
Conditional Dyck-CFL Reachability Analysis
for Complete and Efficient Library

Summarization

Hao Tang1, Di Wang1, Yingfei Xiong1(B), Lingming Zhang2, Xiaoyin Wang3,
and Lu Zhang1

1 Key Laboratory of High Confidence Software Technologies,
Ministry of Education, Peking University, Beijing, China

{tanghaoth90,wayne.wangdi,xiongyf,zhanglucs}@pku.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX, USA
lingming.zhang@utdallas.edu

3 Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX, USA
xiaoyin.wang@utsa.edu

Abstract. Library summarization is an effective way to accelerate the
analysis of client code. However, information about the client is unknown
at the library summarization, preventing complete summarization of the
library. An existing approach utilizes tree-adjoining languages (TALs) to
provide conditional summaries, enabling the summarization of a library
under certain premises. However, the use of TAL imposes several prob-
lems, preventing a complete summarization of a library and reducing the
efficiency of the analysis.

In this paper we propose a new conditional summarization technique
based on the context-free language (CFL) reachability analysis. Our tech-
nique overcomes the above two limitations of TAL, and is more accessible
since CFL reachability is much more efficient and widely-used than TAL
reachability. Furthermore, to overcome the high cost from premise com-
bination, we also provide a technique to confine the number of premises
while maintaining full summarization of the library.

We empirically compared our approach with the state-of-art TAL con-
ditional summarization technique on 12 Java benchmark subjects from
the SPECjvm2008 benchmark suite. The results demonstrate that our
approach is able to significantly outperform TAL on both efficiency and
precision.

1 Introduction

Building a summary for a library is a key technique for scaling static analysis of
the library’s client programs [3,7,17]. Such a summary can significantly boost
client analysis, since client analysis can directly utilize the summary without
further analyzing the library. However, in most analysis, it is not possible to
treat library code as a complete program during the summarization, because

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 880–908, 2017.
DOI: 10.1007/978-3-662-54434-1 33

Conditional Dyck-CFL Reachability Analysis 881

many components required for the analysis are unknown without the presence
of the client. For example, when a library calls a virtual method, the actual
callee may depend on the client code. Furthermore, if the callee is a call-back
method, the body of the callee also depends on the client code.

Typical techniques (e.g., Rountev et al. [31,33], Lattner et al. [13], Madhavan
et al. [17], and Arzt et al. [1]) for dealing with unknown in library summarization
are based on distinguishing the known part from the unknown part, and building
summaries only for the known part. These techniques are based on the principle
of component level analysis (CLA) [31,33]. However, since the unknown compo-
nents are often required in critical steps of the analysis, the summaries we can
build for libraries are significantly limited. For example, in Java, any method
that is not declared as final or private can be overridden by a sub class, and thus
we cannot statically determine the target of most calls. As a result, in a major
portion of a library, we can build summaries for only intra-procedural analysis,
and postpone the more expensive inter-procedure analysis to the client analysis.
We refer to these techniques as unconditional summarization, in contrast to the
conditional summarization techniques discussed below.

To overcome the limitation in unconditional summarization, a recent app-
roach by Tang et al. [39] provides conditional summaries for data dependency
analysis, based on the tree-adjoining language (TAL) reachability analysis. We
shall refer to this technique as TALCRA (TAL Conditional Reachability Analy-
sis). The basic idea is to assume all possibilities of each unknown component,
where each possibility is called a premise, and pre-compute a conditional sum-
mary for all possible clients. When the client code is available, TALCRA obtains
the previously unknown component and instantiate the conditional summary
into an unconditional summary. In this way, TALCRA can obtain a more com-
plete summary than unconditional summarization techniques can.

However, TALCRA has several limitations. First, by nature, TAL reachability
analysis may assume premises that would not exist, and thus is computationally
more expensive than other analysis techniques such as context-free language
(CFL) reachability [27]. Second, due to the expressiveness of TAL reachability,
there can be only one premise for each conditional relation, and the premise
cannot cross method boundaries. Thus, in the cases where there are more than
one components, or the unknown component crosses multiple methods, TALCRA
cannot build a complete summary for the library.

To understand these problems concretely, let us consider an example program
in Fig. 1a. A dependency graph for this program is shown in Fig. 1b. In this figure,
nodes are variables and edges are flows-to relations between the variables, i.e.,
the inverse of dependency relations. The solid nodes and edges can be deduced
from the library alone, while the hollow nodes and dashed edges require client
code. Using unconditional summarization techniques, we are able to infer only
the following relations:

apub flows to bpub; (1)
cpub flows to dpub. (2)

882 H. Tang et al.

Fig. 1. A data dependency example

Using TALCRA, we can further infer the following conditional relations:

apub flows to cpub if bpub flows to cpub; (3)
cpub flows to epub if dpub flows to epub. (4)

However, TALCRA cannot infer the following two relations, both needed to fully
summarize the library.

apub flows to epub if bpub flows to cpub and dpub flows to epub, because
TAL summarization does not support more than one premises. (5)

cpub flows to epub if line 8 calls the method defined at line 14, because
TAL summarization does not allow premises to cross method bound-
aries, and these premises are in fact two edges between nodes in different

methods (dpub
{8−→x3m3 and x3m3

}8−→epub);

(6)

As a result, to build a complete summary of the library, TALCRA has to make
the most conservative assumption, possibly reducing the precision of the analysis.
For example, to build a summary for the library, we can use class hierarchy
analysis (CHA) [5] to generate unconditional virtual call edges. The result from
CHA is guaranteed to cover any client, but is not precise for the analysis of one
client, where we can use more precise control flow analysis.

Conditional Dyck-CFL Reachability Analysis 883

Also, TALCRA infers unnecessary conditional relations during library sum-
marization, such as the following one. This relation is useless because its premise
can never be satisfied, but TAL cannot utilize this fact and may further deduce
more useless relations based on this. This is because TAL reachability analysis
views a conditional reachability relation from the known component by nature,
and would treat any two separated paths as potentially connectable.

dpub flows to epub if x4m4 flows to x5m4; (7)

In this paper, we propose a novel approach to overcoming the limitations
in TALCRA, called ConCRA (Conditional Dyck-CFL Reachability Analysis).
Unlike TALCRA that relies on expensive TAL reachability analysis, our app-
roach is built upon the well-known Dyck-context-free-language (Dyck-CFL)
reachability analysis. CFL reachability analysis [27] is known to be applicable
to a large class of program analysis problems, and the Dyck-CFL reachability
problem is known to be able to express “almost all the applications of CFL reach-
ability” [10]. Therefore, our approach is applicable to a large class of program
analysis problems besides data dependency analysis.

The key idea of our approach is to attach premises to standard edges, and
analyze using standard CFL rules by assuming the existence of premises. In
this way, we can overcome the limitations in TALCRA. First, as we start from
the unknown component, in contrast to TALCRA that starts from the known
component, we can enumerate only the premises that may exist in some clients,
avoiding the high computation cost of producing unnecessary conditional reach-
ability relations. Second, as the premises are basically an attachment, there is no
particular constraint over the premises and multiple premises per one relation is
also supported. In the above example, our approach can produce the following
conditional relations, which completely summarize the flows-to behavior in the
library.

apub flows to epub if bpub flows to cpub and dpub flows to epub. (8)

apub flows to epub if bpub flows to cpub and line 8 calls the method defined

at line 14 (i.e., edges dpub
{8−→x3m3 and x3m3

}8−→epub exist).
(9)

However, allowing too many premises in one conditional relation may lead to
too many conditional relations due to the combinatorial effect of the premises.
We further propose to confine the number of premises in a reachability relation by
introducing bridging edges. In this way, our approach can still achieve complete
summaries with at most k premises in a relation. We denote the approach with
at most k premises as ConCRA-k and the approach with any number of premises
as ConCRA-f.

To evaluate the effectiveness and efficiency of ConCRA, we implemented a
context-sensitive, SSA-based, and field-insensitive data dependency analysis tool
based on ConCRA. In particular, our approach was empirically compared with
TALCRA technique on 12 Java benchmark subjects from the SPECjvm2008

884 H. Tang et al.

benchmark suite. Because of the configurable nature of our approach, we also
compare ConCRA-f and ConCRA-k with k ∈ {1, 5}.

The evaluation has several findings. (1) ConCRA is able to significantly out-
perform TALCRA, with up to 1.93X speedup for the library analysis and 5.04X
speedup for the client analysis (46.45X if compared to standard CFL technique).
(2) When computing complete summaries, ConCRA is up to 24.7% (100% vs.
80.2%) more precise than TALCRA, where the latter relies on CHA to compute
control flow analysis on library when the client information is not available.
(3) By balancing the library summarization time and the client analysis time,
ConCRA-1 seems to be the overall best configuration for the dependency analysis
used in our evaluation.

To sum up, the paper makes the following main contributions:

– A general extension to the well-known Dyck-CFL reachability analysis for
conditional reachability analysis, providing better efficiency and more com-
plete library summarization than the state-of-the-art TALCRA approach.

– An efficient technique for confining the number of premises to avoid combi-
natorial explosion of premises.

– An empirical evaluation demonstrating the superiority of our techniques over
the state-of-the-art TALCRA approach.

We organize the rest of this paper as follows. Section 2 presents the tech-
nical background. Section 3 presents our approach to conditional reachability
analysis. Section 4 presents an experimental evaluation of the proposed app-
roach. Section 5 discusses deeper issues of our research. Section 6 discusses exist-
ing research related to ours. Section 7 concludes this paper.

2 Background

Our approach is designed for the Dyck-CFL reachability problem. CFL reach-
ability is a generalization of a large class of program analysis problems. CFL
reachability concerns about the reachability between nodes on a graph. The
nodes of the graph are usually the values under analysis at different program
points, and the edges usually show possible reachability or dependencies between
values. To increase the precision of the analysis, a CFL is used to confine the
reachability. The edges are labelled with members of an alphabet Σ, and a node
is considered to be CFL reachable to another node if and only if the labels on a
path between the two nodes form a word in this language.

A frequently used CFL is the Dyck language, which is defined by the following
grammars.

S → {i S }i | S S | e | ε

L → L L | S | {i
R → R R | S | }i
D → R D | D L | S

Conditional Dyck-CFL Reachability Analysis 885

Basically, the Dyck language consists of a family of parentheses, which must
be matched when paired. In the above definition, {i and }i are a family of
parenthesis, and e is a terminal to be put on edges that are not parentheses.
According to the nature of the problem, the start symbol could be one of S,L,R
or D, which allows no unpaired parentheses, only unpaired left parentheses, only
unpaired right parentheses, or both.

The Dyck language captures the call-return relationship between procedures.
When a procedure is called, the edges from the caller to the callee are labelled
with {i, where i is the identifier of this call site. When the callee returns, the
edges from the callee to the caller are labelled with }i. An example of Dyck-CFL
reachability analysis is the data dependency analysis that we have seen in Sect. 1.

The CFL reachability problem can be solved by a dynamic programming
algorithm that adds edges of nonterminals to the graph. The context free gram-
mar is first normalized so that the right hand side of each production has at
most two symbols. For example, S → {i S }i is normalized into S → {i Pi

and Pi → S }i. Then the three rules in Fig. 2 are applied on the graph to add
new edges on the graph. The solid lines are existing edges and the dotted lines
are the added edges. The three rules can be exhaustively applied with a proper
worklist algorithm to achieve a complexity of O(l3n3) where l is the number of
nonterminal symbols and n is the number of nodes in the graph. When all rules
have been thoroughly applied, the reachability between two nodes is equal to
the existence of a direct edge with the start symbol between the two nodes.

Fig. 2. Rules for solving a CFL reachability problem

3 Approach

As mentioned in the introduction, our approach is based on conditional reacha-
bility. The core concept to implement conditional reachability is the conditional
edge, which is a special edge whose existence depends on the existence of a set of
other edges (known as premises). As a result, our summary for a library is a set
of conditional edges, where the premises capture the potential reachability built
by client code, and the conditional edges themselves capture the reachability
between the boundary nodes of the library. When the client code is available,
we can instantiate the conditional edges by analyzing the client code, which
directly gives us the reachability between the boundary nodes of the library
without analyzing the library code.

In the following sub-sections, we first present the basic definitions, then show
how we analyze the client with the conditional edges, and finally show our

886 H. Tang et al.

two algorithms, i.e., ConCRA-f and ConCRA-k. The data-dependency graph
in Fig. 1b will be used to make our description more clearly.

3.1 Definitions

Suppose an alphabet Σ containing all symbols in a Dyck language. We start by
defining general program graphs.

Definition 1 (Program Graph). A program graph G is a pair (V,E) where
V is a set of nodes, E is a set of directed edges between the nodes in V , labelled
with the symbols in Σ. We use G.V and G.E to denote the nodes and edges of
G, respectively. We use s

A−→t to denote an edge e from s to t with label A, and
use e.src, e.tgt and e.tag to denote s, t, A.

Since our approach summarizes library code for client analysis, we need to
define library graphs. The difference between a library graph and a program
graph is that a library graph has a set of boundary nodes for interacting with
the clients, and there are a set of premises that may be instantiated by a client.

Definition 2 (Library Graph). A library graph G is a program graph (V,E)
with the following additional components.
· Vinput(Input to library code): The nodes in G.V that can be connected from a
client node via a {i-edge (e.g., apub).

· Voutput(Output from library code): The nodes in G.V that can connect to a
client node via a }i-edge (e.g., epub).

· Vcall(Input to call-backs). The nodes in G.V that can be connected to a client
node via a {i-edge (e.g., bpub, dpub).

· Vreturn(Output from call-backs). The nodes in G.V that can be connected from
a client node via a }i-edge (e.g., cpub, epub).

· P (Premises). Premises are edges that can potentially be created using the infor-
mation from a client, P ∩ G.E = ∅.
We call the set of nodes Vinput ∪ Voutput ∪ Vcall ∪ Vreturn boundary nodes.

Correspondingly, the rest of the nodes are called inner nodes. We further use
Ventries = Vinput∪Vreturn to denote all incoming boundary nodes and use Vexits =
Voutput ∪ Vcall to denote all outgoing boundary nodes.

When the client code is available, the part of the graph representing the
client code is added to the library graph, forming an application graph.

Definition 3 (Application Graph). Let G be a library graph. Program graph
G′ is an application graph using G if and only if G′ satisfies the following
constraints:

1. G.V ⊂ G′.V ∧ G.E ⊆ G′.E. We call G.V library nodes, denoted as
G′.Vlib, and the nodes in G′.V − G.V as client nodes, denoted as G′.Vclt .

2. Any edge s
A−→t in G′.E − G.E satisfies one of the following conditions.

(1) Edges between client nodes. s ∈ G′.Vclt ∧ t ∈ G′.Vclt .

Conditional Dyck-CFL Reachability Analysis 887

(2) Edges between library nodes. s ∈ G.V , t ∈ G.V , and s
A−→t ∈ G.P .

(3) Input edges to the library. s ∈ G′.Vclt , t ∈ G.Vinput , A is {i for some
i, and any edge labelled with }i is an output edge from the library (e.g.,

zmain
{27−−→apub).

(4) Output edges from the library. s ∈ G.Voutput , t ∈ G′.Vclt , A is }i for
some i, and any edge labelled with {i is an input edge to the library (e.g.,

epub
}27−−→z1main).

(5) Input edges to call-backs. s ∈ G.Vcall , t ∈ G′.Vclt , A is {i for some i, and

any edge labelled with }i is an output edge from call-backs (e.g., bpub
{5−→x2m2).

(6) Output edges from call-backs. s ∈ G′.Vclt , t ∈ G.Vreturn , A is }i for
some i, and any edge labelled with {i is an input edge to call-backs (e.g.,

x2m2
}5−→cpub).

3. For an input edge s1
{i−→t1 to call-backs and an output edge s2

}i−→t2 from
call-backs, there is a premise s1

S−→t2 ∈ G.P .

The premises P should satisfy constraints 2(2) and 3. Let us consider data-
dependency library graphs. We notice that only values on virtual call sites (e.g.,
bpub, cpub, dpub, epub) are related to these constraints. For each parameter and
the return value of a virtual call site, we create a premise with label S between
them (e.g., bpub

S−→cpub, dpub
S−→epub) to satisfy constraint 3. For each virtual call

site and any of its potential targets, we create premises between their parameters

and return values (e.g., dpub
{8−→x3m3, x3m3

}8−→epub) to satisfy constraint 2(2).
We refer to these premises as call-back premises and virtual-call premises.

Since we are only concerned with the reachability between client nodes, we
only need to summarize the reachability between the boundary nodes. As a
result, the conditional reachability is defined as the reachability between two
boundary nodes under the condition that some pairs of boundary nodes are
reachable. The conditional edge is the key concept to implement conditional
reachability.

Definition 4 (Conditional Edge). A conditional edge e is a four-tuple, (A,

X, s, t), denoted as s
A|X−−−→ t, where A is a nonterminal, X is a subset of the

premises P .

Given a conditional edge s
A|X−−−→ t, when all edges in X are present on the graph,

we consider the premises of this conditional edge as satisfied, and instanti-
ate this conditional edge by putting a normal edge s

A−→t on the graph (e.g.,

apub
S|X−−→ epub (X={bpub

S−→cpub,dpub
{8−→x3m3,x3m3

}8−→epub})). Note that the

premises of a conditional edge can also be an empty set, e.g., s
A|∅−−→ t. In such

cases a conditional edge is the same as a normal unconditional edge. In this
paper, we do not distinguish a normal edge and a conditional edge with zero

premise, and refer to them both as unconditional edges (e.g., apub
S|∅−−→ bpub and

apub
S−→bpub are the same unconditional edge).

888 H. Tang et al.

With conditional edges, we can summarize a library as a set of conditional
edges, where the premises of these edges represent the potential reachability
relationships between the boundary nodes.

In some cases, two conditional edges may have the subsumption relationship.

Definition 5 (Edge Subsumption). (s1
A|X−−−→ t1)
 (s2

B|Y−−−→ t2) if and only
if A = B, X ⊆ Y , s1 = s2 and t1 = t2.

This represents that the latter edge requires additional premises compared
with the former edge, and thus is completely subsumed by the former edge and
can be removed from the graph.

3.2 Analyzing Libraries with ConCRA-f

We summarize the library by adding conditional edges to the graph in a way
similar to the standard CFL reachability analysis. Figure 3 depicts the rules for
generating conditional edges. Initially, the algorithm properly handles G.E and
G.P as initial conditional edges. The algorithm regards each original edge s

A−→t

in G.E as s
A|∅−−→ t. The additional rule (d) handles each edge s

A−→t in G.P by

adding s
A|

{s
A−→t}−−−−−−→ t (a conditional edge that depends on exactly the same edge)

to the graph. These initial conditional edges with zero or one premise are served
as the starting points to generate conditional edges with more premises. Rules
(a), (b), and (c) correspond to the three standard rules in Fig. 2 to generate a

conditional edge s
A|X−−−→ t. The algorithm handles A, s, and t by the standard

rules. The only difference is that the algorithm sets X as the union of the premises
of the concatenated conditional edges. Rules (a), (b), and (c) are the cases for
zero, one, and two concatenated conditional edges, respectively. Note that the
algorithm does not limit the number of premises in a conditional edge. Therefore,
we denote the algorithm as ConCRA-f (The “f” means “full”).

Fig. 3. Rules for building conditional edges in ConCRA-f

Conditional Dyck-CFL Reachability Analysis 889

We exhaustively apply these rules until no more edges can be added. Then
we locate each (un)conditional edge connecting two boundary nodes, i.e., e.src
and e.tgt are both in Ventries ∪Vexits . The set of such edges is the summary of the
library. In this way we capture all reachability relationships between boundary
nodes under all possible premises.

While this basic approach works, we can further optimize it in the following
ways:

– In complex situations, two conditional edges e1 and e2, where e1 subsumes e2,
may both be added to the graph. In such cases, we can safely remove e2 from
the graph.

– We can sort the edges in the worklist by the number of premises, so that the
edges with fewer premises are created first. In this way we can ensure the
subsumed edges are removed once created.

These optimizations lead to Algorithm 1. Algorithm 1 is a worklist algorithm
that implements the four rules in Fig. 3 with the optimizations mentioned above.
This algorithm maintains a worklist of edges W , iteratively adds each edge in
W to the graph (by storing to G.E), and checks whether any new edge can
be generated based on the current edge. Finally, the algorithm returns a set of
conditional edges between boundary nodes. The first optimization is applied in
line 11, where we process an edge only when there is no subsuming edge on the
graph. Furthermore, the worklist W is also a priority queue on the number of
the premises, ensuring that the edges with smaller number of premises are added
first, implementing the second optimization.

Complexity. Let us denote the total number of premises as m, the number of
symbols as l, and the number of nodes as n. Since each edge may be labelled with
one of the O(l) symbols and one of the O(2m) possible premises, the number of
edges in a graph is O(2mn2l). In each iteration, we need to check the applicability
of rules (a), (b), (c) for one edge and each production rule. Checking applicability
of rules (a) and (b) on one edge has O(1) complexity, and for rule (c), we may
need to look at O(2mnl) other edges. As a result, we have a complexity of
O(22mn3l3), exponential to the number of premises m.

3.3 Analyzing Clients

Client analysis is performed on the basis of the set of conditional edges computed
by library summarization. When the client code is present, we build an appli-
cation graph for the client. In the building process, we do not have to include
all nodes and edges for the library graph, but include only the boundary nodes,
the conditional edges between boundary nodes, and needed bridging edges. The
last one is needed for the ConCRA-k analysis as explained later.

When the application graph is built, a further filtering can be performed. We
remove those boundary nodes that do not connect to any client node by a direct
edge. All conditional edges that connect to these nodes are also removed.

890 H. Tang et al.

ALGORITHM 1. Analyzing libraries with ConCRA-f
Input: Γ, a context free grammar
Input: G, an library graph
Output: R, a set of conditional edges
Data: W , a priority queue of edges, where edges with smaller number of

premises has higher priority
1 for each n in G.V do
2 for each A → ε do

3 W ← W ∪ {n
A|∅−−→ n} ; /* rule (a) */

4 for each s
A−→t in G.P do

5 x ← s
A−→t

6 W ← W ∪ {s
A|{x}−−−−→ t} ; /* rule (d) */

7 W ← W ∪ G.E
8 G.E ← ∅
9 while W is not empty do

10 (e : s
A|X−−−→ t) ← the first edge in W

11 if ∀e′ ∈ G.E : ¬(e′ � e) then
12 G.E ← G.E ∪ {e}
13 for any B → A ∈ Γ do

14 W ← W ∪ {s
B|X−−−→ t} ; /* rule (b) */

15 for any B → A C ∈ Γ ∧ t
C|Y−−−→ t′ ∈ G.E do

16 W ← W ∪ {s
B|X∪Y−−−−−→ t′} ; /* rule (c) */

17 for any B → C A ∈ Γ ∧ s′ C|Y−−−→ s ∈ G.E do

18 W ← W ∪ {s′ B|X∪Y−−−−−→ t} ; /* rule (c) */

19 W ← W − {e}
20 for each e in G.E do
21 if e.src and e.tgt are both boundary nodes then
22 R ← R ∪ {e}

Client analysis with conditional edges is the same as the standard CFL reach-
ability analysis using rules in Fig. 2, with one additional rule described in Fig. 4.
This rule captures the instantiation of a conditional edge. When all premises for
a conditional edge are present in the graph, we instantiate this conditional edge
by adding an unconditional edge to the graph. The worklist algorithm imple-
menting these rules is depicted in Algorithm 2.

3.4 Soundness

Theorem 1 (Soundness of ConCRA-f). Let G be an arbitrary application
graph using library G′, analyzing G via the ConCRA-f summary of G′ produces
exactly the same set of edges between client nodes as analyzing G directly.

Conditional Dyck-CFL Reachability Analysis 891

Fig. 4. Additional rule for client analysis

Proof. To prove this theorem, first, we need to show that any path between two
client nodes recognized by our ConCRA-f summary together with client analysis
will be recognized by the Dyck-CFL. This is easy to prove as our summarization
rules in Fig. 3 is a direct extension to CFL rules in Fig. 2.

Second, we need to show that any path between two client nodes recognized
by the Dyck-CFL will be recognized by our ConCRA-f summary together with
client analysis. This part is more difficult. Due to space limit, we shall show only
how to prove this theorem for edges labelled with S. The other labels L, R, and
D can be similarly proved.

The proof is an induction over the length n of the path to show the following
two propositions hold, where the first one directly responds to our theorem: (1)
any path with length equal or less than n between two client nodes recognized
by Dyck-CFL will be recognized by client analysis; (2) any path with length
equal or less than n between two library nodes recognized by Dyck-CFL will be
recognized as a conditional edge in library summarization, and its premises will
be produced by client analysis.

When n = 0, the path can only be produced by rule S → ε, and the two
propositions trivially hold.

When n = 1, the path can only be produced by rule S → e, or rule S → S S
where one S on the righthand side is ε, and the two propositions trivially hold.

Suppose the two propositions hold for any length up to k. When length is
k + 1, the edge can be recognized by either S → {i S1 }i or S → S1 S2. Let
us consider S → {i S1 }i first. In the case where S is between two client nodes,
S1 can be a path between two client nodes or two library boundary nodes, but
cannot be a path between one client node and a library node because of the
pairing of parentheses in Definition 3. Thus, S1 will be recognized because of
induction hypothesis, and then S will be recognized.

In the case where S is between two library nodes, similarly S1 can be a
path between two client nodes or two library nodes. In the former case, S is
a path between Vcall and Vreturn , and thus is a premise itself. Also, S1 will be
recognized by client analysis because of the induction hypothesis, and thus S
will be recognized. In the latter case, S1 will be produced as a conditional edge
with all its premises recognizable because of the induction hypothesis, and thus
S will be recognized with all its premises recognized.

892 H. Tang et al.

ALGORITHM 2. Analyzing clients
Input: Γ, a context free grammar
Input: G, an application graph
Input: M , a set of conditional edges
Data: W , a worklist of edges

1 for each n in G.V do
2 for each A → ε do

3 W ← W ∪ {n
A−→n} ; /* rule (a) */

4 W ← W ∪ G.E
5 G.E ← ∅
6 while W is not empty do

7 (e : s
A−→t) ← an edge in W

8 if e /∈ G.E then
9 G.E ← G.E ∪ {e}

10 for any B → A ∈ Γ do

11 W ← W ∪ {s
B−→t} ; /* rule (b) */

12 for any B → A C ∈ Γ ∧ t
C−→t′ ∈ G.E do

13 W ← W ∪ {s
B−→t′} ; /* rule (c) */

14 for any B → C A ∈ Γ ∧ s′ C−→s ∈ G.E do

15 W ← W ∪ {s′ B−→t} ; /* rule (c) */

16 for any s′ B|X−−−→ t′ ∈ M ∧ X ⊆ G.E do

17 W ← W ∪ {s′ B−→t′} ; /* rule (d) */

18 M ← M − {s′ B|X−−−→ t′}
19 W ← W − {e}

Then let us consider S → S1 S2. In the case where S is between two client
nodes, S1 and S2 are also between two client nodes, otherwise the parenthe-
ses cannot be balanced. Thus, S1 and S2 will both be recognized by induction
hypothesis, and then S will be recognized. The case where S is between two
library nodes is similar.

Based on the above analysis, the two propositions hold for paths of any
length, and thus the theorem holds.

3.5 Analyzing Libraries with ConCRA-k

As analyzed before, the time complexity of ConCRA-f is exponential to the
number of premises, making it difficult to scale up. This time complexity is
caused by the massive number of edges with different premises between two
nodes. To avoid this, we can set an upper bound k on the number of the premises
of each conditional edge. We denote this technique as ConCRA-k.

Now the problem is how to represent all conditional edges with only k
premises. Our idea is to introduce bridging edges to represent conditional edges
with more premises using conditional edges with less premises.

Conditional Dyck-CFL Reachability Analysis 893

Fig. 5. Rules for building conditional edges in ConCRA-k

This idea leads to the rules in Fig. 5. The only difference from the rules in
Fig. 3 is that the original rule (c) is separated into two rules (c) and (d) in Fig. 5.
If the generated edge has less than or equal to k premises, the rule is the same as
before (rule (c)). If the generated edge requires more than k premises, we reset
its premises to one premise by introducing a new premise containing only the

edge itself (rule (d)). The edges s
B|X−−−→ r and r

C|Y−−→ t are the bridging edges of
A|{s A−→t}.

The concrete algorithm is listed in Algorithm 3. This algorithm is mostly
the same as Algorithm 1, and we only show the changed lines. The number at
the left of each line in Algorithm3 indicates the corresponding line number in
the original algorithm. First, when the premises of rules (c) or (d) are satisfied
(line 15 and line 17), we also record any potential dependencies in M if the
generated edge has more than k premises. When we add the edge with more
than k premises to the graph (line 12), we reset its premise to one. Note that
we only reset premise when the edge is about to be added to the graph. In this
way we can ensure that line 12 could still filter some subsumed edges. Finally,
when the conditional edges between boundary nodes are selected, we perform a
backtracking to add back all needed intermediate conditional edges (line 22).

Theorem 2 (Soundness of ConCRA-k). Let G be an arbitrary application
graph using library G′, analyzing G via the ConCRA-k summary of G′ produces
exactly the same set of edges between client nodes as analyzing G directly.

Proof. The proof of this theorem is similar to Theorem 1. The only difference is
that this time we need to reason that the chain of conditional edges produced
by rule 5d is complete, and this can be easily seen by examining all rules that
introduce new premises.

Complexity. Let us denote the number of premises as m, the number of
production rules as l, and the number of nodes as n. There are two differences

894 H. Tang et al.

ALGORITHM 3. Analyzing libraries with ConCRA-k
· · ·
Output: M , a dictionary from intermediate conditional edges to their

dependencies
· · ·

11 if ∀e′ ∈ G.E : ¬(e′ � e) then
12 if |X| > k then

x ← (s
A−→t)

e ← (s
A|{x}−−−−→ t)

G.E ← G.E ∪ {e}
. . .

15 for any B → A C ∈ Γ ∧ t
C|Y−−−→ t′ ∈ G.E do

16 W ← W ∪ {s
B|X∪Y−−−−−→ t′} ; /* rule (c), (d) */

if |X ∪ Y | > k then
/* append(k, v) adds v to key k */

M.append(s
B−→t′, {e, t

C|Y−−−→ t′})

17 for any B → C A ∈ Γ ∧ s′ C|Y−−−→ s ∈ G.E do

18 W ← W ∪ {s′ B|X∪Y−−−−−→ t} ; /* rule (c), (d) */

if |X ∪ Y | > k then

M.append(s′ B−→t, {s′ C|Y−−−→ s, e})· · ·
22 R ← AddDependencies(R)

from ConCRA-f. First, since any newly added edges may have its premises reset,
we need to consider m + n2l rather than just m. Second, there is only Ck

m+n2l

possible sets of premises. As a result, we have a complexity of O((Ck
m+n2l)

2n3l3).
This complexity is much smaller than ConCRA-f with a small k. For example,
we have a polynomial complexity when k = 1.

4 Empirical Evaluation

This section empirically evaluates the proposed techniques.

4.1 Evaluated Analyses

Our evaluation is based on the same context-sensitive, SSA-based, and field-
insensitive dependency analysis used in evaluating TALCRA [39] so that we can
compare with TALCRA. More concretely, we track the flows-to relations (the
inverse of dependency relations) between stack variables; we treat each variable
as a node and an assignment x=y as an edge from y to x; a method call z=x.f(y)
corresponds to a left-parenthesis edge from y to the argument of x.f() and
a right-parenthesis edge from the return value to z (The call site determines
the index of the parenthesis). We refer to a parenthesis edge as a call edge.

Conditional Dyck-CFL Reachability Analysis 895

Procedure AddDependencies(E)

1 for each s
A|X−−−→ t ∈ E do

2 W ← W ∪ X
3 end
4 while W is not empty do
5 e ← an edge in W
6 if M contains e then

/* lookup(e) returns the dependencies of e */

7 for each e′ = s′ A′|X′−−−−→ t′ ∈ M .lookup(e) do
8 E ← E ∪ {e′}
9 W ← W ∪ X ′

10 end

11 end
12 W ← W − {e}
13 end
14 return E

A virtual-call edge is a call edge belonging to a virtual call site. Our example in
Fig. 1 demonstrates the graph used in this analysis.

To summarize a library for this analysis, we need to provide the set of
premises G.P . G.P obtains call-back premises and virtual-call premises as we
mentioned in Sect. 3. Note that TALCRA does not support the latter type of
premises, so we also evaluate our techniques on the configuration where each
virtual-call edge in the library is treated as a normal edge. Therefore, the evalu-
ation contains two configurations: (1) VC-config : virtual-call edges are reserved
as premises in the library graph; (2) CHA-config : virtual-call edges are treated as
normal edges in the library graph. CHA-config library summaries are imprecise
because the virtual-call edges generated by imprecise library call graph construc-
tion approaches (e.g., class hierarchy analysis) are treated as normal edges.

4.2 Implementation

Our implementation has two parts. The first part, implemented in Java using the
SOOT framework1, generates the dependency graphs and exports the graphs to
files. The virtual call sites are resolved by CHA [5] in the library analysis, and
are resolved by Spark [14] in the client analysis. The virtual-call premises are
those produced by CHA. The second part, implemented in C++, reads the files
and performs the library summarization and client analysis of ConCRA, TAL-
CRA, as well as CLA [31]. We obtained the newest TALCRA implementation
from TALCRA web site2. We reimplemented CLA to use CFL reachability as
summary representation, rather than the original functional approach. Bascially,

1 http://sable.github.io/soot/.
2 http://www.utdallas.edu/%7elxz144130/tal.html, accessed 2016-01-29.

http://sable.github.io/soot/
http://www.utdallas.edu/%7elxz144130/tal.html

896 H. Tang et al.

there are two differences with CLA and ConCRA: (1) CLA does not use premises
and only summarizes unconditional edges between boundary nodes; (2) Bound-
ary nodes used by CLA include not only boundary nodes used by ConCRA, but
also the call-site nodes to procedures that may (transitively) call a virtual call.

We adopt several efficient data structures in library summarization and client
analysis. The worklist W for ConCRA-k and ConCRA-f is segregated into several
sets W1,W2, · · · . All newly-generated conditional edges with i premises are put
into Wi. The first edge returned by W is thus always an edge in the non-empty

Wi with the smallest i. Each conditional edge s
A|X−−−→ t added into G.E is indexed

by 〈A, s〉, 〈A, t〉 using 2-dimensional arrays, and 〈A, s, t〉 using a 2-dimensional
array of hash tables. The two arrays are used for efficiently acquiring the edges
with specific labels and common source or target nodes. The array of hash tables
is used to check whether an edge e is subsumed (Definition 5) by other edge e′.

We also implemented a standard whole-program CFL reachability analysis
as a control technique.

4.3 Setup

Benchmark. Our benchmark includes all 12 subjects in the SPECjvm20083

benchmark. The SPECjvm benchmark was widely used in evaluating the state-
of-art library-summarization work [39] as well as many related approaches in the
program analysis area [36,37,41,42].

In our evaluation, we treat JDK as library and build summaries for a
major portion of JDK. More specifically, we build summaries for two JAR files,
rt.jar and jce.jar, which include most commonly used Java packages, such as
java.util, java.io, java.lang, etc. Summarizing a popular portion of the library
instead of the whole library is a common practice used in existing evaluation on
summarization techniques [1,17,32] to reduce the summarization time.

Table 1 shows the statistics. Columns 1 lists all the benchmark subjects.
Columns 2–4 show the numbers of client nodes, the library nodes accessed by
the client, and all nodes in each subject’s data dependency graph4. Similarly,
Columns 5–7 present the Jimple code lines of the client, the library methods
called by the client, and the whole application for each subject. Here the library
nodes and library code refer to only the part of JDK in our summary.

Table 2 shows the information about summarized part of JDK including
the Jimple code lines, the size of the dependency graph, and the two types
of premises. Jimple is the fundamental intermediate representation of Java in
Soot. We use the lines of Jimple code instead of Java source code because we do
not have full Java source code for the benchmark. Based on our experience with

3 http://www.spec.org/jvm2008/.
4 Please note the statistics are different from the TALCRA paper [39] because that

evaluation was performed on an early version of the TALCRA tool that built the
graph differently.

http://www.spec.org/jvm2008/

Conditional Dyck-CFL Reachability Analysis 897

Table 1. Benchmark statistics

Bench. # Nodes # Jimple code lines

Clt Lib Total Clt Lib Total

check 1701 10838 12539 7752 160078 167830

compiler 917 10699 11616 4184 160042 164226

compress 1428 10576 12004 5025 160042 165067

crypto 2515 19002 21517 11547 229158 240705

derby 1380 16722 18102 10189 210054 220243

hello 598 10881 11479 847 160042 160889

mpeg 17588 37980 55568 243007 402569 645576

scimark 1557 10709 12266 7034 160042 167076

serial 11509 38419 49928 187517 407990 595507

startup 1083 16512 17595 2472 200060 202532

sunflow 19021 26606 45627 139362 283016 422378

xml 11749 23444 35193 122631 268431 391062

Total 71046 232388 303434 741567 2801524 3543091

JDK, the Jimple code lines are about 4 times as many as the original source
code, excluding comments and empty lines.

Table 2. Library statistics

Jimple code lines 526648

Dependency graph nodes 66736

Dependency graph edges 161239

Virtual call premises 64777

Call-back premises 10236

Compared Techniques. On both CHA-config and VC-config, we evaluated
ConCRA-f and ConCRA-k (with k values between 1 and 5) techniques, as well
as a standard CFL-reachability analysis and the CLA technique [31]. Moreover,
on the CHA-config, we evaluated the state-of-art TALCRA technique [39].

To evaluate the effectiveness of each studied technique, we measured the
time cost for each technique in both library summarization and client analysis.
Furthermore, we evaluated the precision of client analysis by measuring the
produced dependency edges.

Evaluation Platform. Our evaluation was performed on a Dell PowerEdge
R730 Server with 8-core 16-thread Intel(R) Xeon(R) CPU E5-2640 v2 @
2.00 GHz and 256 Gigabyte RAM running OpenJDK 1.7.0 79 on Ubuntu 14.10.

898 H. Tang et al.

4.4 ConCRA-f/ConCRA-k vs. TALCRA

On the CHA-config, we compare our techniques against TALCRA.
The results of library summarization are shown in Table 3. Columns 1 to 5 list

the library summarization statistics of CLA, TALCRA, ConCRA-1, ConCRA-2,
and ConCRA-f, respectively. Row 2 shows the summarization time. Row 2 also
lists the speedup information compared with the CLA technique in Columns 2
to 5. Row 3 shows the maximal memory usage during the summarization. We
omit the results of ConCRA-k (k = 3, 4, 5) because they are almost identical to
the result of ConCRA-f.

Table 3. Library summarization (CHA-config)

CLA TALCRA ConCRA-1 ConCRA-2 ConCRA-f

72.50s 87.78s 0.83X 45.33s 1.60X 63.30s 1.15X 71.79s 1.01X

1.45G 3.66G 5.15G 6.81G 7.39G

The experimental results of client analysis are shown in Table 4. In the table,
Column 1 lists all the benchmark subjects. Column 2 presents the time cost for
the standard CFL reachability analysis on the entire application graph (including
all the client and library nodes) as the control technique. Column 3 presents the
client analysis time for the CLA approach. Column 4 presents the client analysis
time for the TALCRA approach. Columns 5 to 7 present the corresponding client
analysis time for our ConCRA-k (k = 1, 2) and ConCRA-f techniques. Columns
4 to 7 also contains the speedup information compared with the standard CFL
reachability analysis. The last row presents the arithmetic mean of speedups on
all subjects achieved by these techniques. Again, we omit the results of ConCRA-
k (k = 3, 4, 5) because the results are very close to ConCRA-f’s (less than 8%
variation).

Library Summarization. To summarize the JDK library, ConCRA-f and
ConCRA-k are both faster than TALCRA. Compared with the TALCRA app-
roach, ConCRA-1, ConCRA-2, and ConCRA-f have 1.93X, 1.39X, and 1.22X
speed-up, respectively. We can observe that the library summarization time
grows when k increases, and the time is close to ConCRA-f when k > 2. The
reason is that the conditional edges with more than 2 premises in the summary
of ConCRA-f only account for 26.4% (9,070,850 out of 34,363,200) of the sum-
mary. This finding also explains why our techniques are practical despite the high
theoretical complexity upper bound analyzed in Sect. 3. The overall amount of
conditional edges (34,363,200) is reasonable in practice.

Client Analysis. Compared to standard CFL technique, all the ConCRA imple-
mentations significantly reduce the client analysis time. Across all subjects,
ConCRA-1 speeds up the client analysis time by 3.34X to 46.45X, with an arith-
metic mean of 14.10X. Our ConCRA implementations also outperform TALCRA
with speedups up to 5.04X.

Conditional Dyck-CFL Reachability Analysis 899

Table 4. Client analysis for CHA-config (run times in milliseconds)

Benchmark CFL CLA TALCRA ConCRA-1 ConCRA-2 ConCRA-f

check 433 397 1.09X 303 1.43X 82 5.29X 84 5.14X 85 5.09X

compiler 401 380 1.06X 274 1.46X 80 5.01X 80 5.00X 80 5.03X

compress 412 399 1.03X 290 1.42X 98 4.21X 94 4.37X 94 4.40X

crypto 4058 1820 2.23X 468 8.68X 101 40.18X 105 38.70X 102 39.63X

derby 4121 1486 2.77X 430 9.59X 96 42.97X 96 43.11X 94 43.94X

helloworld 400 390 1.02X 270 1.48X 75 5.32X 76 5.27X 76 5.26X

mpegaudio 623527 518671 1.20X 253623 2.46X 154986 4.02X 154384 4.04X 154580 4.03X

scimark 444 417 1.06X 306 1.45X 104 4.26X 106 4.18X 105 4.24X

serial 619523 518384 1.20X 247012 2.51X 151562 4.09X 151937 4.08X 151478 4.09X

startup 3745 1523 2.46X 406 9.21X 81 46.45X 84 44.62X 84 44.39X

sunflow 21675 33741 0.64X 12843 1.69X 5292 4.10X 5290 4.10X 5265 4.12X

xml 9361 7291 1.28X 3566 2.62X 2799 3.34X 2835 3.30X 2801 3.34X

1.42X 3.67X 14.10X 13.83X 13.96X

Interestingly, ConCRA-f and ConCRA-k with a large k do not exhibit superi-
ority over ConCRA-1. We suspect that there are two possible reasons: (1) larger
k leads to larger summaries, and the memory management time increases sig-
nificantly; (2) there is only a few number of instantiated conditional edges that
has many premises, so the performance boost from larger k is not significant.

4.5 ConCRA-f/ConCRA-k vs. CLA

On the VC-config, we compare our techniques against CLA.
The results of library summarization are shown in Table 5, in the same format

as Table 3. Columns 1 to 4 list the library summarization statistics of CLA,
ConCRA-1, ConCRA-2, and ConCRA-f, respectively. All of ConCRA-k with
k = 3, 4, 5 and ConCRA-f fail to build summaries on the VC-config within the
2-hour time limit.

Table 5. Library summarization (VC-config)

CLA ConCRA-1 ConCRA-2 ConCRA-f

0.40s 34.74s 0.01X 1059.61s 0.00X TimeOut

0.26G 5.34G 32.71G -

The results of client analysis are shown in Table 6. The meaning of Column
1 to 2 are same as in Table 4. Column 3 presents the client analysis time for the
CLA approach. Columns 4 to 5 present the corresponding client analysis time
for our ConCRA-k (k = 1, 2) techniques.

Library Summarization. ConCRA-1 and ConCRA-2 spends more time than
CLA, since ConCRA calculates a more complete summary than CLA does.

900 H. Tang et al.

Table 6. Client analysis for VC-config (run times in milliseconds)

Benchmark CFL CLA ConCRA-1 ConCRA-2

check 433 142 3.05X 137 3.16X 770 0.56X

compiler 401 139 2.88X 157 2.55X 728 0.55X

compress 412 149 2.77X 225 1.83X 954 0.43X

crypto 4058 1079 3.76X 151 26.94X 356 11.40X

derby 4121 1040 3.96X 120 34.23X 153 26.93X

helloworld 400 137 2.91X 77 5.21X 83 4.80X

mpegaudio 623527 340015 1.83X 167021 3.73X 169673 3.67X

scimark 444 167 2.66X 246 1.81X 986 0.45X

serial 619523 334689 1.85X 165408 3.75X 166616 3.72X

startup 3745 988 3.79X 239 15.70X 2978 1.26X

sunflow 21675 10844 2.00X 4755 4.56X 8183 2.65X

xml 9361 4724 1.98X 3164 2.96X 6496 1.44X

2.79X 8.87X 4.82X

ConCRA-1 can finish summarization in less than 1 min. ConCRA-2 spends much
more time than ConCRA-1, since the introduction of virtual call premises signif-
icantly enlarges the set of premises, causing ConCRA-2 to consider much more
potential combinations of premises than ConCRA-1.

Client Analysis. Compared to standard CFL technique, ConCRA-1 speeds
up the client analysis time significantly with an arithmetic mean of 8.87X.
ConCRA-1 also achieves an average speedup about 3 times as high as CLA
does. ConCRA-1 is slightly slower than CLA on a few subjects (compiler, com-
press, and scimark). We can observe these subjects are relatively small, which
caused the memory management became bottleneck in the analysis.

ConCRA-2 does not perform as well as ConCRA-1, and on some subjects, it
is even slower than the whole-program CFL technique. The summary ConCRA-2
calculates is so large that the overhead of memory management time becomes
prominent in client analysis. This finding indicates that ConCRA-1 has the over-
all best performance on the data dependency analysis in our evaluation.

4.6 Precision

As we analyzed before, techniques on the VC-config should be as precise as the
standard CFL reachability analysis while techniques on the CHA-config may be
imprecise due to the missing client information. In our evaluation, we count the
number of dependency edges produced by each algorithm, and we also compare
the analysis results against each other algorithm.

Table 7 shows client results about precision. Column 2 presents the num-
ber of dependencies found by standard CFL reachability analysis on the entire

Conditional Dyck-CFL Reachability Analysis 901

application graph. Column 3 presents the number of dependencies found on the
CHA-config and its precision compared to CFL results. Column 4 stands for the
VC-config. The precision is calculated by dividing the number from CFL analysis
with the number from the respective analysis.

There are two major findings. First, the dependency relations produced by
techniques on the VC-config are the same as those produced by the standard
CFL analysis, and both are a subset of the dependency relations produced by
techniques on the CHA-config. This serves as a side evidence that our imple-
mentation is correct. Second, the results by techniques on the CHA-config are
imprecise. On some subjects, the precision can be as low as 80.20%.

Table 7. Analysis precision

Benchmark CFL CHA-config (CLA,
TALCRA,
ConCRA)

VC-config (CLA,
ConCRA)

check 2012 2012(100.00%) 2012(100.00%)

compiler 764 836(91.39%) 764(100.00%)

compress 9729 9801(99.27%) 9729(100.00%)

crypto 4593 5197(88.38%) 4593(100.00%)

derby 7166 7180(99.81%) 7166(100.00%)

helloworld 329 337(97.63%) 329(100.00%)

mpegaudio 2713173 2793994(97.11%) 2713173(100.00%)

scimark 16028 16100(99.55%) 16028(100.00%)

serial 2479497 2551066(97.19%) 2479497(100.00%)

startup 840 841(99.88%) 840(100.00%)

sunflow 407547 508150(80.20%) 407547(100.00%)

xml 554780 555576(99.86%) 554780(100.00%)

In conclusion, both ConCRA-f and ConCRA-k are able to achieve speedups
over the state-of-art TALCRA technique on the CHA-config. They significantly
outperform traditional CFL technique for client analysis (e.g. ConCRA-1 and
ConCRA-f can achieve speedups of up to 46.45X and 44.39X, respectively). They
also achieve speedups up to 5.04X compared to TALCRA. In case of the VC-
config, ConCRA-1 achieves significant speedups over the standard CFL technique
for client analysis up to 34.23X, without precision loss. ConCRA-1 also generally
outperforms the CLA technique.

5 Discussion

Multiple Library Summaries. For the simplicity of the evaluation, we treat
the JDK implementation as the library code and all the other code and third-
party libraries of each subject as the client code. However, our approach supports

902 H. Tang et al.

the client code analysis with multiple library summaries. For example, for client
code c using two external libraries (l1 and l2). The client code analysis of c
can be directly built on top of the two separate library summaries by simply
collecting all conditional edges. We can even combine the two summaries into a
large summary by assuming virtual-call premises between them and apply the
library summarization rules.

Field Sensitivity. Following existing work for conditional reachability analy-
sis [39], we also evaluate our approach based on the context-sensitive, flow-
sensitive, and field-insensitive data-dependency analysis. Field-sensitivity can
also be encoded as a CFL reachability problem. However, achieving both context-
sensitive and field-sensitive analysis has been shown to be undecidable [26]. To
maintain both sensitivity to some extent, researchers have proposed to use regu-
lar language to approximate one CFL and keep the other one complete [37]. Our
conditional reachability analysis based on CFL provides a natural way to adapt
existing technique to further obtain field sensitivity to some extent. For example,
we can regularize the CFL for field sensitivity (i.e., RLf) and keep the CFL for
context sensitivity (i.e., CFLc). Therefore, data-dependency analysis consider-
ing both sensitivity can be approximated as the CFL-reachability problem using
RLf ∩CFLc. Then, we may still use our conditional reachability analysis based
on CFL to obtain library summary information to speed up client analysis. Fur-
thermore, in parallel with our work, Zhang and Su [45] recently proposed an
efficient algorithm based on linear-conjunctive-language reachability for solving
context-sensitive and field-sensitive data dependence analysis. The idea of con-
ditional reachability may also be applied to their approach, which is a future
work remaining to be explored.

Heap Objects and Global Variables. A standard way to handle heap objects
in dependence graphs is to promote them to the input and output of respective
methods by interprocedural mod-ref analysis. Existing tools such as WALA can
directly generate such graphs (system dependence graph with heap paramters).
However, this kind of graphs cannot be directly summarized by our approach
because heap objects and global variables defined in the clients may need to
promote to the library side. A possible solution is to assume the promoted nodes
and edges are part of the client graph. First we analyze library without the
promoted nodes and edges from the clients. Then when a client is available, we
analyze the precise boundary between the library and the client, and turn the
library analysis result into a summary. The concrete algorithm is a future work
to be explored.

6 Related Work

Our work is mainly related to existing research efforts on conditional analysis,
CFL reachability, and software library summarization.

Conditional Dyck-CFL Reachability Analysis 903

6.1 Conditional Analysis

Our analysis differs from normal reachability analysis because our analysis fur-
ther takes into account the conditions under which a code element can reach
another code element. In this sense, our research is related to existing research
efforts on conditional data dependency and information flow. Snelting et al. [35]
proposed a technique to extract conditions defined on program input variables
that must hold for certain data dependency in the program under analysis.
Komondoor and Ramalingam [11] proposed to identify conditional data depen-
dency for recovery of data models in programs written with weakly-typed lan-
guages. Sukumaran et al. [38] proposed to extend the program dependency graph
with conditions on the edges to specify the corresponding condition of a certain
dependency edge. Tschantz and Wing [40] developed a technique that detects
not only active but also passive conditional information flows to extract confi-
dentiality policies from software programs. Lochbihler and Snelting [15] further
considered data dependency controlled by temporal path conditions. Recently,
Jaffar et al. [9] proposed path-sensitive backward slicing that considers path con-
ditions when locating code elements that may affect certain program outputs.
The conditions considered in the above research efforts are all path conditions
in branch predicates. In contrast, the conditions considered in our approach are
reachability relationships between code elements.

Conditional must-not-alias analysis [19] calculates whether a pair of vari-
ables must not refer to a same memory location when another pair of variables
do not refer to a same memory location. This analysis is first used to detect
race conditions [19], and later in accelerating CFL-reachability-based points-to
analysis [42]. Similar to conditional must-not-alias analysis, our approach also
considers the reachability relationship between variables as conditions. However,
since the purpose of our approach is different (i.e., summarizing library code with
unknown components), we use as conditions the reachability relationships at the
library-client interface that are not available at the time of summarization, and
we further consider conditional reachability with multiple premises, neither of
which are covered in conditional must-not-alias analysis.

6.2 CFL Reachability

CFL reachability is a general framework developed in the area of database
by Yannakakis [43], and Reps et al. [28] first applied the framework to inter-
procedural slicing. Later, the framework is applied to a series of program analysis
tasks, including inter-procedural dataflow analysis [20,23,27], points-to analy-
sis [37,42], alias analysis [44,47], shape analysis [8,24,30], constant propaga-
tion [34], label-flow analysis [20], information flow analysis [16,18], race detec-
tion [21], and specification inference [2]. In 1998, Reps [25] wrote a survey on
the application of CFL reachability on various program analysis tasks.

Similar to us, the IDE framework [34] also attaches additional information to
the graph. This framework is designed to problems such as constant propagation,
where the “environment information”, such as the values of variables, is attached

904 H. Tang et al.

to each node. Later, Reps et al. [29] proposed a novel data flow analysis frame-
work based on reachability analysis of pushdown automata which allows adding
weights to the edges of pushdown automata. Compared to these approaches, our
approach attaches conditional information to the edges, and solves the library
summarization problem with the conditional edges.

6.3 Library Summarization

The main purpose of our proposed technique is to summarize libraries with con-
sideration of unknown components from client side, which is one of the emerging
but not well-solved problem in static analysis. In literature, we notice several
existing research efforts that try to address unknown components (e.g., call-
backs) when summarizing library code.

Rountev et al. [31,33] proposed a technique to accelerate dataflow analysis
by summarizing library code. Madhaven et al. [17] developed a general frame-
work to deal with unknown components in library summarization. Arzt et al. [1]
applies Rountev et al.’s technique [33] to taint analysis on Android applications.
These approaches identify the part of the library code that is not affected by the
unknown components, and build a partial summary for this part of library code.
Compared to these approaches, ConCRA is able to generate summaries (i.e., in
the form of conditional reachability) for the code affected by unknown compo-
nents. Lattner et al. [13] proposed a heap-cloning-based approach to context-
sensitive summarization of libraries with call-backs for pointer analysis. This
approach is in principle similar to Rountev et al. [31,33] and Madhaven et al.
[17], but is specifically tuned for pointer analysis. Furthermore, their approach
is tightly coupled with the problem of pointer analysis, and cannot be easily
migrated to other problems, whereas ConCRA is able to be applied on a large
class of problem using Dyck-CFL reachability analysis.

Other research efforts eliminate unknown components by make the most
conservative assumptions on them. Ravitch et al. [22] developed a technique to
automatically generate bindings for inter-programming language function calls.
Bastani et al. [2] deals with a related but different problem. Instead of building
library summaries for client analysis, they deal with the case where the library
code is missing, and try to infer a specification of the library code for manual
revision. Das et al. [4] proposed angelic verification to handle unknown external
function calls in program verification.

The work most closely related to our approach is by Tang et al. [39]. As
mentioned before, they proposed the TAL (Tree Adjoining Language) reachabil-
ity, and a summarization technique based on TAL reachability. TAL is a class
of languages that can be generated by production rules over two strings, rather
than CFL whose production rules are over one string, and the two strings can
be viewed as two separated paths that can be connected by a premise. Because
the types of premises are confined by TAL, it is not easy to extend this approach
to support multiple premises and more types of premises. Furthermore, in the
TALCRA, a technique called chaining nodes is used, whose effect is similar to
our ConCRA-1 analysis. However, they require a separate algorithm to identify

Conditional Dyck-CFL Reachability Analysis 905

chaining nodes, in contrast that our approach generates the bridging edges nat-
urally within one pass. Because of this separation, TALCRA may generate more
“bridging edges” than necessary and can remove them only after the identifica-
tion of chaining nodes, on the other hand our approach would not generate extra
bridging edges and is thus more efficient. Moreover, our approach also allows to
be adapted to ConCRA-k with any k, which is not supported by TALCRA.

There have been some other recent advancements on library code summa-
rization. Dillig et al. [6] proposed a flow-sensitive memory-safety analysis, in
which they used library summarization, and considered strong updates in the
summary building process. Kulkarni et al. [12] proposed to learn summaries from
a training corpus to accelerate the analysis of other programs that share code
with the corpus. In constract to our approach, they require the developers to
write a check function for each analysis to determine the soundness of the sum-
mary with respect to the current analysis task. Zhu et al. [48] proposed to infer
information-flow specifications of library code by analyzing the client code. How-
ever, these specifications need to be manually verified against library documents
to ensure correctness. Zhang et al. [46] proposed a general framework to hybrid
top-down and bottom-up analysis. In their analysis, bottom-up analysis and top-
down analysis can complement each other to achieve better performance. None
of the above four approaches support automatic summarization of library code
with unknown components.

7 Conclusion

In this paper, we demonstrate that by directly extending CFL-reachability analy-
sis rules with premises, we can turn a standard CFL-reachability analysis into
a conditional summarization approach with client analysis, and this approach is
more efficient and more general than existing summarization techniques based
on the dedicated TAL-reachability analysis. We believe that this approach indi-
cates the potential existence of a more generic method to extend existing analysis
techniques into a library summarization technique. This is a future direction to
be explored.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program under Grant No. 2016YFB1000105, and the National Natural Science
Foundation of China under Grant Nos. 61421091, 61225007, 61672045.

References

1. Arzt, S., Bodden, E.: Stubdroid: automatic inference of precise data-flow sum-
maries for the android framework. In: Proceedings of ICSE, pp. 725–735 (2016)

2. Bastani, O., Anand, S., Aiken, A.: Specification inference using context-free lan-
guage reachability. In: Proceedings of POPL, pp. 553–566 (2015)

3. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). doi:10.1007/
3-540-45937-5 13

http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/3-540-45937-5_13

906 H. Tang et al.

4. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: precise verification mod-
ulo unknowns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 324–342. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 19

5. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs
using static class hierarchy analysis. In: Tokoro, M., Pareschi, R. (eds.) ECOOP
1995. LNCS, vol. 952, pp. 77–101. Springer, Heidelberg (1995). doi:10.1007/
3-540-49538-X 5

6. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure
summaries for heap manipulating programs. In: Proceedings of PLDI, pp. 567–577
(2011)

7. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
PASTE, pp. 54–61 (2001)

8. Itzhaky, S., Bjørner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape
analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35–51.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 3

9. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward slicing.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 231–247. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33125-1 17

10. Kodumal, J., Aiken, A.: The set constraint/CFL reachability connection in prac-
tice. In: Proceedings of PLDI, pp. 207–218 (2004)

11. Komondoor, R., Ramalingam, G.: Recovering data models via guarded depen-
dences. In: Proceedings of WCRE, pp. 110–119 (2007)

12. Kulkarni, S., Mangal, R., Zhang, X., Naik, M.: Accelerating program analyses by
cross-program training. In: Proceedings of OOPSLA, pp. 359–377 (2016)

13. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: Proceedings of PLDI, pp. 278–289
(2007)

14. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using spark. In: Hedin, G.
(ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003). doi:10.
1007/3-540-36579-6 12

15. Lochbihler, A., Snelting, G.: On temporal path conditions in dependence graphs.
ASE 16(2), 263–290 (2009)

16. Macedo, H.D., Touili, T.: Mining malware specifications through static reachability
analysis. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol.
8134, pp. 517–535. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 29

17. Madhavan, R., Ramalingam, G., Vaswani, K.: Modular heap analysis for higher-
order programs. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp.
370–387. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33125-1 25

18. Milanova, A., Huang, W., Dong, Y.: CFL-reachability and context-sensitive
integrity types. In: Proceedings of PPPJ, pp. 99–109 (2014)

19. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Proceedings of POPL, pp. 327–338 (2007)

20. Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88–106. Springer,
Heidelberg (2006). doi:10.1007/11823230 7

21. Pratikakis, P., Foster, J.S., Hicks, M.W.: LOCKSMITH: context-sensitive correla-
tion analysis for race detection. In: Proceedings of PLDI, pp. 320–331 (2006)

22. Ravitch, T., Jackson, S., Aderhold, E., Liblit, B.: Automatic generation of library
bindings using static analysis. In: Proceedings of PLDI, pp. 352–362 (2009)

23. Rehof, J., Fähndrich, M.: Type-based flow analysis: from polymorphic subtyping
to CFL-reachability. In: Proceedings of POPL, pp. 54–66 (2001)

http://dx.doi.org/10.1007/978-3-319-21690-4_19
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dx.doi.org/10.1007/978-3-319-08867-9_3
http://dx.doi.org/10.1007/978-3-642-33125-1_17
http://dx.doi.org/10.1007/3-540-36579-6_12
http://dx.doi.org/10.1007/3-540-36579-6_12
http://dx.doi.org/10.1007/978-3-642-40203-6_29
http://dx.doi.org/10.1007/978-3-642-33125-1_25
http://dx.doi.org/10.1007/11823230_7

Conditional Dyck-CFL Reachability Analysis 907

24. Reps, T.: Shape analysis as a generalized path problem. In: Proceedings of PEPM,
pp. 1–11 (1995)

25. Reps, T.: Program analysis via graph reachability. Inf. Softw. Technol. 40(11–12),
701–726 (1998)

26. Reps, T.: Undecidability of context-sensitive data-dependence analysis. TOPLAS
22(1), 162–186 (2000)

27. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of POPL, pp. 49–61 (1995)

28. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. In: Proceedings
of FSE, pp. 11–20 (1994)

29. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application
to interprocedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol.
2694, pp. 189–213. Springer, Heidelberg (2003). doi:10.1007/3-540-44898-5 11

30. Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.: Modular
shape analysis for dynamically encapsulated programs. In: Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421, pp. 220–236. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71316-6 16

31. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the
presence of large libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol.
3923, pp. 2–16. Springer, Heidelberg (2006). doi:10.1007/11688839 2

32. Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built
with precompiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
20–36. Springer, Heidelberg (2001). doi:10.1007/3-540-45306-7 3

33. Rountev, A., Sharp, M., Xu, G.: IDE dataflow analysis in the presence of large
object-oriented libraries. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 53–
68. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78791-4 4

34. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1–2), 131–170
(1996)

35. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. TOSEM 15(4), 410–457 (2006)

36. Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-driven points-to analysis
for Java. In: Proceedings of OOPSLA, pp. 57–76 (2005)

37. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: Proceedings of PLDI, pp. 387–400 (2006)

38. Sukumaran, S., Sreenivas, A., Metta, R.: The dependence condition graph: precise
conditions for dependence between program points. Comput. Lang. Syst. Struct.
36(1), 96–121 (2010)

39. Tang, H., Wang, X., Zhang, L., Xie, B., Zhang, L., Mei, H.: Summary-based
context-sensitive data-dependence analysis in presence of callbacks. In: Proceed-
ings of POPL, pp. 83–95 (2015)

40. Tschantz, M.C., Wing, J.M.: Extracting conditional confidentiality policies. In:
Proceedings of SEFM, pp. 107–116 (2008)

41. Xu, G., Rountev, A.: Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis. In: Proceedings of ISSTA, pp. 225–235 (2008)

42. Xu, G., Rountev, A., Sridharan, M.: Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In: Drossopoulou, S. (ed.)
ECOOP 2009. LNCS, vol. 5653, pp. 98–122. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03013-0 6

43. Yannakakis, M.: Graph-theoretic methods in database theory. In: Proceedings of
PODS, pp. 230–242 (1990)

http://dx.doi.org/10.1007/3-540-44898-5_11
http://dx.doi.org/10.1007/978-3-540-71316-6_16
http://dx.doi.org/10.1007/978-3-540-71316-6_16
http://dx.doi.org/10.1007/11688839_2
http://dx.doi.org/10.1007/3-540-45306-7_3
http://dx.doi.org/10.1007/978-3-540-78791-4_4
http://dx.doi.org/10.1007/978-3-642-03013-0_6
http://dx.doi.org/10.1007/978-3-642-03013-0_6

908 H. Tang et al.

44. Zhang, Q., Lyu, M.R., Yuan, H., Su, Z.: Fast algorithms for Dyck-CFL reachability
with applications to alias analysis. In: Proceedings of PLDI, pp. 435–446 (2013)

45. Zhang, Q., Su, Z.: Context-sensitive data-dependence analysis via linear conjunc-
tive language reachability. In: Proceedings of POPL, pp. 344–358 (2017)

46. Zhang, X., Mangal, R., Naik, M., Yang, H.: Hybrid top-down and bottom-up inter-
procedural analysis. In: Proceedings of PLDI, pp. 249–258 (2014)

47. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proceedings of
POPL, pp. 351–363 (2008)

48. Zhu, H., Dillig, T., Dillig, I.: Automated inference of library specifications for
source-sink property verification. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301,
pp. 290–306. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03542-0 21

http://dx.doi.org/10.1007/978-3-319-03542-0_21

	Conditional Dyck-CFL Reachability Analysis for Complete and Efficient Library Summarization
	1 Introduction
	2 Background
	3 Approach
	3.1 Definitions
	3.2 Analyzing Libraries with ConCRA-f
	3.3 Analyzing Clients
	3.4 Soundness
	3.5 Analyzing Libraries with ConCRA-k

	4 Empirical Evaluation
	4.1 Evaluated Analyses
	4.2 Implementation
	4.3 Setup
	4.4 ConCRA-f/ConCRA-k vs. TALCRA
	4.5 ConCRA-f/ConCRA-k vs. CLA
	4.6 Precision

	5 Discussion
	6 Related Work
	6.1 Conditional Analysis
	6.2 CFL Reachability
	6.3 Library Summarization

	7 Conclusion
	References

