources in such a way as to represent the status of a
source program,6 and we define the resource step to be taking a step in the
source program. All the other components of the resource, like STSs, will not be
changed by resource steps.

Recall that the resources owned by different threads always need to be com-
patible. To ensure this, we define a relation that performs a step while main-
taining compatibility with the resources owned by other threads. Formally, a
frame-preserving step-update a, b � a′, b′ holds if b � b′ and for all c such that
a · b · c is defined, so is a′ · b′ · c. The intuition is that, if a thread owns some
resources a and b, that restricts the ownership of other threads to frames c that
are compatible with a and b. Since a′ and b′ are also compatible with the frame,
the step is guaranteed not to interfere with resources owned by other threads.

These frame-preserving step-updates are reflected into the logic through the
step shift assertions: P �� Q holds if, whenever some resources satisfy P , it is
possible to perform a frame-preserving step-update to resources satisfying Q.

We then connect Hoare triples to these resource steps. To this end, we change
the definition of Hoare triples so that whenever a target thread takes a step, we
have to also take a step on our resources. This gives rise to the proof rules in
Fig. 3, which force the user of the logic to perform a step shift alongside every
step of the MiniML program. We also enforce that forked-off threads must have
a post-condition of Stopped, ensuring that target language threads cannot stop
executing while source language threads are still running.

6 Iris is designed to be parametric in the choice of resources, so we can pick a particular
resource for this source language and still use most of the general Iris machinery.

928 J. Tassarotti et al.

Soundness of the refinement. Having extended the definition of Hoare triples
in this way, we can prove our refinement theorem. Recall that the definition
of refinement had three parts. For each of these parts, we proved an adequacy
theorem for our extensions relating Hoare triples to properties of program exe-
cutions. These theorems are parameterized by the kind of resource picked by the
user, and in particular the kind of resource step. Below, we show these theorems
specialized to the case where resource steps correspond to source language steps.

The first refinement condition, which says that the target program must
not get stuck, follows from a “safety” theorem that was already present in the
original Iris:

Lemma 2. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V)} holds and we
have ([e], ∅) →∗ ([e1, . . . , en], σ), then each ei is either a value or it can take
a step in state σ.

The second refinement condition says that if the execution of e terminates,
then there should be a related terminating execution in the source. Remember
that the definition of the Hoare triple requires us to take a step in the source
whenever the target steps (modulo a finite number of delays). Hence a proof of
such a triple must have “built-up” the desired source execution:

Lemma 3. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V)} holds and we
have ([e], ∅) →∗ ([v1, . . . , vn], σ), then there exists V1, E2, . . . , Em, Σ s.t.
([E], ∅) →∗ ([V1, E2, . . . , Em], Σ). Moreover, each Ei is either stuck or a value,
and v1 ≈ V1.

Here, we are already making crucial use of both linearity of source and the
fact that forked-off threads must have post-condition Stopped: if it were not for
these requirements, even when all target threads terminated with a value vi, we
could not rule out the existence of source threads that can go on executing.

Finally, we come to the third condition, which says fair diverging executions
of the target should correspond to fair diverging executions of the source:

Lemma 4. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V)} holds and ([e], ∅)
has a diverging execution, then ([E], ∅) has a diverging execution as well. More-
over, if the diverging target execution is fair, then the source execution is too.

This is the hardest part of the soundness proof. We would like to start by
arguing that, just as for the finite case, if the target program took an infinite
number of steps, then the proof of the refinement triple must give a corresponding
infinite number of steps in the source program. Unfortunately, this argument is
not so simple because of step-indexing.

In Iris, Hoare triples are themselves step-indexed sets. We write n |=
{P } e {Q} to say that the triple holds at step-index n. Then, when we say
we have proved a Hoare triple, we mean the triple holds for all step-indices n
and all resources satisfying the precondition. As is usual with step-indexing,
when a triple {P } e {Q} holds for step-index n, that means when the precon-
dition is satisfied, execution of e is safe for up-to n steps, and if it terminates

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 929

within those n steps, the post-condition holds. In our case, it also means that
each step of the target program gives a step of the source program, for up to n
target steps.

This restriction to only hold “up to n steps” arises due to the way Hoare
triples are defined in the model: when proving the Hoare triple at step-index n,
if e steps to e′, we are only required to show (n − 1) |= {P ′} e′ {Q} for some P ′.

The restriction to a finite number of steps did not bother us for Lemmas 2
and 3. Since they only deal with finite executions, and the Hoare triple holds
for all starting indices n, we can simply pick n to be greater than the finite
execution we are considering. But we cannot do this when we want to prove
something about a diverging execution of the target. Whatever n we start with,
it is not big enough to get the infinite source execution we need.

Bounded non-determinism, infinite executions, and step-indexing. Our insight
is that when the source language has only bounded non-determinism, we can set
up a more careful inductive argument. By bounded non-determinism, we mean
that each configuration ([E, . . .], Σ) only has finitely many possible successor
configurations. The key result is the following quantifier inversion lemma:

Lemma 5. Let R be a step-indexed predicate on a finite set X. Then:

(∀n.∃x. n |= R(x)) ⇒ (∃x.∀n. n |= R(x))

Proof. By assumption, for each n, there exists xn ∈ X such that n |= R(xn).
Since X is finite, by the pigeon-hole principle, there must be some x ∈ X such
that m |= R(x) for infinitely many values of m. Now, given arbitrary n, this
means there exists m > n such that m |= R(x). Since step-indexed predicates
are downward-closed, n |= R(x). Hence ∀n. n |= R(x).

Ignoring delay steps for the moment, we apply this lemma to our setting to get:

Lemma 6. Suppose e steps to e′ and ∀n.∃Pn. n |= {source(i, E) ∗ Pn} e {Q}.
Then, ∃E′ such that E steps to E′ and ∀n.∃P ′

n. n |= {source(i, E′) ∗ P ′
n} e′ {Q}.

Proof. Let X by the set of E′ that E can step to, which we know to be
finite.7 Consider the step-indexed predicate R on X defined by n |= R(E′) �
(E → E′ ∧ ∃P ′

n. n |= {source(i, E′) ∗ P ′
n} e′ {Q}). By assumption, for each n > 0,

n |= {source(i, E) ∗ Pn} e {Q} for some Pn. The definition of Hoare triples implies
that there exists some E′ such that (n − 1) |= R(E′). Thus, ∀n.∃E′. n |= R(E′),
so we can apply Lemma 5 to get the desired result.

Notice that in the conclusion of Lemma 6, if e′ takes another step, we
can apply Lemma 6 again to the triples for e′. So, given some initial triple
{source(i, E)} e {Q} and a diverging execution of e, by induction we can repeat-
edly apply Lemma 6 to construct an infinite execution of the source program.

7 To be precise we ought to mention the initial states σ and Σ that e and E run in
and assume they satisfy the precondition of the triple.

930 J. Tassarotti et al.

Finally, we prove that if the execution of e was fair, this source execution will
be fair as well, giving us Lemma 4. Of course, for the full mechanized proof
we have to take into account the delay steps and consider the case where the
target thread owns multiple source threads. But all of these are finite additional
possibilities, they do not fundamentally change the argument sketched above.

5 Proof of Compiler Correctness

We now give a brief overview of our proof of Theorem 1. Recall that we want to
show that if E is a well-typed source expression, then ̂E � E.

Our proof is a binary logical relations argument. We interpret each type τ
as a relation on values from the target and source language, writing v �V V : τ
to say that v and V are related at type τ . However, following the example of
[21,22], these are relations in our refinement logic, which means we can use all
of the constructs of the logic to describe the meaning of types. We then prove a
fundamental lemma showing that well-typed expressions are logically related to
their translation. Next, we show that our logical relation implies the triple used
in Ht-refine. Theorem 1 is then a direct consequence of these two lemmas.

Details of these proofs can be found in the appendix [34]; here we focus on
the definition of the logical relation itself. For most types, the interpretation is
straight-forward and fairly standard. For instance, v �V V : Int holds exactly
when v = V = n, for some integer n. The important exception, of course, is
the interpretation of session types, in which we need to relate the encoding of
channels as linked-lists to the source language’s primitive buffers.

Sessions as an STS. To interpret session types, we generalize the state transition
system from the example in Sect. 3 to handle the more complicated “protocols”
that session types represent.

What should the states of this STS be? In the STS used in Sect. 3, we had
three states: init, in which the message had not been sent; sent, where a message
had been sent from the left end-point, but not received; and received, where
the message had now been received at the right end-point. In the general case,
we will have more than one message, so our states need to track how many
messages have been sent/received on each end-point. We also need to know the
“current” type of the end-points, but notice that if we know the starting type
of an end-point, and how many messages have been sent/received on it, we can
always recover these current types. We write Sn for the type after n messages
have been sent/received starting from S.

We also need to know which heap locations ll and lr currently represent the
end-points of the channel. All together then, the states will be tuples (nl, nr, ll, lr)
describing how many messages have been sent/received on each end-point, and
the corresponding heap locations.

Remember that we also need to define the tokens and transitions associated
with each state of our STS. The transitions are simple: we can either advance
the left end-point, incrementing nl and updating ll, and similarly for the right

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 931

end-point. For the tokens, recall that in our example proof, we had [S] and
[R] tokens used by each thread to advance the state when they had interacted
with their respective end-points. In general, the threads will now use the end-
points multiple times, so we need a token for each of these uses on both sides.
Concretely, we will have two kinds of tokens, [Left n] and [Right n], which are
used when advancing the left and right end-point counter to n, respectively.

To complete the description of the STS, we have to talk about the interpre-
tation of the states. This interpretation has to relate the messages in the source
channel’s current buffers to the nodes in the linked list on the target heap. The
individual messages should, of course, be related by our logical relation (�V).
We lift this relation to lists of messages (�L) as follows:

[] �L [] : S

L-cons

(

v �V V : τ
) ∗ (

Lh �L Lc : S
)

vLh �L V Lc : ?τ. S

For now, ignore the
 symbol. The left rule says that two empty lists are equiv-
alent at any session type. The right rule says two lists are related at a receive
type ?τ. S, if their heads are related under τ , and the remainders of each list are
related at S. It is important that this is a receive type: if the current type of the
end-point is a send type, then there should not be any messages in its receive
buffer, so the rule for empty lists is the only one that applies.

We can now give our state interpretation, ϕ, which is parameterized by (a)
the starting type S of the left end-point (the right end-point’s starting type is by
necessity dual so there is no need to track it), and (b) the name c of the channel:

ϕS,c(nl, nr, ll, lr) � ∃Lc, Lh.
(

c ↪→s (Lc, []) ∗ linklist(Lh, ll, lr) ∗ (10)

(Lh �L Lc : Snl) ∗ nl + |Lc| = nr

)

∨ . . . (11)

Let us explain this piece by piece. To start, we have that there exists a list
of source values Lc and a list of target values Lh, representing the messages that
are stored in the buffer right now. We then distinguish between two cases: either
the first buffer is empty or the second buffer is empty. We omit the second case
(corresponding to the second disjunct) because it is symmetric. In the first case,
the channel’s first buffer contains Lc and the second buffer is empty (10, left). On
the target side, the buffer is represented as a linked list from ll to lr containing the
values Lh (10, right). Of course, the lists of values need to be related according
to the end-point’s current type Snl (11, left). Finally, the number of messages
sent/received through the left end-point, plus the number of messages still in
the buffer, should equal the total number of messages sent/received through
the right end-point (11, right). Therefore, when these remaining messages are
received by the left end-point, the two types will again be dual.

Informally then, the value relation at session types l �V cs : S says that there
exists an appropriate STS and tokens for the session S which relates l and cs.

932 J. Tassarotti et al.

We can then prove Hoare triples for the message-passing primitives that manip-
ulate this STS. For instance, for heapRecv we have (omitting delay steps):

{source(i,K[recv(cs)]) ∗ l �V cs : ?τ. S} heapRecv l

{(l′, v).∃V. source(i,K[(cs, V)]) ∗ (v �V V : τ) ∗ l′ �V cs : S}
This triple closely corresponds to the typing rule Recv (Fig. 1): typing judg-

ments in the premise become value relations in the pre-condition, and the con-
clusion is analogously transformed into the postcondition. Indeed, the proof of
the fundamental lemma for the logical relation essentially just appeals to these
triples.

There is something we have glossed over: when we defined the logical relation,
we used the STS, but the STS interpretation used the logical relation! This
circularity is the reason for the
 symbol guarding the recursive occurrence of
(�V) in L-cons. The details are spelled out in the appendix.

6 Conclusion and Related Work

We have presented a logic for establishing fair, termination-preserving refine-
ment of higher-order, concurrent languages. To our knowledge, this is the first
logic combining higher-order reasoning (and in particular, step-indexing) with
reasoning for termination-sensitive concurrent refinement. Moreover, we applied
this logic to verify the correctness of a compiler that translates a session-typed
source language with channels into an ML-like language with a shared heap.

All of these results have been fully mechanized in Coq. Our mechanization
builds on the Coq development described in Jung et al. [19] and the proof-mode
from Krebbers et al. [21]. The proofs use the axioms of excluded middle and
indefinite description. The proof scripts can be found online [1].

Second Case Study. Our logic is not tied to this source language and translation:
we have used it to mechanize a proof that the Craig-Landin-Hagersten queue
lock [9,27] refines a ticket lock. Further details can be found in the appendix [34].

Linearity. Linearity has been used in separation logics to verify the absence
of memory leaks: if heap assertions like l ↪→ v are linear, and the only way to
“dispose” of them is by freeing the location l, then post conditions must mention
all memory that persists after a command completes [17]. Our treatment of
linearity has limitations that make it unsuitable for tracking resources like the
heap. First, in our logic, only affine assertions can be framed (see Ht-frame),
because framing could hide the obligation to perform steps on source threads. Of
course, for resources like the heap this would be irrelevant, and this rule could
be generalized. Second, linear resources cannot be put in STS interpretations, so
they cannot be shared between threads. Since STSs are implemented in terms
of a more primitive feature in Iris called invariants, which are affine, allowing
linear resources to be put inside would circumvent the precise accounting that
motivates linearity in the first place. Thus, we would need to extend Iris with a
useful form of “linear” shared invariants, which we leave to future work.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 933

Session Types. Starting from the seminal work of Honda [16], a number of
session-type systems have been presented with different features [8,14,35,38,41]
(among many others). The language presented here is a simplified version of the
one in Gay and Vasconcelos [14]. Wadler [38] has shown that a restricted subset
of the language in [14] does enjoy a deadlock freedom property. This property
holds only when the type system is linear, like the original in [14]. Pérez et al.
[30] and Caires et al. [7] give logical relations for session-typed languages, which
they use to prove strong normalization and contextual equivalence results. Their
logical relation is defined “directly”, instead of translating into an intermediary
logic. Early versions of another session-typed system [39] used a ring-buffer to
represent channels instead of linked lists, which would be interesting to verify.

Logics for Concurrency, Termination, and Refinement. There is a vast literature
on program logics for concurrency [6,10–13,15,19,20,24–26,28,29,31,32,36,37].
Indeed, the reason for constructing a logical relation on top of a program logic,
as in Krogh-Jespersen et al. [22], is so that we can take advantage of the many
ideas that have proliferated in this community.

Focusing on logics for refinement and termination properties: Benton [3] pio-
neered the use of a relational Hoare logic for showing the correctness of com-
piler transformations in the sequential setting. Yang [40] generalized this to
relational separation logic. We have already described [36], which developed a
higher-order concurrent separation logic for termination-insensitive refinement.
Liang et al. [25] also allow non-terminating programs to refine terminating ones.
This was extended in [26] for a termination-preserving refinement, but this deals
with termination-preservation without fairness. Most recently Liang and Feng
[24] addressed fair termination-preserving refinement. In their logic, threads can
explicitly reason about how their actions may or may not further delay other
threads, which is more general than our approach and may be needed for veri-
fying some of the examples they consider. It would be interesting to adapt this
more explicit fairness reasoning to the higher-order setting.

Hoffmann et al. [15] features a concurrent separation logic for total correct-
ness. Threads own resources called “tokens”, which must be “used up” every
time a thread repeats a while loop. This “using up” of tokens inspired our step
shifts. Later, da Rocha Pinto et al. [31] generalized this by using ordinals instead
of tokens: threads decrease the ordinal they own as they repeat a loop. This is
useful for languages with unbounded non-determinism. Our technique for cop-
ing with step-indexing in Sect. 4 relied on bounded non-determinism. It may
be possible to remove this limitation by using transfinite step-indexing [4,33]
instead.

Acknowledgments. The authors thank Robbert Krebbers, Jeehoon Kang,
Max Willsey, Frank Pfenning, Derek Dreyer, Lars Birkedal, and Jan Hoffmann for
helpful discussions and feedback. This research was conducted with U.S. Government
support under and awarded by DoD, Air Force Office of Scientific Research, National
Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a; and
with support by a European Research Council (ERC) Consolidator Grant for the

934 J. Tassarotti et al.

project “RustBelt”, funded under the European Union’s Horizon 2020 Framework Pro-
gramme (grant agreement no. 683289). Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect the views of these funding agencies.

References

1. Website with Coq development (2016). http://www.cs.cmu.edu/∼jtassaro/papers/
iris-refinement

2. Appel, A., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. TOPLAS 23(5), 657–683 (2001)

3. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL (2004)

4. Birkedal, L., Bizjak, A., Schwinghammer, J.: Step-indexed relational reasoning for
countable nondeterminism. Logical Methods Comput. Sci. 9(4), 1–22 (2013)

5. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recur-
sive metric-space equations. Theor. Comput. Sci. 411(47), 4102–4122 (2010)

6. Brookes, S.D.: Variables as resource for shared-memory programs: semantics and
soundness. Electr. Notes Theor. Comput. Sci. 158, 123–150 (2006)

7. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 19

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

9. Craig, T.S.: Building fifo and priority-queueing spin locks from atomic swap. Tech-
nical report 93-02-02, Computer Science Department, University of Washington
(1993)

10. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44202-9 9

11. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

12. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL (2013)

13. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327 (2009)
14. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.

Funct. Program. 20(1), 19–50 (2010)
15. Hoffmann, J., Marmar, M., Shao, Z.: Quantitative reasoning for proving lock-

freedom. In: LICS, pp. 124–133 (2013)
16. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35
17. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-

tures. In: POPL, pp. 14–26 (2001)
18. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. TOPLAS 5(4), 596–619 (1983)
19. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:

ICFP, pp. 256–269 (2016, to appear)

http://www.cs.cmu.edu/~jtassaro/papers/iris-refinement
http://www.cs.cmu.edu/~jtassaro/papers/iris-refinement
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/3-540-57208-2_35

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 935

20. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL, pp. 637–650 (2015)

21. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: POPL, pp. 205–217 (2017, to appear)

22. Krogh-Jespersen, M., Svendsen, K., Birkedal, L.: A relational model of types-and-
effects in higher-order concurrent separation logic. In: POPL, pp. 218–231 (2017,
to appear)

23. Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: the ethics of
concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol.
115, pp. 264–277. Springer, Heidelberg (1981). doi:10.1007/3-540-10843-2 22

24. Liang, H., Feng, X.: A program logic for concurrent objects under fair scheduling.
In: POPL, pp. 385–399 (2016)

25. Liang, H., Feng, X., Fu, M.: Rely-guarantee-based simulation for compositional
verification of concurrent program transformations. ACM Trans. Program. Lang.
Syst. 36(1), 3 (2014)

26. Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: CSL-LICS, pp. 65:1–65:10 (2014)

27. Magnusson, P.S., Landin, A., Hagersten, E.: Queue locks on cache coherent multi-
processors. In: International Symposium on Parallel Processing, pp. 165–171 (1994)

28. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state
transition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54833-8 16

29. O’Hearn, P.: Resources, concurrency, and local reasoning. TCS 375(1), 271–307
(2007)

30. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
539–558. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2 27

31. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P., Sutherland, J.: Modular ter-
mination verification for non-blocking concurrency. In: Thiemann, P. (ed.) ESOP
2016. LNCS, vol. 9632, pp. 176–201. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49498-1 8

32. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54833-8 9

33. Svendsen, K., Sieczkowski, F., Birkedal, L.: Transfinite step-indexing: decoupling
concrete and logical steps. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 727–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 28

34. Tassarotti, J., Jung, R., Harper, R.: A higher-order logic for concur-
rent termination-preserving refinement. Available as arXiv:1701.05888 [cs.PL]
(2017). http://iris-project.org/pdfs/2017-esop-refinement-final.pdf. Extended ver-
sion with appendices

35. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and
sessions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 20

36. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

http://dx.doi.org/10.1007/3-540-10843-2_22
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-28869-2_27
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-662-49498-1_28
http://arxiv.org/abs/1701.05888
http://iris-project.org/pdfs/2017-esop-refinement-final.pdf
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20

936 J. Tassarotti et al.

37. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 18

38. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)
39. Willsey, M., Prabhu, R., Pfenning, F.: Design and implementation of concurrent

C0. In: Linearity (2016)
40. Yang, H.: Relational separation logic. TCS 375(1–3), 308–334 (2007)
41. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-

tured communication-based programming revisited: Two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

http://dx.doi.org/10.1007/978-3-540-74407-8_18

	A Higher-Order Logic for Concurrent Termination-Preserving Refinement
	1 Introduction
	2 Session-Typed Language and Compiler
	2.1 Source Language
	2.2 Session Type System
	2.3 Compilation
	2.4 Refinement

	3 A Logic for Proving Refinement
	3.1 Refinement as a Hoare Logic
	3.2 Proof of the Example

	4 Soundness of the Logic
	5 Proof of Compiler Correctness
	6 Conclusion and Related Work
	References

