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Abstract. We introduce a generalized notion of inference system to sup-
port structural recursion on non well-founded datatypes. Besides axioms
and inference rules with the usual meaning, a generalized inference sys-
tem allows coaxioms, which are, intuitively, axioms which can only be
applied “at infinite depth” in a proof tree. This notion nicely subsumes
standard inference systems and their inductive and coinductive interpre-
tation, while providing more flexibility. Indeed, the classical results on
the existence and constructive characterization of least and greatest fixed
points can be extended to our generalized framework, interpreting recur-
sive definitions as fixed points which are not necessarily the least, nor the
greatest one. This allows formal reasoning in cases where the inductive
and coinductive interpretation do not provide the intended meaning, or
are mixed together.

1 Introduction

Recently several approaches [5,10,11,18,19,25,32] have been proposed to pro-
gram with coinductive (coalgebraic) datatypes to support corecursion, that is,
the ability of defining predicates or functions by structural recursion on non-
well-founded datatypes. Such solutions are generally characterized by a strong
dichotomy between inductive and coinductive definitions, the former being based
on the notion of least fixed point, and the latter on that of greatest fixed point.
Moreover, some proposals provide language abstractions to allow the program-
mer to interpret corecursive definitions not in the standard coinductive way. As
a consequence, formal reasoning about programs that exploit such abstractions
cannot be based on usual proof principles.

In this paper, we introduce a framework for interpreting recursive definitions
as fixed points which are not necessarily the least, nor the greatest one. This
allows formal reasoning in cases where the inductive and coinductive interpreta-
tion do not provide the intended meaning, or are mixed together.

To introduce the idea, let us consider the following recursive definitions
of functions on lists of integers, with the meaning suggested by the name.

Special thanks go to all anonymous reviewers, who helped us improve this paper,
and to Bart Jacobs for an enlightening discussion with him on the use of coaxioms
for modeling divergence with big-step semantics.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 29–55, 2017.
DOI: 10.1007/978-3-662-54434-1 2



30 D. Ancona et al.

let rec allPos = function [] -> true | x::l -> x >0 &&

allPos l

let rec member y =

function [] -> false | x::l -> x==y|| member y l

let rec elems = function

[] -> [] |

x::l -> let xs = elems l in if member x xs then xs else

x::xs

let rec maxElem = function [x] -> x | x::l -> max x

(maxElem l)

These definitions are written above in a widely-known programming language
syntax (OCaml) for concreteness, but this is not relevant here: for such first-order
functions, in most programming languages we can write analogous recursive def-
initions, and they are usually interpreted inductively. This means that, turning,
more abstractly, such recursive definitions into meta-rules of an inference sys-
tem, they are interpreted as the set of judgments which have a finite proof tree.
For instance, the meta-rules for the judgment allPos(l, b) are as follows:

allPos(Λ, T ) allPos(x:l, F )
x ≤ 0

allPos(l, b)

allPos(x:l, b)
x > 0

where Λ and : denote the empty list, and the list constructor, respectively, and
T and F denote the boolean values. This interpretation works perfectly well on
finite lists. However, with the inductive interpretation the above functions may
happen to be undefined on infinite lists. For instance, the judgment allPos(l, b)
obviously has no finite proof tree if l is an infinite list of positives.

Indeed, to support structural recursion on non-well-founded structures, such
as infinite lists or graphs, we typically have to use coinduction. The coinductive
interpretation of an inference system is the set of judgments which have a (finite
or infinite) proof tree.

In some cases, the coinductive interpretation actually yields the intended
meaning. For instance, taking a slightly different version of allPos as a unary
predicate allPos(l), as it would be expressed in a logic program:

allPos(Λ)

allPos(l)

allPos(x : l)
x > 0

it is easy to see that with the coinductive interpretation we obtain the intended
meaning on infinite lists as well, since we get an infinite proof tree if and only
if all the elements in the list are positive. Indeed, this interpretation has been
fruitfully used in coinductive logic programming (coLP) [3,31–33].

However, considering instead the previous relation allPos(l, b), the coinduc-
tive interpretation fails to be a function, since for infinite lists of positives both
the judgment allPos(l, T ) and allPos(l, F ) can be proved. Moreover, if we con-
sider the predicate corresponding to the boolean function member:

member(x, x : l)

member(x, l)

member(x, y : l)
x �= y
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then the correct interpretation is the inductive one. Indeed, the coinductive inter-
pretation contains all judgments member(x, l) where l is an infinite list. Finally,
for the predicates corresponding to the other example functions, which do not
return a boolean, neither the inductive nor the coinductive interpretation yields
the intended semantics. In particular, the coinductive interpretation contains
too many elements. For instance, taking l the infinite list of 1s, by coinductively
interpreting elems and maxElem we get, together with the correct judgments,
also wrong ones, as will be formally shown in the following section.

All these examples suggest the idea that we should be able to “filter out”
in some way the (infinite) proof trees corresponding to the coinductive inter-
pretation, keeping only some of them. We make this possible by introducing
coaxioms. A coaxiom is, intuitively, an axiom which can only be applied “at
infinite depth” in a proof tree. An inference system interpreted inductively cor-
responds to a generalized inference system with no coaxioms, while an inference
system interpreted coinductively corresponds to a generalized inference system
where there is a coaxiom for each judgment.

From the model-theoretic point of view, coaxioms allow the programmer to
choose the desired fixed point for a recursive definition, by selecting also fixed
points which are neither the least, nor the greatest one. For instance, in the
inference system for allPos(l, b), the intended meaning is the set of judgments
allPos(l, b) where b is true if and only if the (finite or infinite) list l contains only
positives. This set is a fixed point which lies between the least, which is undefined
on infinite lists of positives, and the greatest, which returns both boolean values,
hence is undetermined, on such lists.

Coaxioms are partly inspired by an extension of coLP and coinductive SLD
resolution (coSLD) [31–33] with finally clauses [5], to allow more flexible inter-
pretations of corecursive definitions of predicates, and by a related proposal in
the context of object-oriented programming [10,11]. In this paper we take a more
abstract and general approach and provide a framework for interpreting core-
cursive definitions in a flexible way and to formally reason on their correctness.

The rest of the paper is organized as follows: in Sect. 2 we introduce the notion
of generalized inference system with coaxioms, and show how to express the pre-
vious examples and others. In Sect. 3 we formally define the fixed point semantics
of inference systems with coaxioms in the more general setting of complete lat-
tices. In Sect. 4 we discuss the equivalent semantics based on the proof-theoretic
approach, and in Sect. 5 we illustrate the related proof techniques on some of
the examples. In Sect. 6 we show some more involved examples and discuss some
subtleties, Sect. 7 surveys related work, and finally in Sect. 8 we summarize our
contribution and discuss further work. A prototype meta-interpreter1 has been
developed to test the examples provided in Sects. 2 and 6.

1 Available at http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.
zip.

http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.zip
http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.zip
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2 Inference Systems with Coaxioms

We recall some standard notions about inference systems [1,23].
Assume in the following a set U called the universe, whose elements are called

judgments.
An inference system I consists of a set of inference rules, which are pairs

Pr
c

, with Pr ⊆ U the set of premises, c ∈ U the consequence.
The intuitive interpretation of a rule is that if the premises Pr hold then the

consequence c should hold as well. In particular, an axiom is (the consequence
of) a rule with empty set of premises, which necessarily holds.

The (one step) inference operator FI : ℘(U) → ℘(U) associated with an
inference system I is defined by:

FI(S) = {c | Pr ⊆ S,
Pr

c
∈ I}

That is, FI(S) is the set of judgments that can be inferred (in one step) from
the judgments in S using the inference rules. Note that this set always includes
axioms.

A set S is closed if FI(S) ⊆ S, and consistent if S ⊆ FI(S). That is, no new
judgments can be inferred from a closed set, and all judgments in a consistent
set can be inferred from the set itself.

The inductive interpretation of I, denoted Ind(I), is the smallest closed set,
that is, the intersection of all closed sets, and the coinductive interpretation of I,
denoted CoInd(I), is the largest consistent set, that is, the union of all consistent
sets. Both interpretations are well-defined and can be equivalently expressed as
the least (respectively, greatest) fixed point of the inference operator. Moreover,
under continuity hypotheses on FI , they can be computed as follows:

Ind(I) = ⋃{Fn
I(∅) | n ≥ 0}

CoInd(I) = ⋂{Fn
I(U) | n ≥ 0}

The inductive and coinductive interpretation can also be characterized in terms
of proof trees. That is, defining a proof tree as a tree whose nodes are (labeled
with) judgments in U , and there is a node c with set of children Pr only if there

exists a rule
Pr
c

, it can be shown [23] that Ind(I) and CoInd(I) are the sets

of judgments which are the root of a finite2 and an arbitrary (finite or infinite)
proof tree, respectively.

We introduce now our generalization.
An inference system with coaxioms is a pair (I, γ) consisting of an inference

system I and a set of coaxioms γ, with γ ⊆ U . A coaxiom c will be written
•
c
, very much like an axiom, and analogously to an axiom it can be used as an

initial assumption to derive other judgments. However, coaxioms will be used in
a special way, explained in the following.
2 Under the common assumption that the set of premises of all the rules are finite,
otherwise we should say a finite depth tree.
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To illustrate the notion, we will consider an introductory example which
computes the judgment n �→N meaning that N is the set of nodes reachable
from a node n of a given graph. Let us represent a graph by its set of nodes V
and a function adj which returns all the adjacent nodes. As usual, sets of rules
can be expressed by a metarule with side conditions, and the same can be done
for sets of coaxioms.

n1
�→N1 . . . nk

�→Nk

n
�→{n} ∪ N1 ∪ . . . ∪ Nk

adj(n) = {n1, . . . , nk} •
n

�→∅
n ∈ V

For instance, in the case of a graph with nodes a, b, c, with an arc from a into b
and conversely, and c isolated, we would get the following metarules and coax-
ioms:

b
�→N

a
�→{a} ∪ N

a
�→N

b
�→{b} ∪ N c

�→{c}
•

a
�→∅

•
b

�→∅
•

c
�→∅

If we interpret the metarules inductively (excluding the coaxioms), then we
get only the judgment c

�→{c}. In other words, a visit computing n �→N , like
other judgments on graphs, should mark already encountered nodes to avoid non
termination, since the graph structure is not well-founded. On the other hand,
if we interpret the metarules coinductively (excluding again the coaxioms), then
we get the correct judgments a

�→{a, b} and b
�→{a, b}, but we also get the wrong

judgments a
�→{a, b, c} and b

�→{a, b, c}.
We define a different interpretation, called interpretation generated by the

coaxioms and denoted Gen(I, γ), which takes into account the coaxioms in the
following way.

1. First, we take the smallest closed superset of the set of coaxioms. In other
words, we consider the inference system I�γ obtained enriching I by judg-
ments in γ considered as axioms, and we take its inductive interpretation
Ind(I�γ).

2. Then, we take the largest consistent subset of Ind(I�γ). In other words, we
take the coinductive interpretation of the inference system obtained from I
by keeping only rules with consequence in Ind(I�γ), that is, we define

Gen(I, γ) = CoInd(I�Ind(I�γ))

where I�S , with I inference system and S ⊆ U , denotes the inference system
obtained from I by keeping only rules with consequence in S.

In the example, in the first phase we obtain the following judgments (each
line corresponds to an iteration of the inference operator):

a
�→∅, b

�→∅, c
�→∅, c

�→{c}
a

�→∅, b
�→∅, c

�→∅, c
�→{c}, a

�→{a}, b
�→{b}

a
�→∅, b

�→∅, c
�→∅, c

�→{c}, a
�→{a}, b

�→{b}, a
�→{a, b}, b

�→{a, b}

The last set is closed, hence it is Ind(I�γ).
In the second phase, each iteration of the inference operator removes judg-

ments which cannot be inferred from the previous step, that is, we get:
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c
�→{c}, a

�→{a}, b
�→{b}, a

�→{a, b}, b
�→{a, b}

c
�→{c}, a

�→{a, b}, b
�→{a, b}

This last set is consistent, hence it is Gen(I, γ), and it is indeed the expected
result.

Note that the inductive and coinductive interpretation can be obtained as
special cases of the interpretation generated by coaxioms of an inference system,
notably:

– the inductive interpretation when the set of coaxioms is empty
– the coinductive interpretation when the set of coaxioms is the universe.

In terms of proof trees, judgments in Gen(I, γ) are those which have an
arbitrary (finite or infinite) proof tree t in the inference system I, whose nodes
all have a finite proof tree in I�γ . Note that for nodes in t which are roots of a
finite subtree this always holds (a finite proof tree in I is a finite proof tree in
I�γ as well), hence the condition is only significant for nodes which are roots of
an infinite path in the proof tree.

For instance, in the example, the judgment a
�→{a, b} has an infinite proof

tree in I where each node has a finite proof tree in I�γ , as shown below.
. . .

a
�→{a, b}

b
�→{a, b}

a
�→{a, b}

a
�→∅

b
�→{b}

a
�→{a, b}

b
�→∅

a
�→{a}

b
�→{a, b}

Moreover, there is another important property which will be proved in Sect. 4:
if a judgment belongs to Gen(I, γ), then, for all n ≥ 0, it has a proof tree in the
inference system I�γ where coaxioms can only be used at depth greater than n.

For instance, in the example, it is easy to see that, for any n, we can obtain
a finite proof tree for the judgment a

�→{a, b} in I�γ where coaxioms are used at
depth greater than n, as shown below.

a
�→∅

b
�→{b}

a
�→{a, b}

b
�→∅

a
�→{a}

b
�→{a, b}

a
�→{a, b}

a
�→∅

b
�→{b}

a
�→{a, b}

b
�→{a, b}

a
�→{a, b}

. . .

This last property motivates the name “coaxioms”. Indeed, dually to axioms,
which can be used in the proof tree at every depth, including 0, coaxioms can
only be used “at an infinite depth” in the proof tree. Therefore, coaxioms filter
out undesired infinite proof trees; in other words, they bound from above the
greatest fixed point corresponding to the semantics of the generalized inference
system.

As a second example, we consider the definition of the first sets in a grammar.
Let us represent a context-free grammar by its set of terminals T , its set of non-
terminals N , and all the productions A ::= β1 | . . . | βn with left-hand side A,
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for each non-terminal A. Recall that, for each α ∈ (T ∪ N)+, we can define the
set first(α) = {σ | σ ∈ T, α→�σβ}. Informally, first(α) is the set of the initial
terminal symbols of the strings which can be derived from a string α in 0 or
more steps.

The following inference system with coaxioms defines the judgment
first(α,F), with F ⊆ T .

first(σα, {σ})σ ∈ T
first(A, F)

first(Aα, F)

A ∈ N
A�→�ε

first(A, F) first(α, F ′)
first(Aα, F ∪ F ′)

A ∈ N
A→�ε

first(ε, ∅)
first(β1, F1) . . . first(βn, Fn)

first(A, F1 ∪ . . . ∪ Fn)
A ::= β1 | . . . | βn

•
first(A, ∅)A ∈ N

The rules of the inference system correspond to the natural recursive defini-
tion of first. Note, in particular, that in a string of shape Aα, if the non-terminal
A is nullable, that is, we can derive from it the empty string, then the first set
for Aα should also include the first set for α.

As in the previous example on graphs, the problem with this recursive defi-
nition is that, since the non-terminals in a grammar can mutually refer to each
other, the function defined by the inductive interpretation can be undefined.
That is, a naive top-down implementation might not terminate. For this rea-
son, first sets are typically computed by an imperative bottom-up algorithm, or
the top-down implementation is corrected by marking already encountered non-
terminals, analogously to what is done for visiting graphs. Again as in the previ-
ous example, the coinductive interpretation may fail to be a function, whereas,
with the coaxioms, we get the expected result.

We express now as inference systems with coaxioms the recursive definitions
of functions shown at the beginning of Sect. 1. Let Z denote the set of integers,
and L the set of (finite and infinite) lists of integers.

The first example is the function which checks whether all the elements of
a list are positive, expressed by judgments of shape allPos(l, b) with l ∈ L and
b ∈ {T, F}.

allPos(Λ, T ) allPos(x:l, F )
x ≤ 0

allPos(l, b)

allPos(x:l, b)
x > 0

•
allPos(l, T )

With the coaxioms, we obtain the expected function also on infinite lists
of positives: indeed, we only consider the infinite trees where the nodes have a
finite proof tree in the inference system enriched by the coaxioms. In this way,
the infinite tree where b = F is filtered out.

The function which checks whether an element belongs to a list, expressed
by judgments of shape member(x, l, b) with x ∈ Z, l ∈ L and b ∈ {T, F}, is a
very similar example, with the difference that the coaxioms map every list into
false rather than true.

member(x, Λ, F ) member(x, x:l, T )

member(x, l, b)

member(x, y : l, b)
x �= y

•
member(x, l, F )
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Analogously to the previous example, with the coaxioms we obtain the
expected result also on infinite lists which do not contain the element.

The function which returns the set of the elements contained in a list is
expressed by judgments of shape elems(l, xs), with l ∈ L and xs ∈ ℘(Z).

elems(Λ, ∅)
elems(l, xs)

elems(x:l, {x} ∪ xs)

•
elems(l, ∅)

In this case, the inductive interpretation gives the expected result only on
finite lists, and the coinductive interpretation fails to be a function on infinite
lists. For instance, for l the infinite list of 1s, any judgment elems(l, xs) with
1 ∈ xs can be derived. Indeed, for any such judgment we can construct an
infinite proof tree which is a chain of applications of the last metarule. With the
coaxioms, we only consider the infinite trees where the node elems(l, xs) has a
finite proof tree in the inference system enriched by the coaxioms. This is only
true for xs = {1}.

Note that coaxioms are needed to get the expected result not only on regular
lists. Considering for example the infinite list 1 : 2 : 1 : 1 : 2 : 1 : 1 : 1 : 2 : ..., it
is easy to see that the same reasoning holds.

Finally, the function which returns the greatest element contained in a (non-
empty) list is expressed by judgments of shape max(l, x), with l ∈ L and x ∈ Z.

max(x:Λ, x)

max(l, y)

max(x:l, z)
z = max(x, y)

•
max(x:l, x)

Analogously to the previous example, the coinductive interpretation fails to
be a function (for instance, for l the infinite list of 1s, any judgment max(l, x)
with x ≥ 1 can be derived), and the coaxioms “filter out” the wrong results.

3 Bounded Fixed Points

In this section, after recalling basic definitions, we define the bounded fixed point
generated by an element, justifying its existence by the Knaster-Tarski theorem
[34]. Then, we show that the interpretation generated by coaxioms of an inference
system corresponds to a bounded fixed point in the powerset lattice. Finally, we
provide a constructive characterization of bounded fixed points, again justified
by a classical result (Kleene theorem). We refer to [22] for an history of these
theorems with a number of good references.

In the following we assume a complete lattice (L,≤) with top and bottom
elements � and ⊥, and meet and join operations 
 and �. Moreover, we use

�

and
⊔

to denote meet (greatest lower bound) and join (least upper bound) of a
set, respectively.

Basic Definitions. Let F : L → L, and x ∈ L. Then, x is a pre-fixed point of
F iff F(x) ≤ x; x is a post-fixed point of F iff x ≤ F(x); and x is a fixed point of
F iff x = F(x). Pre-fixed points will be also called closed, and post-fixed points
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will be also called consistent points. A function F : L → L is monotone if, for
all x, y ∈ L, x ≤ y ⇒ F(x) ≤ F(y).

In this general setting, the role of the universe is played by the top � of L,
that of the inference system by a monotone function F, and that of the co-axioms
by a distinguished element γ ∈ L, called generator .

Definition of Bounded Fixed-Point. In the following we assume a monotone
function F : L → L. The bounded fixed point generated by an element γ is the
greatest fixed point of the monotone function obtained by restricting F to the
down-set of the least pre-fixed point above γ. The construction is detailed and
justified below. First of all we introduce two notations.

Definition 1. Let x ∈ L. Then:

– The closure of x w.r.t. F is the element ∇F(x) of L defined by
∇F(x) =

�
{y ∈ L | x ≤ y, F(y) ≤ y}.

– The kernel of x w.r.t. F is the element ΔF(x) of L defined by
ΔF(x) =

⊔
{y ∈ L | y ≤ x, y ≤ F(y)}.

We can also see ΔF and ∇F as endofunctions on L, which are instances of well-
known notions in lattice theory: closure and kernel operators.

From this definition immediately follows the bounded coinduction principle.
Indeed, given β ∈ L, we have:

(CoInd) If x ≤ F(x) (x post-fixed), and x ≤ β, then x ≤ ΔF(β).

The standard coinduction principle can be obtained as a specific instance of
the more general principle above, by taking β = �; for this particular case the
hypothesis x ≤ β can be omitted, since it trivially holds. We will show in detail
how to use this proof principle in Sect. 5.

The closure of an arbitrary element γ turns out to be the best closed approx-
imation of γ, that is, the least pre-fixed point of F above γ, as shown below.

Proposition 1. Let γ ∈ L. Then, z = ∇F(γ) is the least pre-fixed point of F
above γ.

Proof. Set S = {x ∈ L | γ ≤ x, F(x) ≤ x}. We have to prove that z ∈ S, which
then implies, by definition, that it is its least element. Since γ is a lower bound
for all x ∈ S, by definition of meet we get γ ≤ z. We can show that z is a
pre-fixed point of F by the following steps:

– for all x ∈ S, F(x) ≤ x (def. of S) and z ≤ x (def. of
�

);
– for all x ∈ S, F(x) ≤ x (def. of S) and F(z) ≤ F(x) (F is monotone);
– for all x ∈ S, F(z) ≤ x (transitivity);
– F(z) ≤ z (def. of

�
).


�
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Note that if γ = ⊥ we have that ∇F(⊥) is the least pre-fixed point of F, that,
thanks to the Knaster-Tarski theorem, is the least fixed point of F.
The kernel of a pre-fixed point β turns out to be the greatest (post-)fixed-point
of F below β, as shown below.

Proposition 2. Let β ∈ L. If β is a pre-fixed point of F and z = ΔF(β), then
F(z) = z.

Proof. If β is an element of a complete lattice, then Lβ = {x ∈ L | x ≤ β} is
also a complete lattice, with top element β. If β is a pre-fixed point of F, then
F is a monotone endofunction on Lβ . Therefore, by the Knaster-Tarski theorem
F(z) = z.

We can now define bounded fixed points generated by an element.

Definition 2 (Bounded fixed point). Let γ ∈ L. The bounded fixed point
of F generated by γ, denoted Gen(F, γ), is the greatest fixed point of F below the
closure of γ, that is, Gen(F, γ) = ΔF(∇F(γ)).

The bounded fixed point is well-defined since, thanks to Proposition 2, there
exists the greatest fixed point below β, provided that the bound is a pre-fixed
point. Since in general γ might not be pre-fixed, we need to construct a pre-fixed
point from γ. Note that the first step of this construction cannot be expressed
as the least fixed point of F on the complete lattice {x ∈ L | x ≥ γ}, since in
general F may fail to be an endofunction (e.g., if F is the function which maps
any element to ⊥ < γ). Indeed, ∇F(γ) is not a fixed point in general, but only
a pre-fixed point: we need the two steps to obtain a fixed point.

Note also that the definition of bounded fixed point is asymmetric, that is,
we take the greatest fixed point bounded from above by a least (pre-)fixed point,
rather than the other way round. This is motivated by the intuition, explained
in the previous section, that we essentially need a greatest fixed point, since we
want to deal with non-well-founded structures, but we want to “constrain” in
some way such greatest fixed point. Investigating the symmetric construction is
a matter of further work (see the Conclusion).

An important fact is that bounded fixed points are a generalization of both
least and greatest fixed points, since they can be obtained by taking particular
generators, as stated in the following proposition.

Proposition 3.

1. Gen(F,�) is the greatest fixed point of F
2. Gen(F,⊥) is the least fixed point of F.

Proof. 1. Note that ∇F(�) = �, since the only pre-fixed point above � is �
itself, therefore we get Gen(F,�) = ΔF(�), that is, the greatest fixed point
of F, by Proposition 2.

2. As already noted ∇F(⊥) is the least fixed point of F, in particular ∇F(⊥) is
post-fixed, therefore we get Gen(F,⊥) = ΔF(∇F(⊥)) = ∇F(⊥), namely it is
the least fixed point of F.


�
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Coaxioms as Generators. In Sect. 2 we have described two steps to construct
Gen(I, γ), the interpretation generated by coaxioms γ of an inference system I.

1. First, we consider the inference system I�γ obtained enriching I by judgments
in γ considered as axioms, and we take its inductive interpretation Ind(I�γ).

2. Then, we take the coinductive interpretation of the inference system obtained
from I by keeping only rules with consequence in Ind(I�γ), that is, we define

Gen(I, γ) = CoInd(I�Ind(I�γ))

The definition of bounded fixed point is the formulation of these two steps in
the general setting of complete lattices. Indeed, the inference operator FI is a
monotone function on the complete lattice ℘(U) obtained by taking set inclu-
sion as order, and specifying the coaxioms γ corresponds to fixing an arbitrary
element of L as generator. To show the correspondence in a precise way, we give
an alternative and equivalent characterization of closure.

Proposition 4. Let γ ∈ L and consider the function F�γ : L → L defined by
F�γ(x) = F(x) � γ, that is clearly monotone. Then, ∇F�γ

(⊥) = ∇F(γ).

Proof. To prove the statement it is enough to show that y ∈ L is a pre-fixed
point of F�γ iff y is a pre-fixed point of F and y ≥ γ. This trivially follows
from the definition of F�γ and �, indeed F(y) � γ = F�γ(y) ≤ y is equivalent to
F(y) ≤ y and γ ≤ y. 
�

By this alternative characterization we can formally state the correspondence
with the two steps for defining Gen(I, γ).

Theorem 1. Let I be an inference system and γ, β ∈ ℘(U), with β closed w.r.t.
FI , then the following facts hold:

1. (FI)�γ = F(I�γ) (so we can safely omit brackets)
2. ∇FI (γ) = Ind(I�γ)
3. ΔFI (β) = CoInd(I�β).

Proof. 1. We have to show that, for S ⊆ U , (FI)�γ(S) = F(I�γ)(S). If c ∈
(FI)�γ(S), then either c ∈ γ or c ∈ FI(S); in the former case there exists

c
∈ I�γ by definition, in the latter there exists

Pr
c

∈ I such that Pr ⊆ S,

and this implies
Pr
c

∈ I�γ . Therefore in both cases c ∈ F(I�γ)(S).

Conversely, if c ∈ F(I�γ)(S), then there exists
Pr
c

∈ I�γ such that Pr ⊆ S. By

definition of I�γ , either
Pr
c

∈ I or c ∈ γ and Pr = ∅, therefore in the former

case c ∈ FI(S) and in the latter c ∈ γ, thus in both cases c ∈ (FI)�γ(S).
2. By Proposition 4 we get that ∇FI (γ) = ∇FI�γ

(∅), that is, the least fixed
point of FI�γ

, thanks to statement (1) of this proposition and Proposition 2.
Therefore, it corresponds to the inductive interpretation of the inference sys-
tem I�γ , Ind(I�γ).
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3. Let X = CoInd(I�β), we have to show the two inclusions. First note that
X is a post-fixed point w.r.t. FI , indeed X ⊆ FI�β

(X), by definition of the
coinductive interpretation, and FI�β

(X) ⊆ FI(X), since each c ∈ FI�β
(X) is

the consequence of a rule
Pr
c

∈ I�β and by construction of I�β , this rule is

also a rule of I, therefore c ∈ FI(X). In addition c ∈ β again by definition of
I�β , thus X ⊆ β, therefore by (CoInd) we get X ⊆ ΔFI (β).

On the other hand ΔFI (β) is a post-fixed point of FI�β
. To show this fact

first we note that for each S ⊆ β we have FI(S) ⊆ FI�β
(S), indeed if c ∈

FI(S) then there exists a rule
Pr
c

∈ I such that Pr ⊆ S, moreover we have

that FI(S) ⊆ FI(β) ⊆ β since β is closed, so
Pr
c

∈ I�β that implies that

c ∈ FI�β
. Then, since ΔFI (β) is a post-fixed point of FI below β, we get that

ΔFI (β) ⊆ FI(ΔFI (β)) ⊆ FI�β
(ΔFI (β)), so it is a post-fixed point. Therefore

by the coinduction principle we get the other inclusion.

Thanks to Theorem 1, we can conclude that, given an inference system with
coaxioms (I, γ):

Gen(I, γ) = CoInd(I�Ind(I�γ)) = ΔFI (∇FI (γ)) = Gen(FI , γ)

That is, the interpretation generated by coaxioms γ of the inference system I is
exactly the bounded fixed point of FI generated by γ.

Constructive Characterization of Bounded Fixed Point. The Kleene’s
theorem states that, under continuity hypotheses on F, we can characterize its
greatest fixed point as the greatest lower bound of the descending chain obtained
by repeatedly applying F to �. By considering this theorem for the sublattice
obtained as down-set of the bound, we can obtain a constructive characterization
of the bounded fixed point generated by an element.

We recall some basic definitions. A descending chain in L is a set C = {xi |
i ∈ N} ⊆ L such that, for each i ∈ N, xi ≥ xi+1. A function F : L → L preserves
meet of descending chains if and only if, for all descending chains C in L, we
have F(

�
C) =

�
F(C) where F(C) = {F(xi) | xi ∈ C}.

Given a function F : L → L and an element β ∈ L, set CF,β = {Fn(β) |
n ∈ N}.

Proposition 5. Let F : L → L be a function that preserves meet of descending
chains, and β ∈ L a pre-fixed point of F. Then:

1. CF,β is a descending chain in L
2. ΔF(β) =

�
CF,β, that is,

�
CF,β is the greatest fixed point of F below β.

Proof. 1. Since F preserves meet of descending chains, it is monotone, therefore,
since β is pre-fixed, we get the thesis.
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2. If β is an element of a complete lattice, then Lβ = {x ∈ L | x ≤ β} is also
a complete lattice, with top element β. If β is a closed point of F, then F
is a monotone endofunction on Lβ and it still preserves meet of descending
chains. Therefore applying Kleene’s theorem to Lβ we get the thesis.


�

Note that for this constructive characterization we need an additional
hypothesis on F. Under this assumption, the result of Proposition 5 immediately
applies to our construction, as stated in the following corollary.

Corollary 1. Let F : L → L be a function that preserves meet of descending
chains, and γ ∈ L. Set β = ∇F(γ). Then Gen(F, γ) =

�
CF,β.

Proof. By definition Gen(F, γ) = ΔF(β). Since β is pre-fixed by Proposition 1
and F preserves meet of descending chains, by Proposition 5 we get the thesis. 
�

The characterization introduced above is important, but requires stronger
assumptions on the function F. We now state a weaker result that is often enough
for proving soundness, as will be illustrated in Sect. 5.

Proposition 6. Let F : L → L be monotone and β ∈ L a pre-fixed point, then

ΔF(β) = ΔF

(�
CF,β

)

hence, in particular, ΔF(β) ≤
�

CF,β.

Proof. Set z =
�

CF,β . First of all we note that z is pre-fixed, indeed F(z) ≤�
Fn+1(β) = β 


�
Fn+1(β) = z. We prove separately the two inequalities.

– ΔF(z) ≤ ΔF(β). By Proposition 2 ΔF(z) is a fixed point, so in particular it is
a post-fixed point, below z, by definition of

�
we get z ≤ β, so by transitivity

ΔF(z) ≤ β. By (CoInd) we get ΔF(z) ≤ ΔF(β).
– ΔF(β) ≤ ΔF(z). By Proposition 2 ΔF(β) is a fixed point, so in particular a

post-fixed point, below β. We prove by arithmetic induction that ΔF(β) ≤
Fn(β) for all n ∈ N.
Base ΔF(β) ≤ F0(β) = β already proved.
Induction Let us assume ΔF(β) ≤ Fn(β), so by monotonicity of F we get

F(ΔF(β)) ≤ Fn+1(β). Since ΔF(β) is a post-fixed point, we have that
ΔF(β) ≤ F(ΔF(β)), therefore by transitivity we get ΔF(β) ≤ Fn+1(β).

By definition of
�

we get ΔF(β) ≤
�

CF,β = z, so by (CoInd) we get
ΔF(β) ≤ ΔF(z).

Finally by anti-symmetry we get the equality. 
�

Another way to read the lemma above is that, given a bound β, we obtain the
same greatest fixed point if we take as bound

�
CF,β . Indeed from Proposition 6

and point 1 of Proposition 5 we can say more: given a bound β which is pre-fixed,
we obtain the same greatest fixed point below β if we take as bound any element
Fn(β) of the descending chain.
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4 Proof Trees

In this section we formally define several proof-theoretic characterizations of
inference systems with coaxioms, and prove their equivalence3 with the model-
theoretic characterization given in the previous section.

First of all we recall the standard definition of proof trees and proof-theoretic
characterization of inference systems.

Definition 3. Given an inference system I, a proof tree in I is a tree whose
nodes are (labeled with) judgments in U , and there is a node c with set of children

Pr only if there exists a rule
Pr
c

. If a proof tree t in I has root j , then we say
that t is a proof tree for j , or that j has proof tree t, in I.

Theorem 2. Given an inference system I, and a judgment j ∈ U ,

1. j ∈ CoInd(I) iff j has a proof tree in I
2. j ∈ Ind(I) iff j has a finite proof tree in I.

See [15,23].
The first proof-theoretic characterization is based on the following theorem,

which slightly generalizes the standard correspondence between proof trees in I
and the coinductive interpretation of I.

Theorem 3. Given an inference system I, and β ⊆ U a closed set of judgments,
we have that, for all j ∈ U , j ∈ ΔFI (β) iff there exists a proof tree t for j in I
such that each node of t is in β.

Proof. By Theorem 1, ΔFI (β) = ΔFI�β
(U) = CoInd(I�β). Thanks to Theorem

2 (1), we get that j ∈ CoInd(I�β) iff there exists a proof tree t for j in I�β . By
Definition 3, each node of t is (labeled by) a consequence c of a rule in I�β , that
is, c ∈ β by definition of I�β , and this implies the thesis. 
�

As a particular case, we get our first proof-theoretic characterization

Corollary 2. Given an inference system with coaxioms (I, γ) and a judgment
j ∈ U , we have that j ∈ Gen(I, γ) iff there exists a proof tree t for j in I such
that each node of t has a finite proof tree in I�γ .

Proof. By Theorem 1, Gen(I, γ) = ΔFI (β), with β = ∇FI (γ). Thanks to The-
orem 3, we get that, for all j ∈ U , j ∈ Gen(I, γ) iff there exists a proof tree
t for j in I such that each node of t is in β. Again by Theorem 1 we get that
β = Ind(I�γ), so by Theorem 2 (2) we get that a node j ′ of t is in β iff there
exists a finite proof tree for j ′ in I�γ . 
�

For the second proof-theoretic characterization, we need to define approxi-
mated proof trees.

In the definition below, let us denote by jt the root of tree t.
3 For the last, under the hypotheses of Proposition 5.
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Definition 4. Given an inference system with coaxioms (I, γ), the sets Tn of
approximated proof trees of level n in (I, γ), for n ∈ N, are inductively defined
as follows:

t ∈ T0 if t finite proof tree in I�γ

T
c

∈ Tn if
Pr
c

∈ I, Pr = {jt | t ∈ T }, and T ⊆Tn−1

In other words, an approximated proof tree of level n in (I, γ) is a finite proof
tree in (I, γ) where coaxioms can only be used at depth ≥n.

The following lemma states that approximated proof trees of level n corre-
spond to the n-th element of the descending chain CFI ,β = {Fn

I(β) | n ∈ N},
with β = ∇FI (γ) = Ind(I�γ).

Lemma 1. Given an inference system with coaxioms (I, γ), and a judgment
j ∈ U , we have that, for all n ∈ N, j ∈ Fn

I(∇FI (γ)) iff j has an approximated
proof tree of level n in (I, γ).

Proof. Let β be ∇FI (γ). We prove the thesis by induction on n.

Base If n = 0, then, by Theorem1, β = ∇FI (γ) corresponds to the inductive
interpretation of I�γ , therefore the equivalence holds by Theorem2 (2).

Induction We assume the equivalence for n and prove it for n + 1. We prove
separately the two implications.

⇒ If c ∈ Fn+1
I (β), then there exists

Pr
c

∈ I such that Pr ⊆ Fn
I(β). Hence, by

inductive hypothesis, each judgment in Pr has an approximated proof tree of

level n, that is, Pr = {jt | t ∈ T }, with T ⊆Tn. Hence, t =
T
c

is a proof tree
for c, and by definition, t ∈ Tn+1.

⇐ If t ∈ Tn+1 is an approximated proof tree for c ∈ U , then, by definition,

there exists
Pr
c

∈ I such that t =
T
c

, Pr = {jt | t ∈ T }, and T ⊆ Tn. By

inductive hypothesis we have Pr ⊆ FIn(β), and, by definition of FI , this
implies c ∈ Fn+1

I (β) as needed.


�

Corollary 3. Given an inference system with coaxioms (I, γ), and a judgment
j ∈ U , the following are equivalent:

1. j ∈ Gen(I, γ)
2. there exists a proof tree t for j in I such that each node has an approximated

proof tree of level n in (I, γ), for all n ∈ N.

Proof. By Theorem 1, Proposition 6, and Theorem 3, we get that, for all j ∈ U ,
j ∈ Gen(I, γ) iff there exists a proof tree t for j in I such that each node j ′ of t is
in

�
CFI ,β with β = ∇FI (γ). By Lemma 1, j ′ ∈

�
CFI ,β iff has an approximated

proof tree of level n, for all n ∈ N. 
�
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If the hypotheses of Proposition 5 are satisfied, then we get a simpler equiv-
alent proof-theoretic characterization.

Corollary 4. Given an inference system with coaxioms (I, γ), and a judgment
j ∈ U , if FI preserves meet of descending chains, then the following are equiva-
lent:

1. j ∈ Gen(I, γ)
2. j has an approximated proof tree of level n in (I, γ), for all n ∈ N.

Proof. Let β be ∇FI (γ). By Theorem 1 and Proposition 5, we get that
Gen(I, γ) =

�
CFI ,β , therefore the thesis follows immediately from Lemma 1. 
�

5 Reasoning with Coaxioms

In this section we discuss proof techniques for inference systems with coaxioms.
Assume that G = Gen(I, γ) is the interpretation generated by coaxioms for

some (I, γ), and that S (for “specification”) is the intended set of judgments,
called valid in the following.

Typically, we are interested in proving S ⊆ G (completeness, that is, each
valid judgment can be derived) and/or G ⊆ S (soundness, that is, each derivable
judgment is valid). Proving both properties amounts to say that the inference
system with coaxioms actually defines the intended set of judgments.

In the following, set β = ∇FI (γ) = Ind(I�γ).

Completeness Proofs. To show completeness, we can use the bounded coinduction
principle. Indeed, since G = ΔFI (β), if S ≤ β and S is a post-fixed point of FI ,
by (CoInd) we get that S ≤ G. That is, using the notations of inference systems,
to prove completeness it is enough to show that:

– S ⊆ Ind(I�γ)
– S ⊆ FI(S)

We illustrate the technique on the inference system with coaxioms (I, γ)
which defines the judgment allPos(l, b) (page 7). Set SallPos the set of pairs (l, b)
where b is T if all the elements in l are positive, F otherwise. Completeness
means that the judgment allPos(l, b) can be proved, for all (l, b) ∈ SallPos. By
the bounded coinduction principle, it is enough to show that

– SallPos ⊆ Ind(I�γ)
– SallPos ⊆ FI(SallPos)

To prove the first condition, we have to show that, for each (l, b) ∈ SallPos,
allPos(l, b) has a finite proof tree in I�γ . This can be easily shown, indeed:

– If l contains a (first) non-positive element, hence l = x1 : . . . : xn : x : l′ with
xi > 0 for i ∈ [1..n], x ≤ 0, and b = F then we can reason by arithmetic
induction on n. Indeed, for n = 0, (l, b) is the consequence of the second rule
with no premises, and for n > 0 it is the consequence of the third rule where
we can apply the inductive hypothesis to the premise.
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– If l contains only positive elements, hence b = T , then (l, b) is a coaxiom,
hence it is the consequence of a rule with no premises in I�γ .

To prove the second condition, we have to show that, for each (l, b) ∈ SallPos,
allPos(l, b) is the consequence of a rule with premises in SallPos. This can be
easily shown, indeed:

– If l = Λ, hence b = T , then allPos(Λ, T ) is the consequence of the first rule
with no premises.

– If l = x : l′ with x ≤ 0, hence b = F , then allPos(l, F ) is the consequence of
the second rule with no premises.

– If l = x : l′ with x > 0, and b = T , hence (l′, T ) ∈ SallPos, then allPos(l, T )
is the consequence of the third rule with premise (l′, T ), and analogously if
b = F .

Soundness Proofs. To show soundness, it is convenient to use the alternative
characterization in terms of approximated proof trees given in Sect. 4, as detailed
below. First of all, from Proposition 6, G ⊆

⋂
{Fn

I(β) | n ≥ 0}. Hence, to prove
G ⊆ S, it is enough to show that

⋂
{Fn

I(β) | n ≥ 0} ⊆ S. Moreover, by Lemma 1,
for all n ∈ N, judgments in Fn

I(β) are those which have an approximated proof
tree of level n. Hence, to prove set inclusion, we can show that all judgments
which have an approximated proof tree of level n for each n are in S or equiva-
lently, by contraposition, that judgments which are not in S, that is, non-valid
judgments, fail to have an approximated proof tree of level n for some n.

We illustrate the technique again on the example of allPos. We have to show
that, for each (l, b) �∈ SallPos, there exists n ≥ 0 such that (l, b) cannot be proved
by using coaxioms at level greater than n. By cases:

– If l contains a (first) non-positive element, hence l = x1 : . . . : xn : x : l′ with
xi > 0 for i ∈ [1..n], x ≤ 0, then, assuming that coaxioms can only be used at
a level greater than n + 1, (l, b) can only be derived by instantiating n times
the third rule, and once the second rule, hence b cannot be T .

– If l contains only positive elements, then it is immediate to see that there is
no finite proof tree for (l, F ).

6 Taming Coaxioms: Advanced Examples

Mutual Recursion. Circular definitions involving inductive and coinductive
judgments have no semantics in standard inference systems, because all judg-
ments have to be interpreted either inductively, or coinductively. The same prob-
lem arises in the context of coinductive logic programming [32], where a logic
program has a well-defined semantics only if inductive and coinductive predicates
can be stratified: each stratum defines only inductive or coinductive predicates
(possibly defined in a mutually recursive way), and cannot depend on predi-
cates defined in upper strata. Hence, it is possible to define the semantics of a
logic program only if there are no mutually recursive definitions involving both
inductive and coinductive predicates.
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We have already seen that an inductive inference system corresponds to a
generalized inference system with no coaxioms, while a coinductive one cor-
responds to a generalized one where coaxioms consist of all judgments in U ;
however, between these two extremes, coaxioms offer many other possibilities
thus allowing a finer control on the semantics of the defined judgments.

There exist cases where two or more related judgments need to be defined
recursively, but for some of them the correct interpretation is inductive, while
for others is coinductive [5,31,32]. In such cases, coaxioms may be employed
to provide the correct definition in terms of a single inference system with no
stratification, although special care is required to get from the inference system
the intended meaning of judgments. To see this, let us consider the judgment
path0 (t), where t is an infinite tree4 over {0, 1}, which holds iff there exists a
path starting from the root of t and containing just 0s; trees are represented as
infinite terms of shape tree(n, l), where n ∈ {0, 1} is the root of the tree, and l
is the infinite list of its direct subtrees. For instance, if t1 and t2 are the trees
defined by the syntactic equations

t1 = tree(0, l1) l1 = t2:t1:l1 t2 = tree(0, l2) l2 = tree(1, l1):l2

then we expect path0 (t1) to hold, but not path0 (t2).
To define path0 , we introduce an auxiliary judgment is in0 (l) testing whether

an infinite list l of trees contains a tree t such that path0 (t) holds. Intuitively, we
expect path0 and is in0 to be interpreted coinductively and inductively, respec-
tively; this reflects the fact that path0 checks a property universally quantified
over an infinite sequence (a safety property in the terminology of concurrent sys-
tems): all the elements of the path must equal 0; on the contrary, is in0 checks
a property existentially quantified over an infinite sequence (a liveness property
in the terminology of concurrent systems): the list must contain a tree t with
a specific property (that is, path0 (t) must hold). Driven by this intuition, one
could be tempted to define the following inference system with coaxioms for all
judgments of shape path0 (t), and no coaxioms for judgments of shape is in0 (l):

is in0 (l)
path0 (tree(0, l))

•
path0 (t)

path0 (t)
is in0 (t:l)

is in0 (l)
is in0 (t:l)

Unfortunately, because of the mutual recursion between is in0 and path0 , the
inference system above does not capture the intended behavior: is in0 (l) is deriv-
able for every infinite list of trees l, even when l does not contain a tree t with
an infinite path starting from its root and containing just 0s.

To overcome this problem, we replace the judgment is in0 with the more
general one is in, such that is in(t, l) holds iff the infinite list l contains the tree
t. Consequently, we can define the following generalized inference system:

is in(t, l) path0 (t)
path0 (tree(0, l))

•
path0 (t) is in(t, t:l)

is in(t, l)
is in(t, t′:l)

4 For the purpose of this example, we only consider trees with infinite depth and
branching.
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Now the semantics of the system corresponds to the intended one, and we
do not need to stratify the definitions into two separate inference systems.

Following the characterization in terms of proof trees and the proof tech-
niques provided in Sects. 4 and 5, we can sketch a proof of correctness. Let S be
the set where elements have either shape path0 (t), where t represents a tree with
an infinite path of just 0s starting from its root, or is in(t, l), where l represents
an infinite list containing the tree t; then a judgment belongs to S iff it can be
derived in the generalized inference system defined above.

Completeness: We first show that the set S is a post-fixed point, that is, it is
consistent w.r.t. the inference rules, coaxioms excluded. Indeed, if t has an infinite
path of 0s, then it has necessarily shape tree(0, l), where l must contain a tree
t′ with an infinite path of 0s. Hence, the inference rule for path0 can be applied
with premises is in(t′, l) ∈ S, and path0 (t′) ∈ S. If an infinite list contains a tree
t, then it has necessarily shape t′:l where, either t = t′, and hence the axiom for
is in can be applied, or t �= t′ and t is contained in l, and hence the inference
rule for is in can be applied with premise is in(t, l) ∈ S.

We then show that S is bounded by the closure of the coaxioms. For the
elements of shape path0 (t) it suffices to directly apply the corresponding coax-
iom; for the elements of shape is in(t, l) we can show that there exists a finite
proof tree built possibly also with the coaxioms by induction on the first position
(where the head of the list corresponds to 0) in the list where t occurs. If the
position is 0 (base case), then l = t:l′, and the axiom can be applied; if the posi-
tion is n > 0 (inductive step), then l = t′:l′ and t occurs in l′ at position n − 1,
therefore, by inductive hypothesis, there exists a finite proof tree for is in(t, l′),
therefore we can build a finite proof tree for is in(t, l) by applying the inference
rule for is in.

Soundness: We first observe that the only finite proof trees that can be derived
for is in(t, l) are obtained by application of the axiom for is in, hence is in(t, l)
holds iff there exists a finite proof tree for is in(t, l) built with the inference rules
for is in. Then, we can prove that, if is in(t, l) holds, then t is contained in l by
induction on the inference rules for is in. For the axiom (base case) the claim
trivially holds, while for the other inference rule we have that if t belongs to l,
then trivially t belongs to t′:l.

For the elements of shape path0 (t) we first observe that by the coaxioms
they all trivially belong to the closure of the coaxioms. Then, any proof tree for
path0 (t) must be infinite, because there are no axioms but only one inference
rule for path0 where path0 is referred in the premises; furthermore, such a rule
is applicable only if the root of the tree is 0. We have already proved that if
is in(t, l) is derivable, then t belongs to l, therefore we can conclude that if
path0 (t) is derivable, then t contains an infinite path starting from its root, and
containing just 0s.

A Numerical Example. It is well known that real numbers in the closed inter-
val [0,1] can be represented by infinite sequences (di)i∈N+ of decimal5 digits,
5 Of course the example can be generalized to any base B ≥ 2.
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where N
+ denotes the set of all positive natural numbers. Indeed, (di)i∈N+ rep-

resents the real number which is the limit of the series
∑∞

i=1 10−idi in the stan-
dard complete metric space of real numbers (such a limit always exists by com-
pleteness, because the associated sequence of partial sums is always a Cauchy
sequence). Such a representation is not unique for all rational numbers in [0,1]
(except for the bounds 0 and 1) that can be represented by a finite sequence of
digits followed by an infinite sequence of 0s; for instance, 0.42 can be represented
either by the sequence 420̄, or by the sequence 419̄, where d̄ denotes the infinite
sequence containing just the digit d.

For brevity, for r = (di)i∈N+ , [[r]] denotes
∑∞

i=1 10−idi (that is, the real num-
ber represented by r). We want to define the judgment add(r1, r2, r, c) which
holds iff [[r1]] +[[r2]] = [[r]] + c with c an integer number; that is, add(r1, r2, r, c)
holds iff the addition of the two real numbers represented by the sequences r1
and r2 yields the real number represented by the sequence r with carry c. We
will soon discover that, to get a complete definition for add , c is required to
range over a proper superset of the set {0, 1}, differently from what one could
initially expect.

We can define the judgment add with the following generalized inference sys-
tem, where ÷ and mod denote the integer division, and the remainder operator,
respectively.

add(r1, r2, r, c)
add(d1:r1, d2:r2, (s mod 10):r, s ÷ 10)

s = d1 + d2 + c

•
add(r1, r2, r, c)

A real number in [0,1] is represented by an infinite list of decimal digits,
which, therefore, can always be decomposed as d:r, where d is the first digit
(corresponding to the exponent −1), and r is the rest of the list of digits. Here,
r1, r2, and r range over the set of infinite lists of decimal digits, while the carry
must range over {−1, 0, 1, 2} to support a complete definition. As clearly emerges
from the proof of completeness provided below, besides the obvious values 0
and 1, the values −1 and 2 have to be considered for the carry to ensure a
complete definition of add because both add(0̄, 0̄, 9̄,−1) and add(9̄, 9̄, 0̄, 2) hold,
and, hence, should be derivable; these two judgments allow the derivation of an
infinite number of other valid judgments, as, for instance, add(10̄, 10̄, 19̄, 0) and
add(19̄, 19̄, 40̄, 0), respectively.

Also in this case we can sketch a proof of correctness: for all infinite sequences
of decimal digits r1, r2 and r, and all c ∈ {−1, 0, 1, 2}, add(r1, r2, r, c) is derivable
iff [[r1]] +[[r2]] =[[r]] + c.

Completeness: By the coaxioms we trivially have that each element
add(r1, r2, r, c) such that [[r1]] + [[r2]] = [[r]] + c with c ∈ {−1, 0, 1, 2} belongs
to the closure of the coaxioms.

To show that the unique inference rule of the system is consistent with the
set of all correct judgments, let us assume that [[r′

1]] + [[r′
2]] = [[r′]] + c′ with

r′
1 = d1:r1, r′

2 = d2:r2, r′ = d:r and c′ ∈ {−1, 0, 1, 2}. Let us set s = 10c′ + d,
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and c = s − d1 − d2, then s mod 10 = d and s ÷ 10 = c′, and we get the desired
conclusion of the inference rule, and the side condition holds; it remains to show
that [[r1]] +[[r2]] =[[r]] + c with c ∈ {−1, 0, 1, 2}.

We first observe that by the properties of limits w.r.t. the usual arithmetic
operations, and by definition of[[−]], for all infinite sequence r of decimal digits, if
r = d:r′, then [[r]] = 10−1(d+[[r′]]); then, from the hypotheses we get the equality
d1 +[[r1]] + d2 +[[r2]] = d +[[r]] + 10c′, and, therefore, [[r1]] +[[r2]] =[[r]] + c; finally,
since c =[[r1]] +[[r2]] −[[r]], and 0 ≤ [[r1]] ,[[r2]] ,[[r]] ≤ 1, we get c ∈ {−1, 0, 1, 2}.

Soundness: Let r′
1 = d1:r1, r′

2 = d2:r2, and r′ = d:r be infinite sequences
of decimal digits, and c′ ∈ {−1, 0, 1, 2}; we observe that the judgment
add(r′

1, r
′
2, r

′, c′) can be derived from the unique inference rule only with the
premise add(r1, r2, r, c) where c must equal 10c′ + d − d1 − d2 and must range
over {−1, 0, 1, 2}.

To prove soundness we show that if[[r′
1]]+[[r′

2]] �=[[r′]]+c′, then add(r′
1, r

′
2, r

′, c′)
cannot be derived in the inference system. Let us set δ′ = |[[r′]] + c′ − [[r′

1]] −
[[r′

2]] |; obviously, under the hypothesis [[r′
1]] + [[r′

2]] �= [[r′]] + c′, we get δ′ > 0.
In particular, the following fact holds: if δ′ ≥ 4 · 10−1, then 10c′ + d − d1 −
d2 �∈ {−1, 0, 1, 2}. Indeed, by the identity [[r]] = 10−1(d +[[r′]]) already used for
the proof of completeness, we have that δ′ = 10−1|[[r]] + c − [[r1]] − [[r2]] |, with
c = 10c′ + d − d1 − d2; 10−1([[r]] + c − [[r1]] − [[r2]]) ≥ 4 · 10−1 implies c ≥ 3
([[r1]] ,[[r2]] ,[[r]] ∈ [0, 1]), and, hence, c = 10c′ + d − d1 − d2 �∈ {−1, 0, 1, 2}. By
duality, 10−1([[r]] + c − [[r1]] − [[r2]]) ≤ −4 · 10−1 implies c ≤ −2, hence c =
10c′ + d − d1 − d2 �∈ {−1, 0, 1, 2}.

By virtue of this fact, and thanks to the hypotheses, we can prove by arith-
metic induction over n that for all n ≥ 1, if δ′ ≥ 4·10−n, then there exists a finite
proof tree for add(r′

1, r
′
2, r

′, c′) where the coaxioms are applied at most at depth
n − 1. The base case is directly derived from the previously proven fact. For the
inductive step we observe that if the inference rule is applicable for deriving the
conclusion add(r′

1, r
′
2, r

′, c′), then we can apply the inductive hypothesis for the
premise add(r1, r2, r, c) since we have already shown that δ′ = 10−1δ, therefore
δ ≥ 4 · 10−(n−1).

We can now conclude by observing that if [[r′
1]] +[[r′

2]] �= [[r′]] + c′, then there
exists n such that δ′ ≥ 4 ·10−n, therefore, by the previous result, we deduce that
it is not possible to build a finite tree for add(r′

1, r
′
2, r

′, c′) where the coaxioms
are applied at arbitrary depth k (in particular, k is bounded by n−1); therefore
add(r′

1, r
′
2, r

′, c′) cannot be derived in the inference system.
From the proof of soundness we can also deduce that if we let c range over Z,

then the inference system becomes unsound; for instance, add(0̄, 0̄, 0̄, 1) would
be derivable, but [[0̄]] +[[0̄]] �=[[0̄]] + 1:

...
add(0̄, 0̄, 0̄, 101)
add(0̄, 0̄, 0̄, 100)

Big-Step Operational Semantics with Divergence. It is well-known that
divergence cannot be captured by the big-step operational semantics of a
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programming language when semantic rules are interpreted inductively (that
is, in the standard way) [4,6,23]. When rules are interpreted coinductively some
partial result can be obtained under suitable hypotheses, but a practical way to
capture divergence with a big-step operational semantics is to introduce two dif-
ferent forms of judgment [14,23]: one corresponds to the standard big-step evalu-
ation relation, and is defined inductively, while the other one captures divergence,
and is defined coinductively in terms of the inductive judgment, thus requiring
stratification. Other approaches consist in considering coinductive trace-based
big-step semantics [27], and flag-based big-step semantics [29].

Syntax of terms and values

e ::= v | x | e e v ::= λx.e v∞ ::= v | ∞
Semantic rules

(coax)
•

e ⇒ ∞ (val)
v ⇒ v

(app)
e1 ⇒ λx.e e2 ⇒ v e[x ← v] ⇒ v∞

e1 e2 ⇒ v∞

(l-inf)
e1 ⇒ ∞

e1 e2 ⇒ ∞ (r-inf)
e1 ⇒ v e2 ⇒ ∞

e1 e2 ⇒ ∞

Fig. 1. Call-by-value big-step semantics of λ-calculus with divergence

With coaxioms a unique judgment can be defined in a more direct and com-
pact way. We show6 how this is possible for the standard call-by-value oper-
ational semantics of the λ-calculus in big-step style. Figure 1 defines syntax,
values, and semantic rules. The meta-variable v ranges over standard values,
that is, lambda abstractions, while v∞ includes also divergence, represented by
∞. The evaluation judgment has the general shape e ⇒ v∞, meaning that either
e evaluates to a value v (when v∞ �= ∞) or diverges (when v∞ = ∞).

For what concerns the semantic rules, only a coaxiom is needed, stating
that every expression may diverge. This ensures that ∞ can be the only allowed
outcome for the evaluation of an expression which diverges; this can only happen
when the corresponding derivation tree is infinite. Rule (val) is standard. Rule
(app) deals with the evaluation of application when both expressions e1 and e2 do
not diverge; the meta-variable v is required for the judgment e2 ⇒ v to guarantee
convergence of e2, while v∞ is used for the result of the whole application, since
the evaluation of the body of the lambda abstraction could diverge. As usual,
e[x ← v] denotes capture-avoiding substitution modulo α-renaming. Rules (l-inf)
and (r-inf) cover the cases when either e1 or e2 diverges when trying to evaluate
application, assuming that a left-to-right evaluation strategy has been imposed.

We show that the only judgment derivable for eΔ = (λx.x x)λx.x x is eΔ ⇒
∞. To this aim, we first disregard the coaxiom and exhibit an infinite derivation
tree for the judgment eΔ ⇒ v∞, derivable for all v∞:
6 This example was inspired by Bart Jacobs.
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(app)

(val)
λx.x x ⇒ λx.x x

(val)
λx.x x ⇒ λx.x x

(app)

.

.

.

(x x)[x ← λx.x x] ⇒ v∞
(x x)[x ← λx.x x] = eΔ ⇒ v∞

In this particular case the derivation tree is also regular, but of course there are
examples of divergent computations whose derivation tree is not regular. The ver-
tical dots indicate that the derivation continues with the same repeated pattern.
The derivation corresponds to the coinductive interpretation of the standard
big-step semantics rules [4,23], which may exhibit non-deterministic behavior as
happens for this example; however, here the coaxiom plays a crucial role by fil-
tering out all undesired values, and, thus, leaving only the value ∞ representing
divergence; indeed, by employing also the coaxiom, finite derivation trees can be
built for eΔ ⇒ v∞ only when v∞ = ∞. By Corollary 3 we can get an infinite
sequence of approximating derivation trees of arbitrarily increasing level:

(coax)
eΔ ⇒ ∞

(app)

(val)
λx.x x ⇒ λx.x x

(val)
λx.x x ⇒ λx.x x

(coax)
(x x)[x ← λx.x x] ⇒ ∞

(x x)[x ← λx.x x] = eΔ ⇒ ∞

.

.

.

As a consequence, in the inference system with the coaxiom a valid infinite
derivation tree can be built for eΔ ⇒ v∞ only when v∞ = ∞.

7 Related Work

Inference systems [1] are widely adopted to formally define operational seman-
tics, language translations, type systems, subtyping relations, and other rele-
vant judgments. Although inference systems have been introduced for dealing
with inductive recursive definitions, in the last two decades several authors have
focused on their coinductive interpretation.

Cousot and Cousot [14] define divergence by the coinductive interpretation
of an inference system which extends the big-step operational semantics. The
same approach is followed by other authors [16,23,30]. Leroy and Grall [23] ana-
lyze two kinds of coinductive big-step operational semantics for the call-by-value
λ-calculus, and study their relationships with the small-step and denotational
semantics, and their suitability for compiler correctness proofs. Coinductive big-
step semantics is used as well to reason on cyclic objects stored in memory
[24,26], and to prove type soundness in Java-like languages [4,6]. Coinductive
inference systems are also considered in the context of type analysis and sub-
typing for object-oriented languages [7,9].

More recently, several solutions have been proposed to extend existing pro-
gramming languages to support corecursion, and are, therefore, more focused
on operational aspects, and their corresponding implementation issues; contri-
butions can be found for all main computational paradigms: logic [5,21,25],
functional [18,19], and object-oriented programming [10,11].
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For the logic paradigm, the starting point is coinductive logic programming
(coLP) [32], an extension of logic programming which provides both a declarative
and a sound but not complete operational semantics for coinductive predicates,
the former based on the notion of complete Herbrand base (finite and infinite
terms) and greatest fixed point. However, only the standard coinductive inter-
pretation is supported, and mixing between inductive and coinductive predicates
is only partially supported through stratification. Structural resolution [21] is an
extension of the operational semantics for coLP not limited to regular deriva-
tions. Other proposals [5,25] provide more flexible operational semantics. The
notion of finally clause [5] has inspired our notion of coaxiom: finally clauses
are user-defined facts that are resolved when an infinite, but regular, derivation
is detected, in replacement of the standard coinductive semantics. Despite the
existing strong correlation with this paper, the semantics of finally clauses does
not always coincide with a fixed point of the one step inference operator. Similar
considerations apply also to the work on coFJ [10,11], where with clauses play
a role similar to that of finally clauses for coLP. A first attempt to provide a
denotational model for this language, overtaken by the present work, has been
provided in [8].

CoCaml [18,19] is an extension of OCaml where the semantics of recur-
sive functions can be parametric in an equation solver which can be either pre-
defined, or explicitly provided by the programmer to support corecursion. The
intuition suggests that choosing a solver corresponds to choose a specific partial
order, in such a way that the desired function is a fixed point in the correspond-
ing CPO. Among the several proposed solvers, the pre-defined iterator solver has
an expressive power similar to that of the finally and with clauses mentioned
above.

As already mentioned, the spirit of our work is very different from that on
CoCaml, since we do not aim to extend a practical language with corecursion,
but, rather, to provide a very general framework which smoothly extends the
well-known notion of inference system, and that could be used in many useful
contexts, as shown in Sect. 6. On the other hand, definitions of higher order
functions cannot be directly supported by inference systems. The foundation of
CoCaml [20] is based on the theory of recursion in the framework of coalgebras.
Our approach, instead, relies on the standard complete lattice of powersets, with
set inclusion as partial order. In this way, a single and simple model based on
classical results works uniformly for any possible recursive definition expressed
in terms of a generalized inference system.

Recursive and well-founded coalgebras [12] are a framework for generalized
structural recursion.

Completely iterative algebras [2] and corecursive and anti-founded algebras
[12] are frameworks for generalized structural corecursion; iterative algebras cor-
respond to the rational case as opposed to the coinductive one.

In guarded recursion [13,28] a judgment can be proved by also using recur-
sively the judgment itself, provided that such recursive call is guarded by intro-
duction rules. The goal, similar to ours, is to obtain a unique fixed point, however,
there is no counterpart of the guard notion in the general framework of inference
systems.
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8 Conclusion

We have presented a generalized notion of inference system by introducing coax-
ioms, to support flexible definitions of judgments by structural recursion on
non-well-founded datatypes.

Consequently, we have generalized the meta-theory of inference systems by
providing two equivalent semantics, one based on fixed points in a complete
lattice, and the other on the notion of proof tree. In the former case, the semantics
of an inference system is the greatest fixed point of its corresponding one step
inference operator, below the least pre-fixed point containing the coaxioms; in
the latter case, the standard notion of proof tree for the coinductive case is
generalized by requiring coaxioms to be applicable “at an infinite depth”.

We have provided proof techniques for proving soundness and completeness
results and shown their application to a range of different examples.

A compelling direction for further developments is exploring mechanization
in proof assistants and other proof techniques [17] for coaxioms.

A necessarily not complete prototype meta-interpreter has been implemented
in SWI-Prolog7 to test the examples provided in Sects. 2 and 6. SWI-Prolog offers
a natural support to regular terms (a.k.a. cyclic terms) through unification, but
examples involving non-regular terms (or derivations) cannot terminate.

Extending the notion of coaxiom in the setting of object-oriented and func-
tional programming is more challenging, because of the gap between the under-
lying theories.

We plan to investigate the dual notion studied here: one could consider the
least fixed point above the greatest post-fixed point contained in the coaxioms,
instead of the greatest fixed point below the least pre-fixed point containing the
coaxioms. In particular, it would be interesting studying inference systems for
which the two different semantics coincide.
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