
Constraining Pseudorandom Functions Privately

Dan Boneh, Kevin Lewi, and David J. Wu(B)

Stanford University, Stanford, USA
{dabo,klewi,dwu4}@cs.stanford.edu

Abstract. In a constrained pseudorandom function (PRF), the mas-
ter secret key can be used to derive constrained keys, where each con-
strained key k is constrained with respect to some Boolean circuit C. A
constrained key k can be used to evaluate the PRF on all inputs x for
which C(x) = 1. In almost all existing constrained PRF constructions,
the constrained key k reveals its constraint C.

In this paper we introduce the concept of private constrained PRFs,
which are constrained PRFs with the additional property that a con-
strained key does not reveal its constraint. Our main notion of privacy
captures the intuition that an adversary, given a constrained key k for
one of two circuits C0 and C1, is unable to tell which circuit is associated
with the key k. We show that constrained PRFs have natural applica-
tions to searchable symmetric encryption, cryptographic watermarking,
and much more.

To construct private constrained PRFs we first demonstrate that our
strongest notions of privacy and functionality can be achieved using indis-
tinguishability obfuscation. Then, for our main constructions, we build
private constrained PRFs for bit-fixing constraints and for puncturing
constraints from concrete algebraic assumptions.

1 Introduction

A pseudorandom function (PRF) [41] is a (keyed) function F : K ×X → Y with
the property that, for a randomly chosen key msk ∈ K, the outputs of F (msk, ·)
look indistinguishable from the outputs of a truly random function from X to Y.
Constrained PRFs1, proposed independently by Boneh and Waters [12], Boyle et
al. [16], and Kiayias et al. [47], behave just like standard PRFs, except that the
holder of the (master) secret key msk ∈ K for the PRF is also able to produce
a constrained key skC for a Boolean circuit C. This constrained key skC can be
used to evaluate the PRF F (msk, ·) on all inputs x ∈ X where C(x) = 1, but
skC reveals nothing about F (msk, x) when C(x) = 0. Constrained PRFs have
found many applications, for example, in broadcast encryption [12] and in the
“punctured programming” techniques of Sahai and Waters [54].

The Goldreich-Goldwasser-Micali (GGM) PRF [41] is a puncturable PRF,
that is, a constrained PRF for the special class of puncturing constraints. In a

The full version of this paper is available at http://eprint.iacr.org/2015/1167.pdf.
1 They have also been called functional PRFs [16] and delegatable PRFs [47].

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 494–524, 2017.
DOI: 10.1007/978-3-662-54388-7 17

http://eprint.iacr.org/2015/1167.pdf

Constraining Pseudorandom Functions Privately 495

puncturable PRF, each constrained key k is associated with an input x0 ∈ X , and
the constrained key enables the evaluation at all points x �= x0 while revealing
no information about F (msk, x0). It is not difficult to see that the constrained
key k completely reveals the point x0.

Boneh and Waters [12] show how to use multilinear maps [28,29,33,36] to
construct constrained PRFs for more expressive classes of constraints, including
bit-fixing constraints as well as general circuit constraints (of a priori bounded
depth). Subsequent works in this area have focused on achieving adaptive notions
of security [43,44], developing schemes with additional properties such as verifia-
bility [19], and constructing (single-key) circuit-constrained PRFs from standard
lattice-based assumptions [17].

Constraining Privately. In this work, we initiate the study of private con-
strained PRFs, which are a natural extension of constrained PRFs with the
additional property that the constrained keys should not reveal their constraints.

Our definition of privacy requires that an adversary, given a single constrained
key sk for one of two possible circuits C0 and C1, cannot tell which circuit was
used as the constraint for sk. We also generalize this definition to the setting
where the adversary obtains multiple constrained keys. Since the adversary can
compare the outputs from multiple constrained keys, some information is nec-
essarily leaked about the underlying constraints. In this setting, our privacy
property ensures that the adversary learns the minimum possible. We formally
define our privacy notion in Sect. 2.

For the special case of a puncturable PRF (where the adversary only has
access to a single constrained key), the privacy requirement is that for any two
adversarially-chosen points x0, x1 ∈ X , the adversary cannot distinguish a secret
key punctured at x0 from one punctured at x1. In particular, this means that
using a secret key punctured at the input x to evaluate the PRF on x must return
a value that is unpredictable to the adversary, as opposed to a fixed constant value
or ⊥ as is done in existing (non-private) constrained PRF constructions.

While privacy is a very simple requirement to impose on constrained PRFs,
it is not clear how to adapt existing schemes to satisfy this property, even just
for puncturing. As a first attempt to constructing private puncturable PRFs, let
the PRF input space X be {0, 1}n, and consider the GGM tree-based PRF [41],
where the outputs are computed as the leaf nodes of a binary tree with the PRF
secret key occupying the root node. To puncture the GGM PRF at an input
x, the puncturing algorithm reveals the secret keys of all internal nodes that
are adjacent2 to the path from the root to the leaf node corresponding with x.
Certainly then, the GGM construction is not private—given the punctured key,
an adversary can easily reconstruct the path from the root to the punctured leaf
node, and hence, recover the input x.

However, the GGM PRF is a private constrained PRF for the class of length-�
prefix constraints, for an integer � ≤ n. This class refers to the family of con-
straints described by a prefix s ∈ {0, 1}�, where an input satisfies the constraint
2 Here, an internal node is “adjacent” to a path if it does not lie on the path but its

parent does.

496 D. Boneh et al.

if its first � bits match s. To constrain the GGM PRF on a prefix s, the constrain
algorithm reveals the secret key for the internal node associated with s in the
GGM tree. Then, to evaluate an input x using the constrained key, the evaluator
discards the first � bits of x and, beginning with the node associated with the
constrained key, uses the remaining bits of x to traverse down the GGM tree,
outputting the value associated with the resulting leaf node. Privacy follows from
the fact that, without the original root of the GGM tree, the secret key for the
internal node for s appears to be distributed uniformly and independently of s.

While the GGM PRF provides an efficient solution to privately constraining
PRFs under fixed-length prefix constraints, this is insufficient for the applica-
tions we have in mind. Instead, we construct private constrained PRFs for more
general classes of constraints: puncturing and general circuit constraints.

1.1 Applications of Private Constrained PRFs

To illustrate the power of private constrained PRFs we first describe a few nat-
ural applications, including private constrained MACs, watermarkable PRFs,
and searchable encryption. In Sect. 6.2, we also describe an application to sym-
metric deniable encryption.

Private Constrained MACs. Constrained MACs are the secret-key variant
of constrained signatures, which were first introduced by Boyle et al. [16]. In
a constrained MAC, the holder of the master secret key can issue constrained
secret keys to users. Given a constrained key, a user can only generate MACs
for messages that conform to some pre-specified constraint. Here, we consider
private constrained MACs, where the constraint is also hidden from the user.
Just as a secure PRF implies a secure MAC, a private constrained PRF yields
a private constrained MAC.

As a concrete example, suppose a company would like to enforce spending
limits on its employees. For business reasons, they do not want employees to
be able to learn their precise spending limit, which might reveal confidential
information about their position and rank within the company. For example, an
employee Alice might only be allowed to create spending requests for at most
$500. In this case, Alice’s company could issue a constrained key to Alice that
restricts her to only being able to compute MACs for messages which contain
her name and whose spending requests do not exceed $500. If Alice attempts to
create a MAC for a spending request that either exceeds $500 or is not bound to
her name, then the computed MAC will not pass verification. Moreover, privacy
of the constrained key ensures that Alice cannot tell if the MAC she constructed
is valid or not with respect to the master verification key. Hence, without inter-
acting with the verifier, Alice learns nothing about her exact spending limit. A
key advantage in this scenario is that the verifier, who is issued a constrained
key3 from the offline key distributor, is able to verify Alice’s requests without
knowing or learning anything about her spending limits.
3 The verifier’s constrained key is chosen so that the constraint is always satisfied.

Note that this is not the same as giving out the master verification key, which may
allow the verifier to learn Alice’s spending limits.

Constraining Pseudorandom Functions Privately 497

Watermarking PRFs. A watermarking scheme for programs [5,24,25,45,51]
consists of a marking algorithm, which takes as input a program and embeds
a “mark” in it, and a verification algorithm that takes an arbitrary program
and determines whether it has been marked. The requirement is that a marked
program should preserve the functionality of the original program on almost all
inputs, but still be difficult for an adversary to remove the watermark without
destroying the functionality. As discussed in [5,24,45], the marking algorithm
can be extended to embed a string into the program; correspondingly, the verifi-
cation algorithm would extract the embedded string when run on a watermarked
program. We say such schemes are message-embedding [24].

Hopper et al. [45] first introduced the formal notion of a secretly-verifiable
watermarking scheme, which was then discussed and adapted to the setting of
watermarking cryptographic programs in Barak et al. [5]. In a secretly-verifiable
scheme, only the holder of a secret key can test if a program is watermarked.
More recently, Cohen et al. [24] showed how to construct publicly-verifiable
watermarking for puncturable PRFs from indistinguishability obfuscation. In
the publicly-verifiable setting, anyone with the public parameters is able to test
whether a program is watermarked or not. Moreover, Cohen et al. noted that
watermarkable PRFs have applications in challenge-response authentication and
traitor tracing. We survey more related work in Sect. 6.1.

In our work, we show that starting with a private programmable PRF, we
obtain a watermarkable family of PRFs, where the associated watermarking
scheme is secretly-verifiable and supports message embedding. Intuitively, a pro-
grammable PRF is a puncturable PRF, except with the property that the holder
of the master secret key can additionally specify the value the constrained key
evaluates to at the punctured point. The privacy requirement stipulates that a
programmed key hides the point which was “reprogrammed.” We give the formal
definitions of this concept and a concrete construction based on indistinguisha-
bility obfuscation in the full version of this paper [10].

We now give an overview of our construction of a watermarkable PRF. For
simplicity, we describe our construction without message embedding. To mark
a key msk for a private programmable PRF F , the marking algorithm first
evaluates F (msk, ·) at several (secret) points z1, . . . , zd ∈ X to obtain values
t1, . . . , td. The marking algorithm then derives a pseudorandom pair (x, y) from
the values t1, . . . , td, and outputs a programmed key for msk with the value at
x replaced by y. To test whether a circuit C is marked or not, the verification
algorithm applies the same procedure as the marking algorithm to obtain a
test point (x′, y′). The test algorithm then outputs “marked” if C(x′) = y′ and
“unmarked” otherwise. Privacy is crucial here because if the adversary knew the
“reprogrammed” point x, it can trivially remove the watermark by producing a
circuit that simply changes the value at x. We show in Sect. 6.1 that this simple
construction not only satisfies our notion of secretly-verifiable watermarking,
but can also be easily extended to support embedding arbitrary messages as the
watermark.

498 D. Boneh et al.

Although our current constructions of private programmable PRFs rely on
indistinguishability obfuscation, we stress that advances in constructing private
programmable PRFs from weaker assumptions or with improved efficiency would
have implications in constructing watermarkable PRFs as well.

Searchable Encryption. In searchable symmetric encryption (SSE) [6,20,30,
40,55], a server holds a set of encrypted documents and a client wants to retrieve
all documents that match its query. For simplicity, suppose each document is
tagged, and the client wants to retrieve all documents with a particular tag. One
of the simplest SSE approaches is to compute and store an encrypted index on
the server. Specifically, fix a PRF F and a key msk. For each tag t, the encrypted
index maps the token F (msk, t) onto an encrypted list of document indices that
match the tag. To search for a tag t, a user who holds the PRF key msk can issue
a query F (msk, t). The server returns the encrypted list of matching documents.

We consider a new notion called restrictable SSE, where multiple parties
can search the database, and the database owner wants to prevent some users
from searching for certain tags. For example, suppose a company hosts all of
its documents in a central database and tags each document with the name
of its associated project. Moreover, suppose the company is developing a top-
secret project and wants to restrict access so that only employees working on the
project are able to search for documents related to the project. Using restrictable
SSE, the company can issue restricted search keys to all employees not working
on the project. Security of the constrained PRF ensures that an employee is
unable to search for documents pertaining to the secret project. If we moreover
assume that the tags are drawn from a small (polynomially-sized) domain (e.g.,
the English dictionary), privacy ensures that an employee cannot tell if a search
came back empty because she was not allowed to search for a particular tag, or
if there are actually no documents that match the tag. Privacy also ensures that
unauthorized employees cannot infer the name of the secret project from their
search keys.

By instantiating F with a private constrained PRF, we easily obtain a
restrictable SSE system. The construction is collusion resistant: if several
employees who individually cannot search for the tag t combine their search
keys, they still cannot search for t. However, it does become possible for them
to test whether a certain tag is in the intersection of their restricted sets.

Online/Offline 2-Server Private Keyword Search. In private keyword
search [23,32,53], a server holds a database D = {w1, . . . , wn} of keywords,
and a client wants to determine whether a specific keyword is in the database
without revealing the keyword to the server. This setting differs from searchable
encryption in that the server learns nothing about the client’s query, whereas in
the searchable encryption framework, information about the client’s query (such
as whether or not there are any matching results) could be leaked.

In the 2-server variant of this problem [15,39], the database is shared among
two servers. The client can send queries to each server independently, and then
combine the results of the queries to obtain the answer. We assume moreover that

Constraining Pseudorandom Functions Privately 499

the two servers are non-colluding. Recently, Boyle, Gilboa and Ishai [15,39] gave
a secure solution for the 2-server variant of the problem that is more efficient
than the solutions for 1-server private keyword search, and relies on weaker
cryptographic assumptions.

Using a private puncturable PRF, we can construct an online/offline version
of the 2-server keyword-search protocol. In an online/offline 2-server private
keyword search protocol, there is an “offline” server and an “online” server.
The offline server can process the search query before the client has decided
its query (for instance, the offline computation can be preformed in a separate
setup phase). When the client issues a search query, it only communicates with
the online server. The client then combines the response from both servers to
learn the result of the query. Our protocol can be seen as a hybrid between the
1-server and 2-server protocols. In the 1-server setting, there is no offline setup
component in the protocol, while in the 2-server setting, we require both servers
to be online during the query phase.

To implement online/offline 2-server private keyword search using private
puncturable PRFs, during the offline (setup) phase, the client generates a master
secret key msk for the private puncturable PRF, and sends msk to the offline
server. Let {0, 1}m be the range of the PRF. For each word wi ∈ D, the offline
server computes si = F (msk, wi), and returns s =

⊕n
i=1 si to the client. Note

that all computation in the offline phase is independent of the client’s search
query. In the online phase, after the client has determined its search query w∗,
she sends a key skw∗ punctured at w∗ to the online server. For each word wi ∈ D,
the online server evaluates skw∗ on wi to obtain a value ti. Finally, the online
server returns the value t =

⊕n
i=1 ti. To learn the result of the keyword search,

the client tests whether z = s ⊕ t is the all-zeros string 0m or not. If z = 0m,
then the client concludes w∗ /∈ D; otherwise, the client concludes that w∗ ∈ D.
To see why, consider the case where w∗ /∈ D, so w∗ �= wi for all i. By correctness
of the punctured PRF, si = ti for all i, in which case z = 0m. Conversely, if
w∗ = wi∗ for some i∗, then for all i �= i∗, si = ti. Moreover, security of the PRF
implies that si∗ �= ti∗ with high probability, and so z �= 0m.

For the security parameter λ and a dictionary of n keywords, the size of
the search tokens sent to the online and offline servers is O(λ log N). The size
of the responses from each server is O(λ) bits. For single-server private key-
word search, Ostrovsky and Skeith [53] show how to construct a private key-
word search protocol, using homomorphic encryption and a private informa-
tion retrieval (PIR) protocol. Instantiating the PIR protocol with the scheme
of Gentry and Ramzan [38] results in a 1-server private keyword search with
O(λ + log N) communication, which is optimal. We remark that although our
current constructions do not result in a more efficient private keyword search
protocol, improved constructions of private puncturable PRFs would have direct
implications for the online/offline 2-server variant of private keyword search.

500 D. Boneh et al.

1.2 Constructing Private Constrained PRFs

We formally define our notion of privacy in Sect. 2. In this section, we briefly
outline our constructions of private constrained PRFs. As a warmup, we begin
with a construction from indistinguishability obfuscation, and then we give an
overview of our two constructions from concrete assumptions on multilinear maps
for bit-fixing constraints and puncturing constraints.

A Construction from Indistinguishability Obfuscation. Indistinguishabil-
ity obfuscation (iO) [3–5,34,37,54,56] is a powerful primitive that has enabled a
number of new constructions in cryptography [14,34,54]. Informally, an indistin-
guishability obfuscator is a machine that takes as input a program and outputs
a second program with the identical functionality, but at the same time, hides
some details on how the original program works.

We first show how indistinguishability obfuscation can be used to construct
a private constrained PRF for general circuit constraints. Suppose F : K ×X →
Y is a PRF with master secret key msk ∈ K. We use F in conjunction with
iO to construct a private circuit-constrained PRF. We describe the constrain
algorithm. On input a circuit C, the constrain algorithm samples another secret
key sk ∈ K and outputs the obfuscation of the following program P :

“On input x, if C(x) = 1, output F (msk, x). Otherwise, output F (sk, x).”

In the above program, note that C, msk, and sk are all hard-coded into the
program. Let P̂ be the obfuscated program. Evaluation of the PRF using the
constrained key corresponds to evaluating the program P̂ (x). We see that on all
inputs x where C(x) = 1, P̂ (x) = F (msk, x), so correctness is immediate.

At a high level, the constrain algorithm generates a “fake” PRF key sk, and
the constrained key is just a program that either evaluates the “real” PRF or
the fake PRF, depending on the value of C(x). Since the adversary cannot dis-
tinguish between the outputs under the real PRF key from those under the
fake PRF key, the adversary cannot simply use the input-output behavior of the
obfuscated program to learn anything about C. Moreover, in Sect. 3, we show
that if the underlying PRF F is puncturable (not necessarily privately), the
indistinguishability obfuscation of the program does in fact hide the constrain-
ing circuit C. We note though that for general circuits, our security reduction
requires subexponential hardness of iO (and one-way functions). For restricted
classes of circuits, such as puncturing, however, we can obtain security from
polynomially-hard iO (and one-way functions).

Multilinear Maps. Although our construction from indistinguishability obfus-
cation is clean and simple, we treat it primarily as a proof-of-feasibility for private
constrained PRFs. For our two main constructions, we build private constrained
PRFs for more restrictive classes of constraints based on concrete assumptions
over multilinear maps.

Multilinear maps [11,28,29,33,36] have been successfully applied to many
problems in cryptography, most notably in constructing indistinguishability

Constraining Pseudorandom Functions Privately 501

obfuscation [2–4,34,37,56]. Unfortunately, a number of recent attacks [13,21,
22,26,27,46] have invalidated many of the basic assumptions on multilinear
maps. However, indistinguishability obfuscation is an example of a setting where
the adversary often does not have the necessary information to carry out these
attacks, and so some of the existing constructions are not known to be bro-
ken [31,35]. In our first construction from multilinear maps, we rely on the
Multilinear Diffie-Hellman (MDH) assumption [11,33] over prime-order mul-
tilinear maps. In our second construction, we rely on the Subgroup Decision
assumption [9,33] as well as a generalization which we call the Multilinear Diffie-
Hellman Subgroup Decision (MDHSD) assumption over composite-order multi-
linear maps.4 Our assumptions plausibly hold in existing multilinear map candi-
dates, notably the Garg et al. construction in the prime-order setting [33], and
the Coron et al. construction for the composite-order setting [28]. We also note
that starting from iO, it is also possible to construct multilinear maps where the
MDH assumption holds [1].

Two Constructions from Multilinear Maps. Using multilinear maps, we
give two constructions of private constrained PRFs: one for the class of bit-fixing
constraints, and the other for puncturing. A bit-fixing constraint is described
by a pattern s ∈ {0, 1, ?}n. An input x ∈ {0, 1}n satisfies the constraint if it
matches the pattern—that is, for each coordinate i, either si = ? or si = xi. Our
private bit-fixing PRF builds off of the Boneh-Waters bit-fixing PRF [12] based
on prime-order multilinear maps [11,33]. We give the full construction in Sect. 4.
In Sect. 5, we give the full construction of our privately puncturable PRF from
composite-order multilinear maps. Here, security and privacy are based on the
n-MDHSD and Subgroup Decision assumptions.

1.3 Related Work

Kiayias et al. [47] introduced a notion of policy privacy for delegatable PRFs.
In a delegatable PRF, a proxy can evaluate the PRF on a subset of its domain
by using a trapdoor derived from the master secret key, where the trapdoor
(constrained key) is constructed based on a policy predicate (circuit constraint)
which determines which values in the domain the proxy is able to compute the
PRF on. Here, policy privacy refers to the security property that the trapdoor
does not reveal the underlying policy predicate. The notion of policy privacy is
conceptually similar to our notion of privacy for constrained PRFs, except that
the delegatable PRFs which they construct are for policy predicates that describe
a consecutive range of PRF inputs. Moreover, this restriction is reflected in their
definition of policy privacy, and hence, their notion of privacy is incomparable to
ours. However, we note that their delegatable PRF constructions are GGM-based
and, thus, more efficient than our PRF constructions.

4 In the full version [10], we show this assumption holds in a generic multilinear map
model.

502 D. Boneh et al.

As discussed earlier, Boyle et al. [16] introduced the notion of constrained
signatures (which they call functional signatures). Here, in addition to the mas-
ter signing key, there are secondary signing keys for functions f which restrict
the signer to only being able to construct valid signatures for a range of messages
determined by f . They also proposed the notion of function privacy, which intu-
itively states that a signature constructed from a secondary signing key should
not reveal the function associated with the signing key, nor the message that the
function was applied to. However, critically, this notion of privacy does not pre-
vent the secondary signing key itself from revealing the function it corresponds
to; in this respect, their notion of function privacy is incomparable to our notion
of privacy for constrained PRFs.

In Sect. 6.1, we also survey the related work on cryptographic watermarking.

Private Puncturing and Distributed Point Functions. Recently, Boyle,
Gilboa and Ishai introduced the notion of a distributed point function (DPF) [15,
39], which are closely related to private puncturable PRFs. In a DPF, there are
two functions Gen and Eval. The function Gen takes as input a pair x, y ∈ {0, 1}∗

and outputs two keys k0 and k1, and Eval is defined such that Eval(k0, x′) ⊕
Eval(k1, x′) = 0|y| if x′ �= x, and Eval(k0, x) ⊕ Eval(k1, x) = y. The security of
the DPF stipulates that each of the keys individually appear to be distributed
independently of x and y. A DPF is similar to a private puncturable PRF in
that we can view k0 as the master secret key for a PRF and k1 as a constrained
key punctured at x. However, there are two significant differences: first, the keys
k0 and k1 need not be PRF keys (in the sense that Eval(k0, ·) and Eval(k1, ·)
need not be pseudorandom),5 and second, the keys k0 and k1 are generated
together depending on x, whereas in a puncturable PRF, the master secret key
is generated independently of x. We note though that a private puncturable PRF
can be used directly to construct a DPF: we simply let k0 be the master secret
key of the PRF and k1 be a key punctured at x.

2 Private Constrained PRFs

In this section, we first review some notational conventions that we use through-
out the work, along with the definition of a pseudorandom function (PRF). Then,
we define constrained PRFs and the notion of privacy.

2.1 Conventions

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S, we
write x

r←− S to denote that x is drawn uniformly at random from S. For two finite
sets S and T , we write Funs(S, T) to denote the set of all (well-defined) functions
f : S → T . Hence, if f

r←− Funs(S, T), then for every distinct input a ∈ S, the

5 Though this property is not explicitly required by a DPF, in existing construc-
tions [15,39], the functions Eval(k0, ·) and Eval(k1, ·) are individually pseudorandom.

Constraining Pseudorandom Functions Privately 503

value f(a) is distributed uniformly and independently in T . We say a function
f(λ) is negligible in the parameter λ, denoted as negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. For two families of distributions D1 and D2,
we write D1 ≡ D2 if the two distributions are identical. We write D1

c≈ D2 if
the two distributions are computationally indistinguishable, that is, no efficient
algorithm can distinguish D1 from D2, except perhaps with negligible probability.

2.2 Pseudorandom Functions

We first review the definition of a pseudorandom function (PRF) [41]. Unless
otherwise noted, we will specialize the domain of our PRFs to {0, 1}n and the
range to {0, 1}m.

Definition 2.1 (Pseudorandom Function [41]). Fix the security parameter
λ. A PRF F : K × {0, 1}n → {0, 1}m with key space K, domain {0, 1}n, and
range {0, 1}m is secure if for all efficient algorithms A,

∣
∣
∣ Pr

[
k

r←− K : AF (k,·)(1λ) = 1
]
−

Pr
[
f

r←− Funs({0, 1}n, {0, 1}m) : Af(·)(1λ) = 1
]∣
∣
∣ = negl(λ).

We also review the definition of a constrained PRF [12,16,47]. Consider a
PRF F : K × {0, 1}n → {0, 1}m, and let msk be the master secret key for F .
In a constrained PRF, the holder of msk can derive keys sk for some circuit
C : {0, 1}n → {0, 1}, such that given sk, the evaluator can compute the PRF
on all inputs x ∈ {0, 1}n where C(x) = 1. More precisely, we have the following
definition.

Definition 2.2 (Constrained PRF [12,16,47]). A constrained PRF
for a circuit class C is a tuple of algorithms Π = (cPRF.Setup,
cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) over the input space {0, 1}n and
output space {0, 1}m, with the following properties:

– cPRF.Setup(1λ) → msk. On input the security parameter λ, the setup algo-
rithm cPRF.Setup outputs the master secret key msk.

– cPRF.Constrain(msk, C) → sk. On input the master secret key msk and a cir-
cuit C ∈ C, the constrain algorithm cPRF.Constrain outputs a secret key sk for
the circuit C.

– cPRF.ConstrainEval(sk, x) → y. On input a secret key sk, and an input x ∈
{0, 1}n, the constrained evaluation algorithm cPRF.ConstrainEval outputs an
element y ∈ {0, 1}m.

– cPRF.Eval(msk, x) → y. On input the master secret key msk and an input x ∈
{0, 1}n, the evaluation algorithm cPRF.Eval outputs an element y ∈ {0, 1}m.

504 D. Boneh et al.

Correctness. A constrained PRF is correct for a circuit class C if msk ←
cPRF.Setup(1λ), for every circuit C ∈ C and input x ∈ {0, 1}n such that
C(x) = 1, it is the case that

cPRF.ConstrainEval(cPRF.Constrain(msk, C), x) = cPRF.Eval(msk, x).

Security. We now describe two security properties for a constrained PRF. The
first property is the basic security notion for a constrained PRF and is adapted
from the definitions of Boneh and Waters [12]. This notion captures the property
that given several constrained keys as well as PRF evaluations at points of the
adversary’s choosing, the output of the PRF on points the adversary cannot com-
pute itself looks random. The second property, which we call privacy, captures
the notion that a constrained key does not reveal the associated constraining
function. Each security definition is accompanied by an experiment between a
challenger and an adversary, along with admissibility restrictions on the power
of the adversary.

Definition 2.3 (Experiment ExptcPRFb). For the security parameter λ ∈ N,
a family of circuits C, and a bit b ∈ {0, 1}, we define the experiment ExptcPRFb

between a challenger and an adversary A, which can make oracle queries of
the following types: constrain, evaluation, and challenge. First, the challenger
sets msk ← cPRF.Setup(1λ) and samples a function f

r←− Funs({0, 1}n, {0, 1}m)
uniformly at random. For b ∈ {0, 1}, the challenger responds to each oracle query
made by A in the following manner.

– Constrain oracle. On input a circuit C ∈ C, the challenger returns a con-
strained key sk ← cPRF.Constrain(msk, C) to A.

– Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ←
cPRF.Eval(msk, x).

– Challenge oracle. On input x ∈ {0, 1}n, the challenger returns y ←
cPRF.Eval(msk, x) to A if b = 0, and y ← f(x) if b = 1.

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptcPRFb . Let
Pr[ExptcPRFb (A) = 1] denote the probability that ExptcPRFb outputs 1 with A.

At a high level, we say that a constrained PRF is secure if no efficient adver-
saries can distinguish ExptcPRF0 from ExptcPRF1 . However, we must first restrict the
set of allowable adversaries. For example, an adversary that makes a constrain
query for a circuit C ∈ C and a challenge query for a point x ∈ {0, 1}n where
C(x) = 1 can trivially distinguish the two experiments. Hence, we first define an
admissibility criterion that precludes such adversaries.

Definition 2.4 (Admissible Constraining). We say an adversary is
admissible if the following conditions hold:

– For each constrain query C ∈ C and each challenge query y ∈ {0, 1}n,
C(y) = 0.

Constraining Pseudorandom Functions Privately 505

– For each evaluation query x ∈ {0, 1}n and each challenge query y ∈ {0, 1}n,
x �= y.

Definition 2.5 (Constrained Security). A constrained PRF Π is secure if
for all efficient and admissible adversaries A, the following quantity is negligible:

AdvcPRF[Π,A] def=
∣
∣
∣Pr[ExptcPRF0 (A) = 1] − Pr[ExptcPRF1 (A) = 1]

∣
∣
∣ .

Remark 2.6 (Multiple Challenge Queries). In our constructions of constrained
PRFs, it will be convenient to restrict the adversary’s power and assume that
the adversary makes at most one challenge query. As was noted by Boneh
and Waters [12], a standard hybrid argument shows that any constrained PRF
secure against adversaries that make a single challenge oracle query is also
secure against adversaries that make Q challenge oracle queries while only incur-
ring a 1/Q loss in advantage. Thus, this restricted definition is equivalent to
Definition 2.5.

Remark 2.7 (Adaptive Security). We say that a constrained PRF Π is selec-
tively secure if for all efficient adversaries A, the same quantity AdvcPRF[Π,A]
is negligible, but in the security game, the adversary first commits to its chal-
lenge query x ∈ {0, 1}n at the start of the experiment. If we do not require the
adversary to first commit to its challenge query, then we say that the scheme
is adaptively (or fully) secure. A selectively-secure scheme can be shown to be
fully secure using a standard technique called complexity leveraging [7] (at the
expense of a super-polynomial loss in the security reduction).

Privacy. In the privacy game, the adversary is allowed to submit two circuits
C0, C1 to the challenger. On each such query, it receives a PRF key constrained
to Cb for some fixed b ∈ {0, 1}. The adversary can also query the PRF at points of
its choosing, and its goal is to guess the bit b. We now give the formal definitions.

Definition 2.8 (Experiment Exptcprivb). For the security parameter λ ∈ N, a
family of circuits C, and a bit b ∈ {0, 1}, we define the experiment Exptcprivb

between a challenger and an adversary A, which can make evaluation and
challenge queries. First, the challenger obtains msk ← cPRF.Setup(1λ). For
b ∈ {0, 1}, the challenger responds to each oracle query type made by A in
the following manner.

– Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ←
cPRF.Eval(msk, x).

– Challenge oracle. On input a pair of circuits C0, C1 ∈ C, the challenger
returns sk ← cPRF.Constrain(msk, Cb).

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptcPRFb . Let
Pr[Exptcprivb (A) = 1] denote the probability that Exptcprivb outputs 1.

506 D. Boneh et al.

Roughly speaking, we say that a constrained PRF is private if no efficient
adversary can distinguish Exptcpriv0 from Exptcpriv1 . As was the case with constrain-
ing security, when formulating the exact definition, we must preclude adversaries
that can trivially distinguish the two experiments.

Definition 2.9 (Admissible Privacy). Let C
(i)
0 , C

(i)
1 ∈ C be the pair of cir-

cuits submitted by the adversary on the ith challenge oracle query, and let d be
the total number of challenge oracle queries made by the adversary. For a circuit
C ∈ C, define S(C) ⊆ {0, 1}n where S(C) = {x ∈ {0, 1}n : C(x) = 1}. Then, an
adversary is admissible if:

1. For each evaluation oracle query with input x, and for each i ∈ [d], it is the
case that C

(i)
0 (x) = C

(i)
1 (x).

2. For every pair of distinct indices i, j ∈ [d],

S
(
C

(i)
0

)
∩ S

(
C

(j)
0

)
= S

(
C

(i)
1

)
∩ S

(
C

(j)
1

)
. (2.1)

Definition 2.10 (d-Key Privacy). A constrained PRF Π is (adaptively) d-
key private if for all efficient and admissible adversaries A that make d chal-
lenge oracle queries, the following quantity is negligible:

Advcpriv[Π,A] def=
∣
∣
∣Pr[Exptcpriv0 (A) = 1] − Pr[Exptcpriv1 (A) = 1]

∣
∣
∣ .

Furthermore, we say a constrained PRF is multi-key private if it is d-key pri-
vate for all d ∈ N.

Remark 2.11 (Admissibility Requirement). We remark that any non-admissible
adversary (Definition 2.9) can trivially win the privacy game if the constrained
PRF is secure (Definition 2.5). Thus, Definition 2.9 gives the minimal require-
ments for a satisfiable notion of multi-key privacy for constrained PRFs. To
see this, take an adversary A that makes two challenge queries (C(1)

0 , C
(1)
1) and

(C(2)
0 , C

(2)
1). Suppose that for some x, C

(1)
0 (x) = 1 = C

(2)
0 (x), but C

(1)
1 (x) = 1

and C
(2)
1 (x) = 0. Let sk1 and sk2 be the keys A receives from the challenger in

Exptcprivb . For i ∈ {1, 2}, the adversary computes zi = cPRF.ConstrainEval(ski, x).
When b = 0, correctness implies that z1 = z2. When b = 1, security of the
constrained PRF implies that z2 �= z1 with overwhelming probability. The claim
follows.

Remark 2.12 (Weaker Notions of Privacy). In some cases, we also consider a
weaker notion of privacy where the adversary is not given access to an evaluation
oracle in experiment Exptcprivb . While this can be a weaker notion of privacy (for
instance, in the case of d-key privacy for bounded d), in all of our candidate
applications, a scheme that satisfies this weaker notion suffices.

Puncturable PRFs. A puncturable PRF [12,16,47,54] is a special case of a
constrained PRF, where the constraining circuit describes a point function,

Constraining Pseudorandom Functions Privately 507

that is, each constraining circuit Cx∗ is associated with a point x∗ ∈ {0, 1}n,
and Cx∗(x) = 1 if and only if x �= x∗. More concretely, a puncturable
PRF is specified by a tuple of algorithms Π = (cPRF.Setup, cPRF.Puncture,
cPRF.ConstrainEval, cPRF.Eval), which is identical to the syntax of a constrained
PRF with the exception that the algorithm cPRF.Constrain is replaced with the
algorithm cPRF.Puncture.

– cPRF.Puncture(msk, x) → sk. On input the master secret key msk and an input
x ∈ {0, 1}n, the puncture algorithm cPRF.Puncture outputs a secret key sk.

The correctness and security definitions (for constrained security and privacy)
are analogous to those for private constrained PRFs.

3 Private Circuit Constrained PRFs from Obfuscation

In this section, we show how multi-key private circuit-constrained PRFs follow
straightforwardly from indistinguishability obfuscation and puncturable PRFs
(implied by one-way functions [12,16,41,47]). First, we review the notion of
indistinguishability obfuscation introduced by Barak et al. [5].

Definition 3.1 (Indistinguishability Obfuscation(iO) [5,34]). An indis-
tinguishability obfuscator iO for a circuit class {Cλ} is a uniform and efficient
algorithm satisfying the following requirements:

– Correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, and all
inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

– Indistinguishability. For all security parameters λ, and any two circuits
C0, C1 ∈ Cλ, if C0(x) = C1(x) for all inputs x, then for all efficient adversaries
A, we have that the distinguishing advantage AdviO,A(λ) is negligible:

AdviO,A(λ) = |Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| = negl(λ).

For general circuit constraints, our construction will require the stronger
assumption that the indistinguishability obfuscator and puncturable PRF be
secure against subexponential-time adversaries. However, for more restrictive
circuit families, such as puncturing, our construction can be shown to be secure
assuming the more standard polynomial hardness of iO and the puncturable
PRF We provide a more detailed discussion of this in the full version [10]. Also
in the full version, we define the notion of a private programmable PRF and
show how to adapt our private circuit-constrained PRF to also obtain a private
programmable PRF from (polynomially-hard) iO and one-way functions.

Construction Overview. Our starting point is the circuit-constrained PRF by
Boneh and Zhandry [14, Construction 9.1]. In the Boneh-Zhandry construction,

508 D. Boneh et al.

the master secret key msk is a key for a puncturable PRF, and a constrained key
for a circuit C : {0, 1}n → {0, 1} is an obfuscation of the program that outputs
cPRF.Eval(msk, x) if C(x) = 1 and ⊥ otherwise. Because the program outputs ⊥
on inputs x where C(x) = 0, simply evaluating the PRF at different points x
reveals information about the underlying constraint. In our construction, we
structure the program so that on an input x where C(x) = 0, the program’s
output is the output of a different PRF. Intuitively, just by looking at the outputs
of the program, it is difficult to distinguish between the output of the real PRF
and the output of the other PRF. In Theorem 3.3, we formalize this intuition
by showing that our construction provides multi-key privacy.

Construction. We now describe our construction of a multi-key private circuit-
constrained PRF. Let iO be an indistinguishability obfuscator, and let ΠF =
(F.Setup,F.Puncture,F.ConstrainEval,F.Eval) be any puncturable (but not nec-
essarily private) PRF. Our multi-key private circuit-constrained PRF ΠioPRF =
(cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is given as follows:

– cPRF.Setup(1λ). The setup algorithm outputs msk ← F.Setup(1λ).
– cPRF.Constrain(msk, C). First, the constrain algorithm computes msk′ ←

F.Setup(1λ). Then, it outputs an obfuscated program iO
(
P1

[
C,msk′,msk

])
,

where P1

[
C,msk′,msk

]
is the program shown in (Fig. 1).6

– cPRF.ConstrainEval(sk, x). The constrained evaluation algorithm outputs the
evaluation of the obfuscated program sk on x.

– cPRF.Eval(msk, x). The evaluation algorithm outputs F.Eval(msk, x).

Constants: a circuit C : {0, 1}n → {0, 1}, and master secret keys
msk0, msk1 for the puncturable PRF ΠF = (F.Setup,F.Puncture,
F.ConstrainEval,F.Eval).

On input x ∈ {0, 1}n:

1. Let b = C(x). Output F.Eval(mskb, x).

Fig. 1. The program P1 [C,msk0,msk1]

Correctness. By definition, the program P1[C,msk′,msk] outputs F.Eval
(msk, x) on all x ∈ {0, 1}n where C(x) = 1. Correctness of ΠioPRF immediately
follows from correctness of the indistinguishability obfuscator.

Security. We now state our security theorems, but defer their formal proofs to
the full version [10].
6 We pad the program P1 [C,msk′,msk] to the maximum size of any program that

appears in the hybrid experiments in the proofs of Theorem 3.2 and 3.3.

Constraining Pseudorandom Functions Privately 509

Theorem 3.2. Suppose iO is an indistinguishability obfuscator and ΠF is
a selectively-secure puncturable PRF. Then, ΠioPRF is selectively secure
(Definition 2.5).

Theorem 3.3. Suppose iO is a indistinguishability obfuscator, and ΠF is a
selectively-secure puncturable PRF, both secure against subexponential adver-
saries. Then, ΠioPRF is multi-key private (Definition 2.10).

We note that Theorem 3.3 only requires subexponentially-secure7 iO if the set
of challenge circuits {C

(j)
0 }j∈[d] and {C

(j)
1 }j∈[d] the adversary submits differs on

a super-polynomial number of points. In particular, this implies that ΠioPRF is a
private puncturable PRF assuming only polynomial hardness of iO and selective
security of ΠF. We discuss this in greater detail in the full version [10].

4 A Private Bit-Fixing PRF

In this section, we construct a constrained PRF for the class of bit-fixing circuits,
a notion first introduced in [12]. First, a bit-fixing string s is an element of
{0, 1, ?}n. We say a bit-fixing string s matches x ∈ {0, 1}n if for all i ∈ [n], either
si = xi or si = ?. We now define the class of bit-fixing circuits.

Definition 4.1 (Bit-Fixing Circuits [12]). For a circuit C : {0, 1}n →
{0, 1}, a string s ∈ {0, 1, ?}n is bit-fixing for C if C(x) = 1 on precisely the
inputs x ∈ {0, 1}n that s matches. The class of bit-fixing circuits Cbf is the
class of all circuits C : {0, 1}n → {0, 1} for which there exists a bit-fixing string
for C.

Our bit-fixing construction uses multilinear maps [11], which are a gener-
alization of bilinear maps [8,48,49]. While constructing ideal multilinear maps
remains an open problem, there have been several recent candidates of graded
encodings schemes [28,29,33,36], which are often a suitable substitute for ideal
multilinear maps. For ease of presentation, we describe our constructions using
the simpler abstraction of ideal multilinear maps. However, we note that we
can easily map our constructions to the language of graded encodings using the
same techniques as in [12, Appendix B]. We begin by defining multilinear maps
over prime-order groups. In the full version [10], we also recall the �-Multilinear
Diffie-Hellman assumption [11,33] over prime-order multilinear maps.

Definition 4.2 (Prime-Order Multilinear Map [11,28,29,33,36]). We
define a prime-order multilinear map to consist of a setup algorithm MMGen
along with a map function e, defined as follows.

– MMGen(1λ, 1�). The setup algorithm MMGen takes as input the security para-
meter λ and a positive integer �, and outputs a sequence of groups

−→
G =

(G1, . . . ,G�) each of prime order p (for a λ-bit prime p). The algorithm also
outputs canonical generators gi ∈ Gi for each i ∈ [�], and the group order p.

7 Specifically, we require that for all efficient adversaries A, the distinguishing advan-
tage AdviO,A(λ) defined in Definition 3.1 satisfies 2n · AdviO,A(λ) = negl(λ).

510 D. Boneh et al.

– e(ga1
1 , . . . , ga�

1). The map function e : (G1)� → G� takes as input � elements
from G1 and outputs an element in G� such that, for all a1, . . . , a� ∈ Zp,

e(ga1
1 , . . . , ga�

1) = ga1a2···a�

� .

Construction Overview. Our starting point is the bit-fixing PRF by Boneh
and Waters [12]. The Boneh-Waters bit-fixing PRF uses a symmetric multilinear
map. To provide context, we give a brief description of the Boneh-Waters con-
struction. Let {0, 1}n be the domain of the PRF, and let

−→
G = (G1, . . . ,Gn+1)

be a sequence of leveled multilinear groups of prime order p. For each i ∈ [n+1],
let gi be a canonical generator of Gi; for notational convenience, we will often
write g = g1. In the Boneh-Waters construction, they define the multilinear map
in terms of a collection of bilinear maps ei,j : Gi ×Gj → Gi+j for each i, j ∈ [n]
where i + j ≤ n + 1. The master secret key in the Boneh-Waters PRF consists
of exponents α, {di,0, di,1}i∈[n] ∈ Zp. For an input x ∈ {0, 1}n, the value of the

PRF at x is g
α
∏

i∈[n] di,xi

n+1 . A constrained key for a pattern s ∈ {0, 1, ?}n consists

of a “pre-multiplied” element g
α
∏

i∈S di,si

1+|S| , where S ⊆ [n] is the subset of indices

where si �= ?, along with components g
di,b

1 for i /∈ S and b ∈ {0, 1}. While this
construction is selectively secure [12], it does not satisfy our notion of privacy. By
simply inspecting the constrained key and seeing which elements g

di,b

1 are given
out, an adversary can determine the indices si in the pattern s where si = ?.

A first attempt to make the Boneh-Waters construction private is to publish
gα along with a complete set of group elements {gd∗

i,0 , gd∗
i,1}i∈[n] where d∗

i,b = di,b

if si = ? or si = b, and otherwise, set d∗
i,b

r←− Zp. By construction, this only
permits evaluation of the PRF at the points x that match s. However, this does
not yield a secure constrained PRF, since an adversary that sees more than one
constrained key can mix and match components from different keys, and learn
the value of the PRF at points it could not directly evaluate given any of the
individual keys. To prevent mixing and matching attacks in our construction,
we rerandomize the elements in the constrained key. We give our construction
below.

Construction. For simplicity, we describe the algorithm cPRF.Constrain as tak-
ing as input the master secret key msk and a bit-fixing string s ∈ {0, 1, ?}n

rather than a circuit C ∈ C. We define ΠbfPRF = (cPRF.Setup, cPRF.Constrain,
cPRF.ConstrainEval, cPRF.Eval) as follows.

– cPRF.Setup(1λ). The setup algorithm runs MMGen(1λ, 1n+1) and outputs a
sequence of groups

−→
G = (G1, . . . ,Gn+1) each of prime order p, along with

generators gi ∈ Gi for all i ∈ [n+1]. As usual, we set g = g1. Next, for i ∈ [n],
it samples (di,0, di,1)

r←− Z
2
p, along with a random α

r←− Zp. It outputs

msk =
(
g, gn+1, α, {di,0, di,1}i∈[n]

)
. (4.1)

Constraining Pseudorandom Functions Privately 511

– cPRF.Constrain(msk, s). Let msk be defined as in Eq. (4.1) and s = s1s2 · · · sn.
For i ∈ [n] and b ∈ {0, 1}, the constrain algorithm samples n random elements
β1 . . . , βn

r←− Zp uniformly and independently, along with n random elements
r1, . . . , rn

r←− Zp. Define β0 = (β1β2 · · · βn)−1. For each i ∈ [n], define

(Di,0,Di,1) =

⎧
⎪⎨

⎪⎩

(
gdi,0 , gri

)
, if si = 0

(
gri , gdi,1

)
, if si = 1

(
gdi,0 , gdi,1

)
, if si = ?

.

It outputs
sk =

(
(gα)β0 ,

{
(Di,0)βi , (Di,1)βi

}
i∈[n]

)
. (4.2)

– cPRF.ConstrainEval(sk, x). Write sk =
(
gσ, {gμi,0 , gμi,1}i∈[n]

)
, and let x =

x1x2 · · · xn. The constrained evaluation algorithm computes and outputs y =
e(gσ, gμ1,x1 , . . . , gμn,xn).

– cPRF.Eval(msk, x). Let msk be defined as in Eq. (4.1), and let x = x1x2 · · · xn.

The evaluation algorithm outputs y = g
α
∏

i∈[n] di,xi

n+1 .

Correctness and Security. We now state the correctness and security theo-
rems for ΠbfPRF, but defer the formal proofs to the full version [10].

Theorem 4.3. The bit-fixing PRF ΠbfPRF is correct.

Theorem 4.4. Under the (n + 1)-MDH assumption, the bit-fixing PRF ΠbfPRF

is selectively secure.

Theorem 4.5. The bit-fixing PRF ΠbfPRF is (unconditionally) 1-key private in
the model where the adversary does not have access to an evaluation oracle.

5 A Private Puncturable PRF

Recall from Sect. 2 that a puncturable PRF is a special class of constrained
PRFs where the constraint can be described by a point function that is 1 every-
where except at a single point s ∈ {0, 1}n. In this section, we give a construction
of a private puncturable PRF using multilinear maps over a composite-order
ring. We give an adaptation of Definition 4.2 to the composite-order setting.
In the full version [10], we review the standard Subgroup Decision assump-
tion [9,33] over composite-order groups, and a new assumption which we call the
�-Multilinear Diffie-Hellman Subgroup Decision (MDHSD) assumption. Also in
the full version, we show that the �-MDHSD assumption holds in a generic model
of composite-order multilinear maps, provided that factoring is hard.

Definition 5.1 (Composite-Order Multilinear Map [11,28,29]). We
define a composite-order multilinear map to consist of a setup algorithm
CMMGen along with a map function e, defined as follows:

512 D. Boneh et al.

– CMMGen(1λ, 1�). The setup algorithm CMMGen takes as input the security
parameter λ and a positive integer �, and outputs a sequence of groups

−→
G =

(G1, . . . ,G�) each of composite order N = pq (where p, q are λ-bit primes).
For each Gi, let Gp,i and Gq,i denote the order-p and order-q subgroups of
Gi, respectively. Let gp,i be a canonical generator of Gp,i, gq,i be a canonical
generator of Gq,i, and gi = gp,igq,i. In addition to

−→
G , the algorithm outputs

the generators gp,1, . . . , gp,�, gq,1, . . . , gq,�, and the primes p, q.
– e(ga1

1 , . . . , ga�
1). The map function e : (G1)� → G� takes as input � elements

from G1 and outputs an element in G� such that, for all a1, . . . , a� ∈ ZN ,

e(ga1
1 , . . . , ga�

1) = ga1a2···a�

� .

Construction Overview. Our construction builds on the Naor-Reingold
PRF [50], and uses composite-order multilinear maps of order N = pq (Defi-
nition 5.1). In our description, we use the same notation for group generators
as in Definition 5.1. The master secret key in our construction is a collection
of exponents {di,0, di,1}i∈[n] where each di,b for all i ∈ [n] and b ∈ {0, 1} is
random over ZN . The value of the PRF at a point x ∈ {0, 1}n is the element

g
∏

i∈[n] di,xi
p,n ∈ Gp,n.

Suppose we want to puncture at a point s = s1 · · · sn ∈ {0, 1}n. Our con-
strained key consists of a collection of points {Di,0,Di,1}i∈[n]. For b �= si, we set

Di,b = g
di,b

p,1 ∈ Gp,1 to be an element in the order-p subgroup, and for b = si,

we set the element Di,b = g
di,b

p,1 g
di,b

q,1 ∈ G1 to be an element in the full group. To
evaluate the PRF at a point x ∈ {0, 1}n using the constrained key, one applies
the multilinear map to the components Di,xi

in the constrained key. By mul-
tilinearity and the fact that the order-p and order-q subgroups are orthogonal,
if any of the inputs to the multilinear map lie in the Gp,1 subgroup, then the
output will be an element of the Gp,n subgroup. Thus, as long as there exists
some index i ∈ [n] such that xi �= si, the constrained key will evaluate to the
real PRF output. If however x = s, then the constrained key on x will evaluate
to an element of the full group Gn. We show in Theorem 5.3 that under the
n-MDHSD assumption, this element hides the true value of the PRF at x, which
gives puncturing security. Moreover, since the constrained key is just a collection
of random elements in either Gp,1 or in G1, the scheme is 1-key private under
the Subgroup Decision assumption (Theorem 5.4).

Construction. For simplicity in our description, we describe the cPRF.Constrain
algorithm as taking as input the master secret key msk and a point s ∈ {0, 1}
to puncture rather than a circuit C. We define ΠpuncPRF = (cPRF.Setup,
cPRF.Puncture, cPRF.ConstrainEval, cPRF.Eval) as follows.

– cPRF.Setup(1λ). The setup algorithm runs CMMGen(1λ, 1n) and outputs a
sequence of groups

−→
G = (G1, . . . ,Gn), each of composite order N = pq, along

with the factorization of N , and the generators gp,i, gq,i ∈ Gi of the order-p
and order-q subgroups of Gi, respectively for all i ∈ [n]. Let g1 = gp,1gq,1 be

Constraining Pseudorandom Functions Privately 513

the canonical generator of G1. Finally, the setup algorithm samples 2n random
elements (d1,0, d1,1), . . . , (dn,0, dn,1)

r←− Z
2
N , and outputs the following master

secret key msk:

msk =
(
p, q, g1, gp,1, gp,n, {di,0, di,1}i∈[n]

)
(5.1)

– cPRF.Puncture(msk, s ∈ {0, 1}n). Write s = s1s2 · · · sn. Let g1 = gp,1gq,1. For
each i ∈ [n], define

(Di,0,Di,1) =

{
(gdi,0

1 , g
di,1
p,1), if si = 0

(gdi,0
p,1 , g

di,1
1), if si = 1

.

The algorithm then outputs the constrained key sk = {Di,0,Di,1}i∈[n].
– cPRF.ConstrainEval(sk, x). Write sk as {Di,0,Di,1}i∈[n], and x = x1x2 · · · xn.

The constrained evaluation algorithm outputs y = e(D1,x1 , . . . , Dn,xn
).

– cPRF.Eval(msk, x). Let msk be defined as in Eq. (5.1), and x = x1x2 · · · xn.

The evaluation algorithm outputs y = g
∏

i∈[n] di,xi
p,n .

Correctness and Security. We now state the correctness and security theo-
rems, but defer the formal analysis to the full version [10].

Theorem 5.2. The puncturable PRF ΠpuncPRF is correct.

Theorem 5.3. Under the n-MDHSD assumption, the puncturable PRF
ΠpuncPRF is selectively secure.

Theorem 5.4. Under the Subgroup Decision assumption, the puncturable PRF
ΠpuncPRF is 1-key private in the model where the adversary does not have access
to an evaluation oracle.

6 Applications

In Sect. 1.1, we outlined several applications of private constrained PRFs.
Several of our applications (private constrained MACs, restrictable SSE, and
online/offline 2-server private keyword search) follow readily from our defini-
tions of private constrained PRFs, and so we do not elaborate further on them.
In this section, we give a more formal treatment of using private constrained
PRFs to build secretly-verifiable message-embedding watermarking of PRFs and
symmetric deniable encryption.

6.1 Watermarking PRFs

In this section, we show how to construct watermarkable PRFs from private
programmable PRFs.8 The watermarking scheme we give is secretly-verifiable
8 Intuitively, a programmable PRF is the same as a puncturable PRF except that the

holder of the master secret key can also program the value at the punctured point.
We give a formal definition of programmable PRFs in the full version [10].

514 D. Boneh et al.

and supports message embedding [24], where the marking algorithm can embed a
string into the program that can later be extracted by the verification algorithm.
We first introduce some definitions for unremovability and unforgeability. The
unremovability definitions are adapted from the corresponding definition in [24]
while the unforgeability definitions are adapted from that in [25]. We then show
how to construct a watermarkable PRF from any private programmable PRF.
Finally, we conclude with a survey of related work.

Definition 6.1 (Watermarkable Family of PRFs [24, adapted]). For the
security parameter λ and a message space {0, 1}t, a secretly-verifiable message-
embedding watermarking scheme for a PRF with key-space K is a tuple of algo-
rithms Π = (WM.Setup,WM.Mark,WM.Verify) with the following properties.

– WM.Setup(1λ) → msk. On input the security parameter λ, the setup algorithm
outputs the watermarking secret key msk.

– WM.Mark(msk,m) → (k,C). On input the watermarking secret key msk and
a message m ∈ {0, 1}t, the mark algorithm outputs a PRF key k ∈ K and a
marked circuit C.

– WM.Verify(msk, C ′) → m. On input the master secret key msk and an arbitrary
circuit C ′, the verification algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs.
For two circuits C,C ′ ∈ C and for a non-decreasing function f : N → N, we
write C ∼f C ′ to denote that the two circuits agree on all but an 1/f(n) fraction
of inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←−{0,1}n

[C(x) �= C ′(x)] ≤ 1/f(n).

We also write C �∼f C ′ to denote that C and C ′ differ on at least a 1/f(n)
fraction of inputs.

Definition 6.3 (Correctness ([24, adapted])). Fix the security parameter
λ. A watermarking scheme for a PRF with key-space K and domain {0, 1}n

is correct if for all messages m ∈ {0, 1}t, msk ← WM.Setup(1λ), (k,C) ←
WM.Mark(msk,m), we have that

– The key k is uniformly distributed over the key-space K of the PRF.
– C(·) ∼f F (k, ·), where 1/f(n) = negl(λ).
– Pr[WM.Verify(msk, C) = m] with overwhelming probability.

Watermarking Security. We define watermarking security in the context of
an experiment Exptwm between a challenger and an adversary A, which can make
marking oracle and challenge oracle queries.

Definition 6.4 (Experiment Exptwm). First, the challenger samples msk ←
WM.Setup(1λ), and the challenger then responds to each oracle query made by
A in the following manner.

Constraining Pseudorandom Functions Privately 515

– Marking oracle. On input a message m ∈ {0, 1}t, the challenger returns the
pair (k,C) ← WM.Mark(msk,m) to A.

– Challenge oracle. On input a message m ∈ {0, 1}t, the challenger computes
(k,C) ← WM.Mark(msk,m) but only returns C to A.

Eventually, A outputs a circuit C ′, and the challenger computes and outputs
WM.Verify(msk, C ′), which is also the output of the experiment, denoted as
Exptwm(A).

Definition 6.5 (Unremoving Admissibility). An adversary A is unre-
moving admissible if A only queries the challenge oracle once, and C(·) ∼f

C ′(·), where C is the output of the challenge oracle query, C ′ is the output of A,
and 1/f(n) = negl(λ).

Definition 6.6 (Unremovability). A watermarking scheme Π is unremov-
able if for all efficient and unremoving admissible adversaries A, if m ∈ {0, 1}t

is the message submitted by A to the challenge oracle in Exptwm, the probability
Pr[Exptwm(A) �= m] is negligible.

Definition 6.7 (δ-Unforging Admissibility). We say an adversary A is δ-
unforging admissible if A does not make any challenge oracle queries, and
for all i ∈ [Q], Ci(·) �∼f C ′(·), where Q is the total number of marking queries
the adversary makes, Ci is the output of the marking oracle on the ith query, C ′

is the circuit output by the adversary, and 1/f(n) ≥ δ for all n ∈ N.

Definition 6.8 (δ-Unforgeability). We say a watermarking scheme Π is δ-
unforgeable if for all efficient and δ-unforging admissible adversaries A, the
probability Pr[Exptwm(A) �= ⊥] is negligible.

Construction. Fix the security parameter λ, positive integers n, �, t ≥ λ,
and a positive real value δ < 1, such that d = λ/δ = poly(λ). Let F :
K × ({0, 1}� × {0, 1}t)d → {0, 1}n × {0, 1}� × {0, 1}t be a PRF, and let
Πpprf = (pPRF.Setup, pPRF.Program, pPRF.ProgramEval, pPRF.Eval) be a pro-
grammable PRF with input space {0, 1}n and output space {0, 1}� × {0, 1}t.
We construct a watermarking scheme Πwm = (WM.Setup,WM.Mark,WM.Verify)
for the PRF Πpprf as follows:

– WM.Setup(1λ). The setup algorithm chooses k
r←− K and (z1, . . . , zd)

r←−
({0, 1}n)d uniformly at random and outputs msk = (k, z1, . . . , zd).

– WM.Mark(msk,m). The mark algorithm first parses msk = (k, z1, . . . , zd). It
generates k′ ← pPRF.Setup(1λ), and then computes the point (x, y, τ) =
F (k, (pPRF.Eval(k′, z1), . . . , pPRF.Eval(k′, zd))) and v = m ⊕ τ . Then, it com-
putes skk ← pPRF.Program(k′, x, (y, v)) and outputs (k′, C), where C(·) =
pPRF.ProgramEval(skk, ·).

– WM.Verify(msk, C). The verification algorithm first parses msk =
(k, z1, . . . , zd) and then computes (x, y, τ) = F (k, (C(z1), . . . , C(zd))). It then
sets (y′, v) = C(x) and outputs v ⊕ τ if y = y′, and ⊥ otherwise.

516 D. Boneh et al.

We state our correctness and security theorems here, but defer their proofs to
the full version [10].

Theorem 6.9. If F is a secure PRF and Πpprf is a programmable PRF, then
the watermarking scheme Πwm is correct.

Theorem 6.10. If F is a secure PRF and Πpprf is a private programmable PRF,
then the watermarking scheme Πwm is unremovable.

Theorem 6.11. If F is a secure PRF and Πpprf is a programmable PRF, then
for δ = 1/poly(λ), the watermarking scheme Πwm is δ-unforgeable.

Related Work. Recently, Cohen et al. [24] showed how to construct publicly-
verifiable watermarking for puncturable PRFs from indistinguishability obfusca-
tion. They pursue the notion of approximate functionality-preserving for water-
marking, where the watermarked program agrees with the original program on
most inputs. Previously, Barak et al. [5] showed that assuming iO, perfectly
functionality-preserving watermarking is impossible.

Cohen et al. [25] gave a construction from iO which achieves publicly-
verifiable watermarking for relaxed notions of unremovability and unforgeability,
namely where the adversary can only query the marking oracle before receiving
the challenge program in the unremovability game and moreover, is only allowed
to query the challenge oracle once (lunchtime unremovability). In addition, the
adversary must submit a forged program which differs on the same set of inputs
with respect to all programs submitted to the mark oracle in the unforgeability
game.

In a concurrent work to [25], Nishimaki and Wichs [51] considered a relaxed
notion of watermarking security for message-embedding schemes by considering
“selective-message” security, where the adversary must commit to the message
to be embedded into the challenge program before interacting with the mark
oracle. This limitation is removed in their subsequent work [24].

Comparison to Previous Works. In previous constructions of watermarkable
PRFs [24,25,51], the authors show how to watermark any family of puncturable
PRFs. In contrast, our construction gives a family of watermarkable PRFs from
private programmable PRFs. In our construction, we also consider a slightly
weaker version of the mark oracle which takes as input a message and outputs a
random program that embeds the message. This is a weaker notion of security
than providing the adversary access to a marking oracle that take as input an
(adversarially-chosen) program and a message and outputs a watermarked pro-
gram with the embedded message.9 In addition, we consider secretly-verifiable
watermarking constructions while Cohen et al. and Nishimaki and Wichs focus
on publically-verifiable constructions. However, despite these limitations, we note

9 The reason for this stems from the fact that we require PRF security in our security
reductions, which cannot be guaranteed when the PRF key is chosen adversarially
(as opposed to randomly).

Constraining Pseudorandom Functions Privately 517

that the family of watermarkable PRFs we construct are still sufficient to instan-
tiate the motivating applications for watermarkable PRFs by Cohen et al. [24].
In our model, we are able to achieve full security for unremovability as well as
strong unforgeability.

6.2 Symmetric Deniable Encryption

The notion of deniable encryption was first introduced by Canetti et al. [18].
Informally speaking, a deniable encryption scheme allows a sender and receiver,
after exchanging encrypted messages, to later on produce either fake random-
ness (in the public-key setting), or a fake decryption key (in the symmetric-key
setting) that opens a ciphertext to another message of their choosing. Of course,
the fake randomness or decryption key that is constructed by this “deny” algo-
rithm should look like legitimately-sampled randomness or an honestly-generated
decryption key.

Recently, Sahai and Waters [54] used indistinguishability obfuscation [4,5,
34,37,54,56] to give the first construction of public-key deniable encryption that
achieves the security notions put forth by Canetti et al.10 In all prior construc-
tions of deniable encryption, the adversary is able to distinguish real randomness
from fake randomness with advantage 1/n, where n roughly corresponds to the
length of a ciphertext in the scheme [18].

Surprisingly, the machinery of private puncturable PRFs provides a direct
solution to a variant of symmetric deniable encryption. In the symmetric setting,
we assume that an adversary has intercepted a collection of ciphertexts c1, . . . , cn

and asks the sender to produce the secret key to decrypt this collection of mes-
sages. The deniable encryption scheme that we construct enables the sender
to produce a fake secret key sk that looks indistinguishable from an honestly
generated encryption key, and yet, will only correctly decrypt all but one of the
intercepted ciphertexts.11 In our particular construction, the sender (or receiver)
has a trapdoor that can be used to deny messages. Our framework is similar to
the flexibly deniable framework where there are separate key-generation and
encryption algorithms [18,52] for so-called “honest” encryption and “dishonest”
encryption. A second difference in our setting is that we only support denying
to a random message rather than an arbitrary message of the sender’s choos-
ing. Thus, our scheme is better-suited for scenarios where the messages being
encrypted have high entropy (e.g., cryptographic keys).

In this section, we give a formal definition of symmetric deniable encryption
adapted from those of Canetti et al. [18]. We then give a construction of our vari-
ant of symmetric deniable encryption from private puncturable PRFs. Finally,
we conclude with a brief survey of related work in this area.
10 In fact, their construction achieves the stronger notion of publicly deniable encryp-

tion where the sender does not have to remember the randomness it used to construct
a particular ciphertext when producing fake randomness.

11 It is important to define our notions with respect to multiple intercepted messages.
Otherwise, the one-time-pad is a trivial (one-time) symmetric deniable encryption
scheme.

518 D. Boneh et al.

Definition 6.12 (Symmetric Deniable Encryption [18, adapted]). A
symmetric deniable encryption scheme is a tuple of algorithms ΠDE = (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) defined over a key space K, a message space
M and a ciphertext space C with the following properties:

– DE.Setup(1λ) → (dk, sk). On input the security parameter λ, the setup algo-
rithm outputs a secret key sk ∈ K and a denying key dk.

– DE.Encrypt(sk,m) → ct. On input the secret key sk ∈ K and a message m ∈
M, the encryption algorithm outputs a ciphertext ct ∈ C.

– DE.Decrypt(sk, ct) → m. On input a secret key sk ∈ K and a ciphertext ct ∈ C,
the decryption algorithm outputs a message m ∈ M.

– DE.Deny(dk, ct) → sk′. On input a denying key dk and a ciphertext ct, the
deny algorithm outputs a key sk′ ∈ K.

The first property we require is that the tuple of algorithms (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) should satisfy the usual correctness and
semantic security requirements for symmetric encryption schemes [42].

Definition 6.13 (Correctness). A symmetric deniable encryption scheme
ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny) is correct if for all mes-
sages m ∈ M, with (sk, dk) ← DE.Setup(1λ), we have that

Pr [DE.Decrypt(sk,DE.Encrypt(sk,m)) �= m] = negl(λ),

where the probability is taken oven the randomness of DE.Setup and DE.Encrypt.

Definition 6.14 (Semantic Security [42, adapted]). A symmetric deni-
able encryption scheme ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny)
is semantically secure if for all efficient adversaries A and (sk, dk) ←
DE.Setup(1λ),

∣
∣
∣Pr

[
AO0(sk,·,·)(1λ) = 1

]
− Pr

[
AO1(sk,·,·)(1λ)

]∣
∣
∣ = negl(λ),

where for b ∈ {0, 1}, Ob(sk, ·, ·) is an encryption oracle that takes as input two
messages m0,m1 ∈ M and outputs the ciphertext DE.Encrypt(sk,mb).

Finally, we define the notion of deniability for a symmetric deniable encryp-
tion scheme. Our notion is similar to that defined in Canetti et al. [18, Def-
inition 4]. Let m1, . . . ,mn be a collection of messages, and let ct1, . . . , ctn be
encryptions of these messages under a symmetric key sk. Suppose without loss
of generality that the sender wants to deny to message mn. Then, the fake
secret key sk′ output by DE.Deny should be such that the joint distribution
(sk′, ct1, . . . , ctn) of the fake secret key and the real ciphertexts should look
indistinguishable from the joint distribution (sk, ct1, . . . , ctn−1, ct

∗) of the real
secret key and the real ciphertexts with ctn substituted for an encryption ct∗

of a random message. Our definition captures both the property that the fake
secret key looks indistinguishable from a legitimately-generated secret key and
that the fake secret key does not reveal any additional information about the
denied message mn beyond what the adversary could already infer. We now
proceed with the formal security definition.

Constraining Pseudorandom Functions Privately 519

Definition 6.15 (Experiment ExptDE
b). For the security parameter λ ∈ N,

we define the experiment ExptDE
b between a challenger and an adversary A as

follows:

1. The challenger begins by running (sk, dk) ← DE.Setup(1λ).
2. The adversary A chooses a tuple of messages (m1, . . . ,mq) ∈ Mq and an

index i∗ ∈ [q]. It gives (m1, . . . ,mq) and i∗ to the challenger.
3. For each i ∈ [q], the challenger computes cti ← DE.Encrypt(sk,mi). Then,

depending on the bit b, the challenger does the following:
– If b = 0, the challenger first runs sk′ ← DE.Deny(dk, cti∗), and then sends(

sk′, {cti}i∈[q]

)
to the adversary.

– If b = 1, the challenger chooses a random message m∗ r←− M, and com-
putes ct∗ ← DE.Encrypt(sk,m∗). It sends

(
sk, {cti}i�=i∗ ∪ {ct∗}

)
to the

adversary.
4. At the end of the experiment, the adversary outputs a bit b′ ∈ {0, 1}, which

is the output of the experiment. Let Pr[ExptDE
b (A) = 1] denote the probability

that adversary A outputs 1 in experiment ExptDE
b .

Definition 6.16. A symmetric deniable encryption scheme ΠDE = (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) is deniable if for all efficient adversaries A,

∣
∣
∣Pr[ExptDE

0 (A) = 1] − Pr[ExptDE
1 (A) = 1]

∣
∣
∣ = negl(λ).

Construction. We now describe our construction of a symmetric deniable
encryption scheme from a private puncturable PRF (such as the one from
Sect. 5). Let Πcprf = (cPRF.Setup, cPRF.Puncture, cPRF.ConstrainEval,
cPRF.Eval) be a private puncturable PRF with key space K, domain {0, 1}n and
range {0, 1}�. We use Πcprf to build a symmetric deniable encryption scheme
ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny) with key space K and mes-
sage space {0, 1}� as follows:

– DE.Setup(1λ). On input the security parameter λ, run msk ← cPRF.Setup(1λ)
to obtain the master secret key for the puncturable PRF. Choose a random
point x

r←− {0, 1}n and run skx ← cPRF.Puncture(msk, x) to obtain a punctured
key. Set the symmetric key to sk = skx and the denying key dk = msk. Output
(sk, dk).

– DE.Encrypt(sk,m). On input the symmetric key sk and a message m ∈ {0, 1}�,
choose a random value r

r←− {0, 1}n and output the pair

(r, cPRF.ConstrainEval(sk, r) ⊕ m).

– DE.Decrypt(sk, ct). On input the symmetric key sk and a ciphertext ct =
(ct0, ct1), output cPRF.ConstrainEval(sk, ct0) ⊕ ct1.

– DE.Deny(dk, ct). On input the denying key dk = msk and a ciphertext ct =
(ct0, ct1), output cPRF.Puncture(msk, ct0).

520 D. Boneh et al.

Correctness and Security. We state our correctness and security theorems
here, but defer their proofs to the full version [10].

Theorem 6.17. The deniable encryption scheme ΠDE is correct.

Theorem 6.18. If Πcprf is a secure PRF, then ΠDE is semantically secure.

Theorem 6.19. If Πcprf is a 1-key private, selectively-secure PRF, then ΠDE is
deniable (Definition 6.16).

Related Work. In their original paper, Canetti et al. also propose a relaxed
definition of deniable encryption called flexibly deniable encryption. In a flexibly
deniable encryption scheme, there are two separate versions of the setup and
encryption algorithms: the “honest” version and the “dishonest” version. The
guarantee is that if a user encrypts a message m using the dishonest encryption
algorithm to obtain a ciphertext ct, it is later able to produce randomness r that
makes it look as if ct is an honest encryption of some arbitrary message m′ under
randomness r. Using standard assumptions, Canetti et al. give a construction
of a sender-deniable flexibly deniable encryption scheme trapdoor permutations:
that is, a scheme that gives the sender the ability to later fake the randomness
for a particular ciphertext. O’Neill et al. [52] later extend these ideas to con-
struct a secure flexibly bideniable encryption scheme from lattices. A bideniable
encryption scheme is one that allows both the sender and the receiver to fake
randomness for a particular message. We note that in a flexibly deniable encryp-
tion scheme, only ciphertexts generated via the “dishonest” algorithms can later
be opened as honestly-generated ciphertexts of a different message.

Canetti et al. also introduce the notion of deniable encryption with pre-
planning. In this setting, the sender can commit (“pre-plan”) to deny a message
at a later time. The authors show that in the pre-planning model, there are
trivial constructions of symmetric deniable encryption schemes if the ciphertext
length is allowed to grow with the number of possible openings of a particular
message. We note that our construction does not require pre-planning.

There are several differences between our definitions and those of Canetti et
al. that we note here. Let ci be the ciphertext that the sender chooses to deny.
First, unlike the definitions proposed in Canetti et al., the sender cannot program
the key sk so that ci decrypts to an arbitrary message of its choosing. Rather,
ci will decrypt to a uniformly random message under the fake key sk′. Thus,
our deniable encryption scheme is best suited for scenarios where the messages
being encrypted are drawn uniformly from a message space, for instance, when
encrypting cryptographic keys. Next, our key generation algorithm outputs a
“trapdoor” that the sender (or receiver) uses to generate fake keys. This is similar
to the flexibly deniable encryption setting when we have two sets of algorithms
for key generation and encryption. However, in our construction, there is only
one encryption algorithm, and all ciphertexts output by the encryption algorithm
can be denied (provided that the sender or receiver has the denying key).

We note also that the Sahai-Waters construction provides strictly stronger
guarantees than those achieved by our construction. However, our primary moti-
vation here is to show how private puncturable PRFs can be directly applied to
provide a form of symmetric deniable encryption without relying on obfuscation.

Constraining Pseudorandom Functions Privately 521

7 Conclusions

In this work, we introduce the notion of privacy for constrained PRFs, and give
a number of interesting applications including watermarkable PRFs and search-
able encryption. We also give three constructions of private constrained PRFs:
one from indistinguishability obfuscation, and two from concrete assumptions
on multilinear maps. Our indistinguishability obfuscation result achieves the
strongest notion of privacy for general circuit constraints. Our multilinear map
constructions yield private bit-fixing PRFs and private puncturable PRFs.

We leave open the question of constructing private constrained PRFs from
simpler and more standard assumptions (such as from lattices or pairing-based
cryptography). In particular, is it possible to construct a private puncturable
PRF from one-way functions? Currently, our best constructions for private punc-
turable PRFs require multilinear maps.

Acknowledgments. This work was funded by NSF, DARPA, a grant from ONR, the
Simons Foundation, and an NSF Graduate Research Fellowship. Opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA.

References

1. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 446–473. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 19

2. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
barrington’s theorem. In: ACM CCS, pp. 646–658 (2014)

3. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 21

4. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 13

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 13

9. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

http://dx.doi.org/10.1007/978-3-662-49096-9_19
http://dx.doi.org/10.1007/978-3-662-46497-7_21
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-30576-7_18

522 D. Boneh et al.

10. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
IACR Cryptology ePrint Archive, 2015:1167 (2015)

11. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324(1), 71–90 (2003)

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

13. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive, 2014:930 (2014)

14. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 12

16. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

17. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 1

18. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer,
Heidelberg (1997). doi:10.1007/BFb0052229

19. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. IACR Cryptology ePrint Archive, 2014:522
(2014)

20. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 33

21. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 20

22. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

23. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. IACR
Cryptology ePrint Archive, 1998:3 (1998)

24. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC, pp. 1115–1127 (2016)

25. Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software water-
marking. IACR Cryptology ePrint Archive, 2015:373 (2015)

http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/BFb0052229
http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1

Constraining Pseudorandom Functions Privately 523

26. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new
MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47989-6 12

27. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 mul-
tilinear maps. IACR Cryptology ePrint Archive, 2015:1037 (2015)

28. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

29. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 13

30. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM CCS, pp.
79–88 (2006)

31. Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT zeroizing attacks on
obfuscation. IACR Cryptology ePrint Archive, 2016:1070 (2016)

32. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 17

33. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

35. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 10

36. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

37. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: FOCS, pp. 151–170
(2015)

38. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). doi:10.1007/11523468 65

39. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 35

40. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216 (2003)
41. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.

ACM 33(4), 792–807 (1986)
42. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker

keeping secret all partial information. In: STOC, pp. 365–377 (1982)
43. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained

pseudorandom functions. IACR Cryptology ePrint Archive, 2014:720 (2014)

http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/11523468_65
http://dx.doi.org/10.1007/978-3-642-55220-5_35

524 D. Boneh et al.

44. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 4

45. Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-70936-7 20

46. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 21

47. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: CCS, pp. 669–684 (2013)

48. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

49. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

50. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

51. Nishimaki, R., Wichs, D.: Watermarking cryptographic programs against arbitrary
removal strategies. IACR Cryptology ePrint Archive, 2015:344 (2015)

52. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 30

53. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005).
doi:10.1007/11535218 14

54. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

55. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

56. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 15

http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-540-70936-7_20
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1007/978-3-642-22792-9_30
http://dx.doi.org/10.1007/11535218_14
http://dx.doi.org/10.1007/978-3-662-46803-6_15

	Constraining Pseudorandom Functions Privately
	1 Introduction
	1.1 Applications of Private Constrained PRFs
	1.2 Constructing Private Constrained PRFs
	1.3 Related Work

	2 Private Constrained PRFs
	2.1 Conventions
	2.2 Pseudorandom Functions

	3 Private Circuit Constrained PRFs from Obfuscation
	4 A Private Bit-Fixing PRF
	5 A Private Puncturable PRF
	6 Applications
	6.1 Watermarking PRFs
	6.2 Symmetric Deniable Encryption

	7 Conclusions
	References

