Constrained Pseudorandom Functions
for Unconstrained Inputs Revisited: Achieving
Verifiability and Key Delegation

Pratish Datta™), Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. In EUROCRYPT 2016, Deshpande et al. presented a con-
struction of constrained pseudorandom function (CPRF) supporting
inputs of unconstrained polynomial length based on indistinguishabil-
ity obfuscation and injective pseudorandom generators. Their construc-
tion was claimed to be selectively secure. We demonstrate in this paper
that their CPRF construction can actually be proven secure not in the
selective model, rather in a significantly weaker security model where
the adversary is forbidden to query constrained keys adaptively. We also
show how to allow adaptive constrained key queries in their construc-
tion by innovating new technical ideas. We suitably redesign the secu-
rity proof. We emphasize that our modification does not involve any
additional heavy duty cryptographic tool. Our improved CPRF is fur-
ther enhanced to present the first constructions of constrained verifiable
pseudorandom function (CVPRF) and delegatable constrained pseudoran-
dom function (DCPRF) supporting inputs of unconstrained polynomial
length, employing only standard public key encryption (PKE).

Keywords: Constrained pseudorandom functions - Verifiable con-
strained pseudorandom function + Key delegation - Indistinguishability
obfuscation

1 Introduction

Constrained Pseudorandom Functions: Constrained pseudorandom func-
tions (CPRF), concurrently introduced by Boneh and Waters [6], Boyle et al. [7],
as well as Kiayias et al. [19], are promising extension of the notion of standard
pseudorandom functions (PRF) [15]. PRF is a fundamental primitive in mod-
ern cryptography. A PRF is a deterministic keyed function with the following
property: Given a key, the function can be computed in polynomial time at all
points of its input domain. But, without the key it is computationally hard to
distinguish the PRF output at any arbitrary input from a uniformly random
value, even after seeing the PRF evaluations on a polynomial number of inputs.
A CPRF is an augmentation of a PRF with an additional constrain algorithm

© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 463-493, 2017.
DOI: 10.1007/978-3-662-54388-7_16

464 P. Datta et al.

which enables a party holding a master PRF key to derive constrained keys
that allow the evaluation of the PRF over certain subsets of the input domain.
However, PRF evaluations on the rest of the inputs still remain computationally
indistinguishable from random.

Since their inception, CPRF’s have found countless applications in vari-
ous branches of cryptography ranging from broadcast encryption, attribute-
based encryption to policy-based key distribution, multi-party on-interactive key
exchange. Even the simplest class of CPRF’s, known as puncturable pseudoran-
dom functions (PPRF) [23], have turned out to be a powerful tool in conjunction
with indistinguishability obfuscation [14]. In fact, the combination of these two
primitives have led to solutions of longstanding open problems including deni-
able encryption, full domain hash, adaptively secure functional encryption for
general functionalities, and functional encryption for randomized functionalities
through the classic punctured programming technique introduced in [23].

Over the last few years there has been a significant progress in the field of
CPRF’s. In terms of expressiveness of the constraint predicates, starting with
the most basic type of constraints such as prefix constraints [6,7,19] (which
also encompass puncturing constraints) and bit fixing constraints [6,13], CPRF’s
have been constructed for highly rich constraint families such as circuit con-
straints [4,6,8,16] employing diverse cryptographic tools and based on various
complexity assumptions. In terms of security, most of the existing CPRF con-
structions are only selectively secure. The stronger and more realistic notion of
adaptive security seems to be rather challenging to achieve without complexity
leveraging. In fact, the best known results so far on adaptive security of CPRF’s
require super-polynomial security loss [13], or work for very restricted form of
constraints [17], or attain the security in non-collusion mode [8], or accomplish
security in the random oracle model [16].

Constrained Verifiable Pseudorandom Functions: An interesting enhance-
ment of the usual CPRF’s is verifiability. A verifiable constrained pseudorandom
function (CVPRF), independently introduced by Fuchsbauer [12] and Chandran
et al. [9], is the unification of the notions of a verifiable random function (VRF)
[21] and a standard CPRF. In a CVPRF system, a public verification key is set
similar to a traditional VRF, along with the master PRF key. Besides enabling
the evaluation of the PRF, the master PRF key can be utilized to generate a
non-interactive proof of correctness of the evaluation. This proof can be verified
by any party using only the public verification key. On the other hand, as in the
case of a CPRF, here also the master PRF key holder can give out constrained
keys for specific constraint predicates. A constrained key corresponding to some
constraint predicate p allows the evaluation of the PRF together with the gen-
eration of a non-interactive proof of correct evaluation for only those inputs x
for which p(x) = 1. In essence, CVPRF’s resolve the issue of trust on a CPRF
evaluator for the correctness of the received PRF output. In [9,12], the authors
have shown that the CPRF constructions of [6] for the bit fixing and circuit con-
straints can be augmented with the verifiability feature without incurring any
significant additional cost.

CPRF’s for Unconstrained Inputs Revisited 465

Delegatable Constrained Pseudorandom Functions: Key delegation is
another interesting enrichment of standard CPRF’s. This feature empowers the
holder of a constrained key, corresponding to some constraint predicate p € P
with the ability to distribute further restricted keys corresponding to the joint
predicates p A p, for constraints p € P, where IP is certain constraint family over
the input domain of the PRF. Such a delegated key can be utilized to evaluate
the PRF on only those inputs x for which [p(z) = 1] A [p(z) = 1], whereas, the
PRF outputs on the rest of the inputs are computationally indistinguishable from
random values. The concept of key delegation in the context of CPRF’s has been
recently introduced by Chandran et al. [9], who have shown how to extend the
bit fixing and circuit-based CPRF constructions of [6] to support key delegation.

CPRPF’s for Unconstrained Inputs: Until recently, the research on CPRF’s
has been confined to inputs of apriori bounded length. In fact, all the CPRF con-
structions mentioned above could handle only bounded length inputs. Abusalah
et al. [2] have taken a first step forward towards overcoming the barrier of
bounded input length. They have also demonstrated highly motivating applica-
tions of CPRF’s supporting apriori unconstrained length inputs such as broadcast
encryption with an unbounded number of recipients and multi-party identity-
based non-interactive key exchange with no pre-determined bound on the num-
ber of parties. They presented a selectively secure CPRF for unconstrained length
inputs by viewing the constraint predicates as Turing machines (TM) that can
handle inputs of arbitrary polynomial length. In a more recent work, Abusalah
and Fuchsbauer [1] have made progress towards efficiency improvements by con-
structing TM-based CPRF’s with much shorter constrained keys compared to
the CPRF construction of [2].

However, both the aforementioned CPRF constructions rely on the existence
of public-coin differing-input obfuscators and succinct non-interactive arguments
of knowledge, which are believed to be risky assumptions due to their inherent
extractability nature. In EUROCRYPT 2016, Deshpande et al. [10] presented a
CPRF for TM constraints, supporting inputs of unconstrained polynomial length,
which they claimed to be selectively secure. Their CPRF construction utilizes
indistinguishability obfuscators (10) for circuits and injective pseudorandom gen-
erators. Currently, there is no known impossibility or implausibility result on 10
and, moreover, in the last few years, there has been a significant progress towards
constructing 10 based on standard complexity assumptions.

Our Contributions: Unfortunately, the CPRF construction of [10] can not be
proven secure in the selective model, as will be shown in this paper, rather the
construction actually derives its security in a significantly weaker model. Further,
as per as we know, there is no existing construction of CVPRF’s or delegatable
CPRF’s (DCPRF) supporting inputs of unconstrained length. Our work in this
paper is two-fold:

— Firstly, we identify a flaw in the security argument of the CPRF construction of
[10], by a thorough analysis of the construction and its security proof. Selective
security is a security notion for CPRF’s where the adversary is bound to declare

466 P. Datta et al.

upfront the challenge input, on which it wishes to distinguish the PRF output
from random, but is allowed to query the legitimate constrained keys and PRF
values adaptively. We observe that the CPRF construction of [10] can be proven
secure only if the adversary is not just forced to declare the challenge input,
but also is bound to make all the constrained key queries prior to setting up
the system. To address the security limitation of the CPRF construction of
[10], we carefully modify their construction by innovating new technical ideas,
which might be useful elsewhere, and suitably redesign the security proof.
For building our improved CPRF system, we additionally use a somewhere
statistically binding (SSB) hash function [18,22] beyond the cryptographic
tools used in [10]. Currently, efficient constructions of SSB hash based on
standard number theoretic assumptions exist [22]. In effect, our modified CPRF
stands out to be the first 10-based provably selectively secure CPRF for TM
constraints that can handle inputs of arbitrary polynomial length.

— Secondly, we enhance our construction of CPRF with verifiability and key del-
egation features, thereby, developing the first 10-based selectively secure con-
structions of CVPRF and DCPRF supporting inputs of unconstrained polyno-
mial length. Towards achieving these two augmentations of our CPRF, we only
assume the existence of a perfectly correct and chosen plaintext attack (CPA)
secure public key encryption scheme, which is evidently a minimal assump-
tion. Finally, we note that following [9,12], our CVPRF construction would
imply the first selectively unforgeable policy-based signature (PBS) scheme [5]
where policies are represented as Turing machines.

2 Preliminaries

Here we give the necessary background on various cryptographic primitives we
will be using throughout this paper. Let A € N denotes the security parameter.
For n € N and a,b € NU {0} (with a < b), we let [n] = {1,...,n} and [a,b] =
{a,...,b}. For any set S, v A represents the uniform random variable on S.
For a randomized algorithm R, we denote by ¥ = R(v; p) the random variable

defined by the output of R on input v and randomness p, while ¢ & R(v) has
the same meaning with the randomness suppressed. Also, if R is a deterministic
algorithm ¢ = R(v) denotes the output of R on input v. We will use the
alternative notation R(v) — v as well to represent the output of the algorithm
R, whether randomized or deterministic, on input v. For any string s € {0, 1}*,
|s| represents the length of the string s. For any two strings s, s’ € {0,1}*, s||s’
represents the concatenation of s and s’.

2.1 Turing Machines

A Turing machine (TM) M is a 7-tuple M = (Q, Zixp, Zrare, 05 40, Gacs Grey) With
the following semantics:

— @: The finite set of possible states of M.
— Xxp: The finite set of input symbols.

CPRF’s for Unconstrained Inputs Revisited 467

— Yrape: The finite set of tape symbols such that Y, C Xapp and there exists
a special blank symbol ‘2 € Xy pp\ Xinp-

0:Q X Xpapr — Q X Xpppp X {+1,—1}: The transition function of M.

— qo € Q: The designated start state.

— gac € Q: The designated accept state.

~ gres(# gac) € Q: The distinguished reject state.

For any t € [T = 2], we define the following variables for M, while running on
some input (without the explicit mention of the input in the notations):

— POSjr+: An integer which denotes the position of the header of M after the
t'h step. Initially, POSyso = 0.

— SYMar,: € Zrape: The symbol stored on the tape at the POS]\Mth location.

- SYM%}?TE) € Yppe: The symbol to be written at the POSys -1 location
during the t* step.

— STar+ € Q: The state of M after the t*h step. Initially, STar,0 = qo-

At each time step, theTM M reads the tape at the header position and based
on the current state, computes what needs to be written on the tape at the
current header location, the next state, and whether the header must move left
or right. More formally, let (¢,¢, 8 € {+1,—1}) = 6(STar,t—1,SYMps¢—1). Then,
STyt = q, SYME\‘}’T”) = (, and POSys; = POSpr4—1 + 3. M accepts at time ¢ if
STt = Qac- In this paper we consider X, = {0,1} and Xppr = {0,1, _}. Given
any TM M and string « € {0,1}*, we define M (x) = 1, if M accepts x within
T steps, and 0, otherwise.

2.2 Indistinguishability Obfuscation

Definition 2.1 (Indistinguishability Obfuscation: 10 [14]). An indistin-
guishability obfuscator (10) ZO for a certain circuit class {Cy}, is a probabilistic
polynomial-time (PPT) uniform algorithm satisfying the following conditions:

» Correctness: ZO(1*,C) preserves the functionality of the input circuit C,
i.e., for any C' € C,, if we compute C' = ZO(1*,C), then C’(v) = C(v) for
all inputs v.

» Indistinguishability: For any security parameter A\ and any two circuits
Cy, Cy € Cy with same functionality, the circuits ZO(1*, Cy) and ZO(1*, Cy)
are computationally indistinguishable. More precisely, for all (not necessarily
uniform) PPT adversaries D = (D, Ds), there exists a negligible function
negl such that, if

Pr[(Co,C1,&) & Dy (1Y) : Vo, Co(v) = C1(v)] > 1 — negl(N),
then |Pr[D2(£,ZO(1%,Cy)) = 1] — Pr[D2(£,ZO(1%,C1)) = 1]| < negl()).

When clear from the context, we will drop 1 as an input to ZO and X as a
subscript of C.

468 P. Datta et al.

2.3 10-Compatible Cryptographic Primitives

In this section, we present the syntax and correctness requirement of certain 10-
friendly cryptographic tools which we will be using in the sequel. The security
properties of these primitives can be found in the full version of this paper or in
the references provided in the respective subsections below.

2.3.1 Puncturable Pseudorandom Function

Definition 2.2 (Puncturable Pseudorandom Function: PPRF [23]). A
puncturable pseudorandom function (PPRF) F : Kppre X Xopre — Vopre cOnsists
of an additional punctured key space pprrpunc Other than the usual key space
Kepre and PPT algorithms (F.Setup, F.Eval, F.Puncture, F.Eval-Punctured)
described below. Here, Xppre = {0, 1} and Vopry = {0, 1}rwor - where

Loprpone and Lpprpour are polynomials in the security parameter A,

F .Setup(l)‘) — K : The setup authority takes as input the security parameter
1* and uniformly samples a PPRF key K € Kppgy.

F.Eval(K,z) — r : The setup authority takes as input a PPRF key K € Kppgr
along with an input & € Xppge. It outputs the PPRF value r» € Vpprr on z. For
simplicity, we will represent by F (K, x) the output of this algorithm.

F.Puncture(K,z) — K{z} : Taking as input a PPRF key K € Kpppr along
with an element © € Apprp, the setup authority outputs a punctured key
K{x} € Kpprr-runc-

F.Eval-Puncured(K{z},2’) — r or L : An evaluator takes as input a punctured
key K{z} € Kpprr-punc along with an input 2’ € Xppype. It outputs either a
value 7 € YVppry or a distinguished symbol L indicating failure. For simplicity,
we will represent by F(K{z},z’) the output of this algorithm.

The algorithms F.Setup and JF.Puncture are randomized, whereas, the algo-
rithms F.Eval and F.Eval-Punctured are deterministic.

» Correctness Under Puncturing: Consider any security parameter A, K €
Koprr, © € Xopre, and K{z} & F.Puncture(K, x). Then it must hold that

N JF(EK,2),if 2 #x
F(K{a} o) = {J_7 otherwise

2.3.2 Somewhere Statistically Binding Hash Function

Definition 2.3 (Somewhere Statistically Binding Hash Function: SSB
[18,22]). A somewhere statistically binding (SSB) hash consists of PPT algo-
rithms (SSB.Gen, H, SSB.Open,SSB.Verify) along with a block alphabet Xy ik
= {0, 1}fssmx output size lssp_pasu, and opening space gy = {0, 1}fssworey where
lssp-Li > Lssp-nashs Yssp-open are some polynomials in the security parameter A. The
algorithms have the following syntax:

SSB.Gen(l)‘, Nssp-pLk, ©°) — HK : The setup authority takes as input the security
parameter 1A, an integer Nggp prx < 22 representing the maximum number of
blocks that can be hashed, and an index i* € [0, nsgppx — 1] and publishes a
public hashing key HK.

CPRF’s for Unconstrained Inputs Revisited 469

Hux @ € X — h € {0,1}ssmer ; This is a deterministic function that
has the hash key HK hardwired. A user runs this function on input z =
Dol -+ 1T —1 € Zeusiis to obtain as output h = Hy () € {0, 1} ssmnms,

SSB.Open(HK, z,1) — mggp : Taking as input the hash key HK, input = € g |
and an index i € [0, nggppx — 1], & user creates an opening msgy € IMgsp.

SSB.Verify(HK, h, i, u, Tssp) — B e {0,1} : On input a hash key HK, a hash value
h € {0,1}msnan index i € [0, nssppx — 1], @ value u € Ysgppik, and an
opening ey € Iy, a verifier outputs a bit 3 € {0,1}.

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm
SSB.Verify is deterministic.

-

» Correctness: For any security parameter A, integer ngsppix < 2*7 1,10

8 -k TssB-BLK
[0, nsspoprx — 1], HK SSB'Gen(lAanSSB—BLKvl), x € Xk, and T
SSB.Open(HK, , 1), we have SSB.Verify(HK, Hyux (), i, ©;, Tsgp) = 1.

S
$
<&

2.3.3 Positional Accumulator

Definition 2.4 (Positional Accumulator [20,22]). A positional accumulator
consists of PPT algorithms (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-
Enforce-Write, ACC.Prep-Read, ACC.Prep-Write, ACC.Verify-Read, ACC.Write-
Store, ACC.Update) along with a block alphabet X,ccpx = {0, 1}enx accu-
mulator size fyco-acousviars, Proof space Myoe = {0, 1}fcermoor where £ycepig,
L aco-accumurate, Lacc-proor are some polynomials in the security parameter \. The
algorithms have the following syntax:

ACC.Setup(1*, maconix) — (PPacc, Wo, STOREq) : The setup authority takes as
input the security parameter 1* and an integer nacepLx < 22X representing the
maximum number of blocks that can be accumulated. It outputs the public
parameters PP,¢, an initial accumulator value wg, and an initial storage value
STORE(.

ACC.Setup—Enforce—Read(1A,nACC_BLK, ((z1,91)y- -5 (Twyin)),7*) — (PPacc, Wo,
STOREq) : Taking as input the security parameter 1A7 an integer ncoprx <
2* representing the maximum number of blocks that can be accumu-
lated, a sequence of symbol-index pairs ((21,41),..., (Tx,ix)) € (Zaccpx X
[0, nscomx — 1])%, and an additional index ¢* € [0,naccpx — 1], the setup
authority publishes the public parameters PP ¢, an initial accumulator value
wy, together with an initial storage value STOREy.

/-\CC.Setup—Enforce—Write(lA, Nacosiks (T1,%1)y- -+, Zry0x))) — (PPace, Wo,
STORE() : On input the security parameter 1’\, an integer Ncoprx < 2 denot-
ing the maximum number of blocks that can be accumulated, and a sequence
of symbol-index pairs ((z1,41),..., (Zx,%x)) € (Zaccpx X [0, Naconx — 1])7,
the setup authority publishes the public parameters PP,¢c, an initial accu-
mulator value wy, as well as, an initial storage value STOREy.

ACC.Prep-Read(PP e, STORE, i) — (Zour, Tace) : A storage-maintaining party
takes as input the public parameter PP,¢¢, a storage value STORE, and an
index iy € [0, naccpx — 1] It outputs a symbol xoyr € Xacepx U{e} (€ being
the empty string) and a proof myce € MHyce-

470 P. Datta et al.

ACC.Prep-Write(PP,cc, STOREy, i;y) — AUX : Taking as input the public parame-
ter PPycc, & storage value STOREy, together with an index 4,y € [0, naccpik —
1], a storage-maintaining party outputs an auxiliary value AUX.

ACC.Verify-Read(PPcc, Wixs ixs fins Tace) — Be {0,1} : A verifier takes as input
the public parameter PP,c, an accumulator value wy € {0, 1}z“’“(“f““”"“"*,
a symbol zy € Yicepx U {€}, an index iy € [0, naccmx — 1], and a proof
Tace € Hyoe. It outputs a bit 3 € {0,1}.

ACC.Write-Store(PPscc, STORE, 41y, Ziy) — STOREqur : On input the public
parameters PP cc, a storage value STOREy, an index 4y € [0, naccpx — 1],
and a symbol xy € Y, ccpk, & storage-maintaining party computes a new
storage value STOREqyr.

ACC.Update(PPcc, Win, Z1x, biny AUX) — wopr O L @ An accumulator-updating
party takes as input the public parameters PP ¢, an accumulator value w,y €
{0, 1} frceacemmias - symbol oy € Xyoeopix, an index iy € [0, nacepix — 1], and
an auxiliary value AUX. It outputs the updated accumulator value woyr €
{0, 1}faccacenmviars or the designated reject string 1.

Following [10,20], in this paper we will consider the algorithms ACC.Setup,
ACC.Setup-Enforce-Read, and ACC.Setup-Enforce-Write as randomized while all
other algorithms as deterministic.

» Correctness: Consider any symbol-index pair sequence ((x1,41),. ., (Zx,x))

€ (Srocsix X [0, Macenix — 1])%. Fix any (PPaco, wo, STOREg) <~ ACC.Setup(1*,
Naconik)- For j = 1,..., K, iteratively define the following:

— STORE; = ACC.Write-Store(PP,cc, STORE; _1,%j, Z;)
— AUX; = ACC.Prep-Write(PP,cc, STORE; 1, ;)
- w; = ACC.Update(PPAcmwj,l,acj,ij7AUXj)

The following correctness properties are required to be satisfied:

(i) For any security parameter \, nmyccpx < 2%, index i* € [0, Nycopk —
1], sequence of symbol-index pairs ((21,41),..., (Zx,%x)) € (Faccrx X

[0, naco-nie — 1])%, and (PPyce, wo, STORE)) < ACC.Setup(1*, nace-nii);
if STORE, is computed as above, then ACC.Prep-Read(PP,cc, STORE,;, i)
returns (x;, Taco) Where j is the largest value in [k] such that i; = ¢*.

(ii) For any security parameter \, nccpx < 27, sequence of symbol-index pairs
((x17i1>7 ceey (xnain)) € (EACC-BLK X [OanACC-BLK - 1])1{, e [OanACC—BLK - 1]7
and (PPcc, Wo, STORE) & ACC.Setup(l)‘,nACC_BLK), if STORE,, and w,, are
computed as above and (zour, Tacc) = ACC.Prep-Read(PPcc, STORE, i*),
then ACC.Verify-Read(PP ycc, Wi, Tour, 1, Tace) = 1

2.3.4 Iterator

Definition 2.5 (Iterator [20]). A cryptographic iterator consists of PPT
algorithms (ITR.Setup, ITR.Set-Enforce, ITR.lterate) along with a message space
My = {0, 1}amowse and iterator state size fipp_sr, Where firpysc, firp.sr are some
polynomials in the security parameter A. Algorithms have the following syntax:

CPRF’s for Unconstrained Inputs Revisited 471

ITR.Setup(lA,nIm) — (PPirr, vo) : The setup authority takes as input the secu-
rity parameter 1 along with an integer bound n;; < 2* on the number
of iterations. It outputs the public parameters PP,z and an initial state
Vo € {0, 1}6‘“’“”.

ITR.Setup—Enforce(l’\, Nirry (115 - -+ fs)) — (PPrrm, o) : Taking as input the secu-
rity parameter 1%, an integer bound n.; < 2%, together with a sequence of
messages ({1, ...,) € M, where k < nypg, the setup authority publishes
the public parameters PP,y and an initial state vy € {0, 1},

ITR.Iterate(PPyyy, vy € {0,1}™5 1) — vour @ On input the public parame-
ters PPy, a state vy, and a message u € M, an iterator outputs an
updated state vour € {0,1}fms1. For any integer £ < myy, we will write
ITR.Iterate” (PPyrg, wvo, (ft1,---,Mx)) to denote ITR.lterate(PPirr, Vi—1, fw),
where v; is defined iteratively as v; = ITR.Iterate(PPirs,vj_1, ;) for all
j=1,.. k—1.

The algorithm ITR.lterate is deterministic, while the other two are randomized.

2.3.5 Splittable Signature

Definition 2.6 (Splittable Signature: SPS [20]). A splittable signature
scheme (SPS) for message space Msps = {0, l}e%'“SG and signature space Sgpg =
{0, 1}fsrss¢ where lgpgysc, fsps-sic are some polynomials in the security parame-
ter A, consists of PPT algorithms (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split,
SPS.Sign-ABO) which are described below:

SPS.Setup(1*) — (SKgps, VKsps, VKsps.res) : The setup authority takes as input
the security parameter 1* and generates a signing key SKgps, a verification
key VKgpg, together with a reject verification key VKgps_pg;-

SPS.Sign(SKgps, m) — osps : A signer given a signing key SKgps along with a
message m € Mgpg, produces a signature ogpg € Sgps-

SPS . Verify(VKgps, M, 0gps) — B e {0,1} : A verifier takes as input a verification
key VKgps, a message m € Mgps, and a signature ogps € Ssps. It outputs a bit
B8 e {0,1}.

SPS-Sp“t(SKSPs»m*) - (USPS-ONE,m*7VKSPS—ONE7 SKSPS-ABmVKSPS-ABo) : On input
a signing key SKgpg along with a message m* € Mgpg, the setup author-
ity generates a signature ogps.onmm+ = SPS.Sign(SKgps,m*), a one-message
verification key VKgpg.ong, and all-but-one signing-verification key pair
(SKsps-apos VKsps-ago)-

SPS.Sign-ABO(SKsps_apos ™M) — 0sps Or L : An all-but-one signer given an all-
but-one signing key SKgps.apo and a message m € Mgpg, outputs a signature
osps € Sgps or a distinguished string | to indicate failure. For simplicity of
notation, we will often use SPS.Sign(SKgps ano, M) to represent the output of
this algorithm.

We note that among the algorithms described above, SPS.Setup and SPS.Split
are randomized while all the others are deterministic.

472 P. Datta et al.

» Correctness: For any security parameter A\, message m* € Mgpg, (SKSPS, VKgps,

$ A $
VKgps-rey) — SPS.Setup(17), and (USPS—ONE,m*v\/KSPS-ONE)SKSPS—ABO;VKSPS—ABO) —

SPS.Split(sKgps, m*) the following correctness conditions hold:

(i) Vm € Mgps, SPS.Verify(VKgps, m, SPS.Sign(SKgps, m)) = 1.
(il) Vm # m* € Mgps, SPS.Sign(SKsps, m) = SPS.Sign-ABO(SKsps_ano, m).
(iii) Vosps € Ssps, SPS.Verify(VKsps oxe, m™, 0sps) = SPS.Verify(VKgps, m™, ogps).
(iv) Vm # m* € Mgps, 005 € Ssps, SPS.Verify(VKsps apo, M, Osps) =
SPS . Verify(VKgps, M, Osps).
(v) Vm # m* € Mgps, 0sps € Sgps, SPS.Verify(VKsps_ong, M, Ogps) = 0.
(vi) Vogsps € Ssps, SPS.Verify(VKsps_apo, Mm™, 0sps) = 0.
(vii) Vm € Mgpg, dsps € Seps, SPS.Verify(VKgps ppy, M, Osps) = 0.

3 Our CPRF for Turing Machines

3.1 Notion

Definition 3.1 (Constrained Pseudorandom Function for Turing
Machines: CPRF [10]). Let M be a family of TM’s with (worst case) running
time bounded by T = 2*. A constrained pseudorandom function (CPRF) with key
space Keprr, input domain Xepre C {0, 1}*, and output space Veprr C {0, 1}* for
the TM family M consists of an additional key space Kcprp-consr and PPT algo-
rithms (CPRF.Setup, CPRF.Eval, CPRF.Constrain, CPRF.Eval-Constrained) des-
cribed as follows:

CPRF.Setup(lk) — SKcprr : The setup authority takes as input the security
parameter 1* and generates the master CPRF key SKeprr € Keprp-

CPRF.Eval(SKcprr, ©) — y : On input the master CPRF key SKcprr along with
an input € Xcprp, the setup authority computes the value of the CPRF
Yy € Yeprr. For simplicity of notation, we will use CPRF(SK¢prr,) to indicate
the output of this algorithm.

CPRF.Constrain(SKopre, M) — SKepre{M } : Taking as input the master CPRF
key SKeprr and a TM M € M, the setup authority provides a constrained
key SKepre{ M} € Keprr-consr to a legitimate user.

CPRF.Eval-Constrained(SKepre{M },) — y or L : A user takes as input a con-
strained key SKeprp{M} € Kcprr-const, corresponding to a legitimate TM
M € M,, along with an input x € X pge. It outputs either a value y € Vepry
or | indicating failure.

The algorithms CPRF.Setup and CPRF.Constrain are randomized, whereas, the
other two are deterministic.
» Correctness Under Constraining: Consider any security parameter A,

SKepre € Kepre, M € My, and SKepre{M } & CPRF.Constrain(SKgprr, M). The
following must hold:

CPRF(SKepne, 7), if M(z) =1

CPRF.Eval-Constrained (SKcpre{ M },) = {L otherwise

CPRF’s for Unconstrained Inputs Revisited 473

» Selective Pseudorandomness: This property of a CPRF is defined through
the following experiment between an adversary A and a challenger B:

e A submits a challenge input x* € Xeprp to B.
e BB generates a master CPRF key SKcppr & CPRF.Setup(l)‘). Next it selects
a random bit b & {0,1}. If b = 0, it computes y* = CPRF(SKcprp, z*).

Otherwise, it chooses a random y* & Veprp- It returns y* to A.
e A may adaptively make a polynomial number of queries of the following kinds
to B:
— Evaluation query: A queries the CPRF value at some input & € Xeppp
such that x # z*. B provides the CPRF value CPRF(SK¢prr,) to A.
— Key query: A queries a constrained key corresponding to TM M € My
subject to the constraint that M (z*) = 0. B gives the constrained key

SKepre { M} < CPRF.Constrain(SKcpne, M) to A
e A eventually outputs a guess bit b’ € {0, 1}.

The CPRF is said to be selectively pseudorandom if for any PPT adversary A,
for any security parameter A,

AdvG RN = |Prib = b] — 1/2] < negl(\)
for some negligible function negl.

Remark 3.1. As pointed out in [9,16], note that in the above selective pseudo-
randomness experiment, without loss of generality we may assume that the
adversary A only makes constrained key queries and no evaluation query. This
is because any evaluation query at input x € Xeprr can be replaced by con-
strained key query for a TM M, € M, that accepts only z. Since, the restriction
on the evaluation queries is that © # z*, M, (2*) = 0, and thus M, is a valid
constrained key query. We will use this simplification in our proof.

3.2 The CPRF Construction of Deshpande et al.

In EUROCRYPT 2016, Deshpande et al. [10] presented a CPRF construction
supporting inputs of unconstrained polynomial length based on indistinguisha-
bility obfuscation and injective pseudorandom generators, which they claimed to
be selectively secure. Unfortunately, their security argument has a flaw. In this
section, we give an informal description of their CPRF construction and point
out the flaw in their security argument.

Overview of the CPRF Construction of [10]: The principle ideas behind
the CPRF construction of [10] are as follows: To produce the CPRF output their
construction uses a PPRF F and a positional accumulator. A master CPRF key
consists of a key K for the PPRF F and a set of public parameters PP, of the
positional accumulator. The CPRF evaluation on some input x = zg...2,, -1 €

474 P. Datta et al.

Xopre C {0,1}* is simply F (K, wiyp), where wyyp is the accumulation of the bits
of x using PP ,cc.

A constrained key of the CPRF, corresponding to some TM M, comprises of
PP,cc along with two programs P; and Pcprr, which are obfuscated using 10.
The first program P7, also known as the initial signing program, takes as input
an accumulator value and outputs a signature on it together with the initial
state and header position of the TM M. The second program Pcpgr, also called
the next step program, takes as input a state and header position of M along
with an input symbol and an accumulator value. It essentially computes the
next step function of M on the input state-symbol pair, and eventually outputs
the proper PRF value, if M reaches the accepting state. The program Pcpgp also
performs certain authenticity checks before computing the next step function of
M in order to prevent illegal inputs. For this purpose, Pcprr additionally takes
as input a signature on the input state, header position, and accumulator value,
together with a proof for the positional accumulator. The program Pgpgr verifies
the signature as well as checks the accumulator proof to get convinced that
the input symbol is indeed the one placed at the input header position of the
underlying storage of the input accumulator value. If all these verifications pass,
then Peprr determines the next state and header position of M, as well as, the
new symbol that needs to be written to the input header position. The program
Perrr then updates the accumulator value by placing the new symbol at the
input header position as well as signs the updated accumulator value along with
the computed next state and header position of M. The signature scheme used
by the two programs is a splittable signature. In order to deal with the positional
accumulator related verifications and updations, the program Pgprr has PPy
hardwired.

Evaluating the CPRF on some input x using a constrained key, corresponding
to some TM M, consists of two steps. In the first step, the evaluator computes
the accumulation wyp of the bits of x using PP, which are also included in the
constrained key, and then obtains a signature on wp together with the initial
state and header position of M by running the program P;. The second step is
to repeatedly run the program Pepgrr, each time on input the current accumula-
tor value, current state and header position of M, along with the signature on
them. Additionally, in each iteration the evaluator also feeds wp to Pcprr- The
iteration is continued until the program Pcprr either outputs the PRF evaluation
or the designated null string 1 indicating failure.

The Flaw: In order to prove selective pseudorandomness of the above CPRF
construction, the authors of [10] extends the techniques introduced in [20] in the
context of proving security of message-hiding encoding scheme for TM’s. More
precisely, the authors of [10] proceed as follows: During the course of the proof,
the authors aim to modify the constrained keys given to the adversary A in
the selective pseudorandomness experiment, discussed in Sect. 3.1, to embed the
punctured PPRF key K{w,} punctured at w}, instead of the full PPRF key
K, which is part of the master CPRF key sampled by the challenger 5. Here,
wip is the accumulation of the bits of the challenge input z*, submitted by

CPRF’s for Unconstrained Inputs Revisited 475

the adversary A, using PP,cc, included within the master CPRF key generated
by the challenger B. In order to make this substitution, it is to be ensured
that the obfuscated next step programs included in the constrained keys never
outputs the PRF evaluation for inputs corresponding to wy, even if reaching the
accepting state. The proof transforms the constrained keys one at a time through
multiple hybrid steps. Suppose that the total number of constrained keys queried
by A be §. Consider the transformation of the v*! constrained key (1 < v < §)
corresponding to the TM M (*) that runs on the challenge input * for t*(*) steps
and reaches the rejecting state. In the course of transformation, the obfuscated
next step program PéZI){F of the v*" constrained key is first altered to one that
never outputs the PRF evaluation for inputs corresponding to w, within the first
t*() steps. Towards accomplishing this transition, the challenger B at various
stages needs to generate PP,q¢ in read/write enforcing mode where the enforcing
property should be tailored to the steps of execution of the specific TM M®)
on z*. For instance, at some point of transformation of the v*" constrained key,
PP,cc needs to be set in the read enforcing mode by B on input (i) the entire
sequence of symbol-position pairs arising from iteratively running M*) on z*
upto the t*® step and (ii) the enforcing index corresponding to the header position
of M®™) at the t'" step while running on z*, where 1 < t < t*(*). Evidently, if
A makes the constrained key queries adaptively, which it is allowed to do in the
selective pseudorandomness experiment, then B can determine those symbol-
position pairs only after receiving the v*" queried TM M®) from A. However,
B would also require PP,.. while creating the constrained keys queried by A
before making the v** constrained key query and even possibly for preparing
the challenge value for A. Thus, it is immediate that B must generate PP,cc
prior to receiving the v*™" query from A. This is impossible as setting PP,oc
in read enforcing mode requires the knowledge of the TM M®) which is not
available before the v constrained key query of A. A similar conflict also arises
when B attempts to setup PP,c¢ in the write enforcing mode tailored to M (8
This serious flaw renders the proof of selective pseudorandomness of the CPRF
construction of [10] invalid. Ofcourse, this problem would clearly not arise if
the pseudorandomness of the CPRF construction of [10] is analysed in a weaker
model in which the adversary A is forced to submit all the constrained key
queries along with the challenge input at the beginning of the experiment, i.e.,
before the challenger B performs the setup. However, this weaker model is rather
unrealistic as it renders the adversary A completely static.

3.3 Our Techniques to Fix the Flaw of [10]

Observe that a set of public parameters of the positional accumulator must be
included within each constrained key. This is mandatory due to the required
updatability feature of positional accumulator, which is indispensable to keep
track of the current situation while running the obfuscated next step program
Peprr iteratively in the course of evaluating the CPRF on some input. The root
cause of the problem in the selective security argument of [10] is the use of a
single set of public parameters PP, of the positional accumulator throughout

476 P. Datta et al.

the system. Therefore, as a first step, we attempt to assign a fresh set of public
parameters of the positional accumulator to each constrained key. However, for
compressing the PRF input to a fixed length, on which F can be applied produc-
ing the PRF output, we need a system-wide compressing tool. We employ SSB
hash for this purpose. The idea is that while evaluating the CPRF on some input
z using a constrained key, corresponding to some TM M, the evaluator first
computes the hash value h by hashing x using the system wide SSB hash key,
which is part of the master key. The evaluator also computes the accumulator
value wiyp by accumulating the bits of x using the public parameters of posi-
tional accumulator included in the constrained key. Then, using the obfuscated
initial signing program Pi, included in the constrained key, the evaluator will
obtain a signature on wyp along with the initial state and header position of
M. Finally, the evaluator will repeatedly run the obfuscated next step program
Perrr, included in the constrained key, each time giving as input all the quanti-
ties as in the evaluation algorithm of [10], except that it now feeds the SSB hash
value h in place of wyp in each iteration. This is because, in case Pcprr reaches
the accepting state, it would require h to apply F for producing the PRF output.

However, this approach is not completely sound yet. Observe that, a possibly
malicious evaluator can compute the SSB hash value h on the input x, on which
it wishes to evaluate the CPRF although M does not accepts it, and initiates
the evaluation by accumulating the bits of only a substring of x or some entirely
different input, which is accepted by M. To prevent such malicious behavior, we
include another 10-obfuscated program Ps within the constrained key, known as
the accumulating program, whose purpose is to restrict the evaluator from accu-
mulating the bits of a different input rather than the hashed one. The program
Py takes as input an SSB hash value h, an index 7, a symbol, an accumulator
value, a signature on the input accumulator value (along with the initial state
and header position of M), and an opening value for SSB. The program Py veri-
fies the signature and also checks whether the input symbol is indeed present at
the index 7 of the string that has been hashed to form h, using the input opening
value. If all of these verifications pass, then Py updates the input accumulator
value by writing the input symbol at the i*® position of the accumulator stor-
age. We also modify the obfuscated initial signing program P;, included in the
constrained key, to take as input a hash value and output a signature on the
accumulator value corresponding to the empty accumulator storage, along with
the initial state and header position of M.

Moreover, for forbidding the evaluator from performing the evaluation by
accumulating an M-accepted substring of the hashed input, we define our PRF
output as the evaluation of F on the pair (hash value, length) of the input in
stead of just the hash value of the input. Note that, without loss of generality,
we can set the upper bound of the length of PRF inputs to be 2%, where \ is the
underlying security parameter in view of the fact that by suitably choosing A we
can accommodate inputs of any polynomial length. This setting of upper bound
on the input length is implicitly considered in [10]. Now, as the input length is
bounded by 2%, the input length can be expressed as a bit strings of length \.

CPRF’s for Unconstrained Inputs Revisited 477

Thus, the PRF input length can be safely fed along with the SSB hash value of
PRF input to F, which can handle only inputs of apriori bounded length. Hence,
the obfuscated next step programs Pcprr included in our constrained keys must
also take as input the length of the PRF input for producing the PRF value if
reaching to the accepting state.

Therefore, to evaluate the CPRF on some input using a constrained key, cor-
responding to some TM M, an evaluator first hash the PRF input. The evaluator
also obtains a signature on the empty accumulator value included in the con-
strained key, by running the obfuscated initial signing program P; on input the
computed hash value. Next, it repeatedly runs the obfuscated accumulating pro-
gram P5 to accumulate the bits of the PRF input. Finally, it runs the obfuscated
next step program Pcpgp iteratively on the current accumulator value along with
other legitimate inputs until it obtains either the PRF output or L.

Regarding the proof of security, notice that the problem with enforcing the
public parameters of the positional accumulator while transforming the queried
constrained keys will not appear in our case as we have assigned a separate set of
public parameters of positional accumulator to each constrained key. However,
our actual security proof involves many subtleties that are difficult to describe
with this high level description and is provided in full details in the sequel. We
would only like to mention here that to cope up with certain issues in the proof
we further include another 10-obfuscated program Ps in the constrained keys,
known as the signature changing program, that changes the signature on the
accumulation of the bits of the PRF input before starting the iterative compu-
tation with the obfuscated next step program Pepgp.

We follow the same novel technique introduced in [10] for handling the tail
hybrids in the final stage of transformation of the constrained keys. Note that
as in [10], we are also considering TM’s which run for at most 7' = 2* steps
on any input. Unlike [20], the authors of [10] have devised a beautiful approach
to obtain an end to end polynomial reduction to the security of 10 for the tail
hybrids by means of an injective pseudorandom generator (PRG). We directly
adopt that technique to deal with the tail hybrids in our security proof. A high
level overview of the approach is sketched below. Let us call the time step 27
as the 7' landmark and the interval [27,27F — 1] as the 7' interval. Like
[10], our obfuscated next step programs Pepgr included within the constrained
keys take an additional PRG seed as input at each time step, and perform some
additional checks on the input PRG seed. At time steps just before a landmark,
the programs output a new pseudorandomly generated PRG seed, which is then
used in the next interval. Using standard 10 techniques, it can be shown that
for inputs corresponding to (h*,£*), if the program Peprp outputs L, for all
time steps upto the one just before a landmark, then we can alter the program
indistinguishably so that it outputs L at all time steps in the next interval. Here
h* and £* are respectively the SSB hash value and length of the challenge input
2* submitted by the adversary A in the selective pseudorandomness experiment.
Employing this technique, we can move across an exponential number of time
steps at a single switch of the next step program Pcpgy.

478 P. Datta et al.

3.4 Formal Description of Our CPRF

Now we will formally present our CPRF construction where the constrained keys
are associated with TM’s. Let A be the underlying security parameter. Consider
the family M, of TM’s, the members of which have (worst-case) running time
bounded by T' = 2%, input alphabet Y, = {0, 1}, and tape alphabet X,pp =
{0,1,_}. Our CPRF construction utilizes the following cryptographic building
blocks:

(i) ZO: An indistinguishability obfuscator for general polynomial-size circuits.

(ii) SSB = (SSB.Gen, H,SSB.Open, SSB.Verify): A somewhere statistically
binding hash function with Y g = {0, 1}.

(iii) ACC = (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write,
ACC.Prep-Read, ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store,
ACC.Update): A positional accumulator with Xyoopx = {0,1,_}.

(iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator
with an appropriate message space Mg.

(v) SPS = (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO):
A splittable signature scheme with an appropriate message space Mgps.

(vi) PRG: {0,1}* — {0,1}2*: A length-doubling pseudorandom generator.

(vii) F = (F.Setup, F.Puncture, F.Eval): A puncturable pseudorandom func-
tion whose domain and range are chosen appropriately. For simplicity, we
assume that F has inputs and outputs of bounded length instead of fixed
length inputs and outputs. This assumption can be easily removed by using
different PPRF’s for different input and output lengths.

Our CPRF construction is described below:

CPRF.Setup(1}) — SKeprr = (K, HK): The setup authority takes as input the

security parameter 1% and proceeds as follows:

1. It first chooses a PPRF key K & F Setup(1*).

2. Next it generates HK & SSB.Gen(l/\,nSSB_BLK =2*i* =0).
3. It sets the master CPRF key as SKcpre = (K, HK).

CPRF.Eval(SKcpre, z) — y = F(K, (h,¢;)): Taking as input the master CPRF
key SKeprr = (K, HK) along with an input © = zg...2¢, 1 € Xcprr, Where
|z| = £, the setup authority executes the following steps:

1. It computes h = Hyk(z).
2. Tt outputs the CPRF value on input x to be y = F(K, (h,£,)).

CPRF.Constrain(SKcprr, M) — SKeprr{M} = (HK, PPcc, Wo, STOREQ, PPy, Vo,
P1, P2, P3, Peprr): On input the master CPRF key SKeprr = (K, HK) and a
T™M M = (Q, e, Zrare, 0, G0 Gac, Gres) € My, the setup authority performs
the following steps:

1. At first, it selects PPRF keys K1, ..., Kx, Ksps 4, Ksps,E S f.Setup(lA).
2. Next, it generates (PPqc, W, STORE() & ACC.Setup(1*, nyconx = 27)
and (PPyrg, Vo) & ITR.Setup(l)‘,nITR =2M).

CPRF’s for Unconstrained Inputs Revisited 479

3. Then, it constructs the following obfuscated programs:
— Py = ZO(Init-SPS.Prog|qo, wo, vo, Ksps. £]),
— Py = TO(Accumulate.Prog[ngsss sk = 27, HK, PPycc, PPirg, Keps 1)),
— P3 = ZO(Change-SPS.Prog[Kps 4, Ksps,E]),
~ Pepre = ZO(Constrained-Key.Prog ...[M, T = 2*, PPycc, PPig, K,
K17 ey K)\v KSPS,A]);
where the programs Init-SPS.Prog, Accumulate.Prog, Change-SPS.Prog, and
Constrained-Key.Prog .. are depicted respectively in Figs. 1, 2, 3 and 4.
4. Tt Provides the constrained key SKcpre{M} = (HK,PP4cc, Wo, STORE,
PPirr, V0, P1, P2, P3, Peprr) € Keprrconst t0 a legitimate user.
CPRF.Eval-Constrained(SKcppp{M },) — y = F(K, (h,£€;)) or L: A user takes
as input its constrained key SKepre{M} = (HK, PP,cc, Wo, STORE(, PPirg, Up,

Constants: Initial TM state go, Accumulator value wo, Iterator value vo, PPRF key
sts,E

Input: SSB hash value h
Output: Signature ospes our
1. Compute rgs,p = f(KSPS,E> (h:O)) and (SKSPS,E7VKSPS,E7VKSPS—KRJ,E) =

SPS.Setup(1*; 7ses,).
2. Output osps.our = SPS.Sign(SKsps, 7, (v0, o, wo, 0)).

Fig. 1. Init-SPS.Prog

Constants: Maximum number of blocks for SSB hash ngpmx = 2%, SSB hash
key HK, Public parameters for positional accumulator PP,cc, Public
parameters for iterator PPy, PPRF key Kps &

Inputs: Index i, Symbol syMy, TM state ST, Accumulator value wyy, Auxiliary
value AUX, Iterator value vy, Signature osps v, SSB hash value h, SSB
opening value 7gsg

Output: (Accumulator value wour, Iterator value vour, Signature osps-our), or L

1.(&) Compute rosr = F(Ks,E, (h, l)) and (SKsps,E7 VKsps, E, VKsps-res, B) =
SPS.Setup(1*; rsps,).
(b) Set min = ('UIN7 ST, Win, 0). If SPS.Verify(VKsps,E7mIN7 O-SPS‘IN) =0, output L.
2. If SSB.Verify(HK, h, i, SYMy, ssp) = 0, output L.
3.(a) Compute woyr = ACC.Update(PPaco, Wi, SYM, &, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPix, Vi, (ST, Wiy, 0)).
4.(&) Compute Tépg{yE =]:(KSPS,E‘, (h7i + 1)) and (SK;PS,E7VKéPS,E7VK;PS-RE,],E) =
SPS.Setup(1*; Teps.)
(b) Set mour = (vour, ST, Wour, 0). Compute osps.ovr = SPS.Sign(SKps, 5 Mour).
5. Output (wOUT7 Vour, USPS.OUT)~

Fig. 2. Accumulate.Prog

480 P. Datta et al.

Constants: PPRF keys Kgps, a, Ksps, B

Inputs: TM state sT, Accumulator value w, Iterator value v, SSB hash value
h, Length £y, Signature ogps v

Output: Signature ogps,our, or L

1.(&) Compute Tsps,E = ‘F(KSPS,Ey (h7éINP)) and (SKSPS,E,VKSPS,E,VKSPS—REJ,E) =
SPS.Setup(1*; 7sps, 7).
(b) Set m = (v, sT,w, 0). If SPS.Verify(VKses, &, m, osps,n) = 0, output L.
2.(&) Compute Tsps,A =]:(KSPS,Aa(hy‘gINPaO)) and (SKSPS,A7VKSPS,A,VKSPS—REJ,A) =
SPS.Setup(1*; 7sps,4)-
(b) Output oses,ouvr = SPS.Sign(SKses, 4, m).

Fig. 3. Change-SPS.Prog

Constants: TM M = (Q, Xwe, Znare; 0, @0, ac, qrus), Time bound T = 2>, Public
parameters for positional accumulator PP,cc, Public parameters for
iterator PPir, PPRF keys K, K1, ..., Kx, Ksps, 4

Inputs: Time ¢, String SEEDy, Header position POS;y, Symbol syM,, TM state
STix, Accumulator value wiy, Accumulator proof mace, Auxiliary value
AUX, Iterator value v, SSB hash value h, length £y, Signature osps i

Output: CPRF evaluation F(K, (h,fnr)), or Header Position (POSour, Symbol
SYMour, TM state STour, Accumulator value wour, Iterator value voyr,
Signature osps our, String SEEDour), or L

1. Identify an integer 7 such that 27 < ¢ < 277, If [PRG(SEEDN) #
PRG(F(K~, (h, o)) A [t > 1], output L.
2. If ACC.Verify-Read (PP oo, Win, SYMiy, POSix, Tace) = 0, output L.
3,(3.) Compute Tsps,A =]:(KSPS,A7 (hqémpﬂ‘/ — 1)) and (SKSPS,A, VKsps, A, VKsps—REJ,A) =
SPS.Setup(lA;rsps,A),

(b) Set mux = (v, STin, Wi, POS). If SPS.Verify(VKgps, 4, Mun, Osps,n) = 0, output L.
4.(a) Compute (STour, SYMour, 3) = 0(STiy, SYM) and POSour = POSi + S.
(b) If STour = gres, output L.
Else if STouvr = gac, output F (K, (h, lwe)).
5.(a) Compute wour = ACC.Update(PPacc, Wix, SYMour, POSiv, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirx, Vi, (STin, Wix, POSK)).
6'(3‘) ComPUte Ts,sps,A = }—(KSPS,A7(h7£INP7t)) and (SKgPS,A7VKgPS,A7VKgPS-l{EJ,A) =

SPS.Setup(1*; 74u5. 4)-
(b) Set moyr = ('UOUT, STour, Wour, POSOUT)~
Compute osps,ovr = SPS.Sign(SKéps, 4, Mour)-
7. Ift+1=2", set SEEDour = F(K,r, (h, bixp)).
Else, set SEEDour = €.
8. Output (POSour, SYMour, STout, Wour, Vour, Oses,ours SEEDour).

Fig. 4. Constrained-Key.Prog.,.

CPRF’s for Unconstrained Inputs Revisited 481

P1, P2, P3, Poprr) € Keprr-const corresponding to some legitimate TM M =
<Q7 2y Zrare, 57 405 qac QREJ> and an input x = zg... Ty, —1 € Xeprr With
|x| = £,. It proceeds as follows:

1. Tt first computes h = Hyx ().
2. Next, it computes Fgps o = P1(h).
3. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes mggp j—1 & SSB.Open(HK, z,j — 1).
(b) It computes AUX; = ACC.Prep-Write(PP ¢, STORE; 1,5 — 1).
(C) It computes ouT = 7)2(.] - l,xj_l, qo, Wj—1,AUXj, vj_l,&sps,j_l, h,
7TSSB,j—l)-
(d) If our = L1, it outputs ouT. Else, it parses OUT as OUT =
(w5, 05, Tsps,j)-
(e) It computes STORE; = ACC.Write-Store(PPcc, STORE;j_1,j — 1, 2;_1).
4. It computes ogps 0 = P3(qo, We, , Ve, s P, by, Tops.e,,)-
. It sets POS7,0 = 0 and SEEDg = €.
6. Suppose, M runs for t, steps on input x. For ¢t = 1,...,t,, it iteratively
performs the following steps:
(a) It computes (SYMar,t—1, Tace,t—1) = ACC.Prep-Read(PP ¢,
STOREy, +¢—1, POSM ¢1—1)-
(b) It computes AUXy, 4+ = ACC.Prep-Write(PPscc, STOREr, 441,
POSM,¢—1)-
(¢) It computes OUT = Pepgp(t, SEED;_1, POSN1—1,SYMAst—1, STM t—1,
W, +t—15 Tace,t—1, AUXe, 41, V0, 4t—15 Py oy Osps i—1)-
(d) If t = tg, it outputs oUT. Otherwise, it parses OUT as OUT = (POSa/,q,

Ut

WRITE
SYMEVM)7 STM,ts We,+ts Ve, tts Osps,ts SEEDt).
(e) It computes STORE;, +; = ACC.Write-Store(PPcc, STOREr, ++—1,

POS L1, SYMGI™)
Theorem 3.1. Assuming ZO is a secure indistinguishability obfuscator for
P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
and PRG is a secure injective pseudorandom generator, our CPRF construc-
tion satisfies correctness under constraining and selective pseudorandomness
properties.

The proof of Theorem 3.1 is provided in the full version of this paper.

Remark 3.2. We note that concurrently and independently of our work,
Deshpande et al. [11] have recently provided an alternative fix to the flaw in
[10] discussed in Sect.3.2, by replacing the standard positional accumulators
used in the CPRF construction of [10] with an advanced variant of positional
accumulators, namely, history-less positional accumulators [3]. Unlike standard
positional accumulators, in case of history-less positional accumulators, setting
up the public parameters in read/write enforcing mode does not require any

482 P. Datta et al.

history of symbol-index pairs as input. Consequently, the problem in the simu-
lation of [10] discussed in Sect. 3.2, resulting from the use of standard positional
accumulators, would clearly not arise if history-less positional accumulators are
utilized in the CPRF construction of [10] instead. However, we emphasize that
our approach towards resolving the flaw of [10] brings about some new subtle
technical ideas which might be useful elsewhere as well.

4 Our CVPRF for Turing Machines

4.1 Notion

Definition 4.1 (Constrained Verifiable Pseudorandom Function for
Turing Machines: CVPRF). Let M) be a family of TM’s with (worst-case)
running time bounded by 7' = 2*. A constrained verifiable pseudorandom func-
tion (CVPRF) for M) with key space Kcyprr, input domain Xeyprr C {0, 1}, and
output space Voyprr C {0, 1}* consists of a constrained key space Koyprr-consrs
a proof space Ioyppr, along with PPT algorithms (CVPRF.Setup, CVPRF.Eval,
CVPRF.Prove, CVPRF.Constrain, CVPRF.Prove-Constrained, CVPRF.Verify)
which are described below:

CVPRF.Setup(l)‘) — (SKoyprrs VKeverr) @ The setup authority takes as input the
security parameter 1* and generates a master CVPRF key SKoyppe along with
a public verification key VKcypre-

CVPRF.Eval(SKoyprr,) — vy : Taking as input the master CVPRF key SKcypre
and an input z € Xoyprr, the trusted authority outputs the value of the func-
tion y € Vevere- For simplicity of notation, we will denote by CVPRF(SKayprr,
x) the output of this algorithm.

CVPREF.Prove(SKcyprr,) — Tovere : Taking as input the master CVPRF key
SKcvpre and an input z € Xoypre, the trusted authority outputs a proof

Toverr € Hovere-

CVPRF.Constrain(SKcyprr, M) — SKevpre{ M} : On input the master CVPRF key
SKcvprr and a TM M € My, the setup authority provides a constrained key
SKcverr{ M } to a legitimate user.

CVPRF.Prove-Constrained(SKoypre{M },) — (y, Tevprr) Or L : A user takes as
input its constrained key SKqypre{M } corresponding to a legitimate TM M &€
M, and an input € Xeyprr. It outputs either a value-proof pair (y, meverr) €
Voverr X Heypre or (L, 1) indicating failure.

CVPRF Verify(VKcypre, &, Y, Tovprr) — ﬁ € {0,1} : A verifier takes as input the
public verification key VKcyprr, an input z € Xeyprr, & value y € Yovprr,
together with a proof meyprr € cvpre- It outputs a bit beta € {0,1}.

The algorithms CVPRF.Setup, CVPRF.Prove, CVPRF.Constrain and CVPRF.
Prove-Constrained are randomized, while the other two algorithms are deter-
ministic.

» Provability: For any security parameter A\, (SKcverr, VKcvprr) & cvPRF.
Setup(1*), M € My, SKovere{ M } & CVPREF.Constrain(SKcyprr, M), 2 € Xovprr,
and (y, Tovprr) & CVPRF.Prove-Constrained(SKcypre{ M }, x), the following holds:

CPRF’s for Unconstrained Inputs Revisited 483

o If M(x) = 1, then y = CVPRF(SK¢yprr,) and CVPRF . Verify(VKcypre, 2, ¥,
7TCVPRF) =1

o If M(l’) =0, then (y77TCVPR.F) = (J-a J—)'

The security requirements of a CVPRF are formally defined in the full version of
this paper.

4.2 Techniques Adapted in Our CVPRF Construction

Let us now sketch our technical ideas to extend our CPRF construction to incor-
porate the verifiability feature. The additional tool that we use for this enhance-
ment is a public key encryption (PKE) scheme which is perfectly correct and
chosen plaintext attack (CPA) secure. Besides the PPRF key K, used to gener-
ate the PRF output, and the SSB hash key, we include within the master key
another PPRF key Kpx: to generate randomness for the setup and encryption
algorithms of PKE. As earlier, the PRF output on some input z is F(K, (h,£;)),
where h and ¢, are respectively the SSB hash value and length of z. The non-
interactive proof of correctness consists of a PKE public key PKpkp together
with a pseudorandom string rpxg 2. The randomness rpgg 1 for setting up the
PKE public key PKpk along with the pseudorandom string rpkp 2 are formed as
TpkE,1 ||TPKE,2 = f(KPKI*h (h7£w))

The public verification key comprises of the same SSB hash key as included
in the master PRF key, together with an 10-obfuscated program Vypgr, known
as the verifying program. The verifying program Veyprr has the PPRF keys K
and Ky hardwired in it. It takes as input an SSB hash value h and PRF
input length f\p. It first computes the concatenated pseudorandom strings
Pokn1 ||Fexn,2 = F(Kpke, (B, fip)). Next, it runs the PKE setup algorithm using
the generated randomness 7pi,1 and creates a PKE public key PKpie. The pro-
gram outputs PKpyp together with the ciphertext CTpy encrypting the PRF value
F(K, (h, lip)) under PKpgg; utilizing the randomness Tpkm,2-

To verify a purported PRF value-proof pair (y, moyprr = (PKpkg, 7)) for some
input = using the public verification key, a verifier first hashes x using the SSB
hash key and then obtains a PKE public key-ciphertext pair (PKpyg, CTpxs) by
running the obfuscated verifying program Veyprr on input the computed hash
value and length of the input 2. The verifier accepts the proof if PKpis matches
with PKpxg, as well as CTpxe matches with the ciphertext formed by encrypt-
ing the purported PRF value y under PKpk; using the string r included within
the proof. Observe that the soundness of verification follows directly from the
perfect correctness property of the underlying PKE scheme. Specifically, due to
the perfect correctness of PKE, it is guaranteed that two different values cannot
map to the same ciphertext under the same public key.

Finally, to enable the generation of the proof along with the PRF value using
a constrained key, we modify the obfuscated next step program, which we denote
as Peoyprr, included in the constrained key to output the proof together with the
PRF value when it reaches the accepting state.

484 P. Datta et al.

4.3 Formal Description of Our CVPRF

Here we will provide our CVPRF for TM’s. This construction is obtained by
extending our CPRF construction described in Sect. 3.4. Let A be the underlying
security parameter. Let M be a class of TM’s, the members of which have
(worst-case) running time bounded by 7' = 2*, input alphabet Y = {0, 1}, and
tape alphabet X, p, = {0, 1, _}. Our CVPRF construction for TM family M, will
employ all the building blocks utilized in our CPRF construction. Additionally,
we will use a perfectly correct and chosen plaintext attack (CPA) secure public
key encryption scheme PKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) with an
appropriate message space. The formal description of our CVPRF construction
follows:

CVPRF-SetUp(l)\) — (SKevere = (K, Kpgg, HK), VKoypre = (HK, Voverr)): The
setup authority takes as input the security parameter 1* and proceeds as
follows:

1. Tt first chooses PPRF keys K, Koy & F.Setup(1*).

2. Next it generates HK & SSB.Gen(l)‘,nSSB_BLK =2*i* =0).

3. Then, it creates the obfuscated program Veyprr = ZO(Verify.Prog. o [K,
Kpki]), where the program Verify.Prog, .ne is described in Fig. 5.

4. Tt sets the master CVPRF key as SKoyprr = (K, Kpkr, HK) and publishes
the public verification key VKcyprr = (HK, Voverr)-

Constants: PPRF keys K, Kpkg
Inputs: SSB hash value h, Length i
Output: (PKE public key PKpkp, Encryption of CVPRF value CTpe)

1. Compute Fps,1||Frxn,2 = F(Kee, (hy bixe))y (PRexs, SKeke) = PKE.Setup(17; feie,1)-
2. Compute CTpxs = PKE.Encrypt(PKexe, F (K, (h, bixe)); Poxe,2)-
3. Output (EI\(pKE,aPKE)-

Fig. 5. Verify.PrOgcwm»

CVPRF.Eval(SK¢ypre,) — y = F(K, (h, £;)): Taking as input the master CVPRF
key SKovpre = (K, Kpki, HK) along with an input @ = zg...2¢,—1 € Xovere,
where |z| = {,, the setup authority proceeds in an identical fashion to
CPRF.Eval(SKcprr, ©) described in Sect. 3.4.

CVPRF.Prove(SKcypre,) — Toverr = (PKpkm, Tpxp,2): Lhe setup authority takes
as input the master CVPRF key SKcyprr = (K, Kpkp, HK) along with an input
x=2x0...2¢,—1 € Xovprr, Where |x| = £,. It proceeds as follows:

1. At first, it computes h = Hyx ().

2. Then, it computes TPKEJ”TPKE,Q = F(Kpkn, (h,43)), (PKpke, SKpkp) =
PKE.Setup(l/\; TpkE1)-

3. It outputs Toverr = (PKpke, Tpke,2)-

CPRF’s for Unconstrained Inputs Revisited 485

Constants: PPRF key Kypxp along with everything hardwired within the program
Constrained-Key.Prog, ... (Fig. 3.4)

Inputs: Same as those to the program Constrained-Key.Prog,,.. (Fig. 3.4)

Output: (CVPRF evaluation F(K, (h,lnr)), CVPRF proof movere =
(PKpe, Tpre,2)) or Header Position (POSour, Symbol SYMoyr, TM
state STour, Accumulator value wour, Iterator value vour, Signature
Osps,our, String SEEDour), or L

The functionality of this program is exactly the same as that of the program
Constrained-Key.Prog,,,... (Fig. 3.4) except that Step 4.(b) is replaced with the fol-
lowing;:

4.(b) If STour = Gres, output L.
Else if STour = gac, perform the following:
(I) ComPUte rPKn,lHTPKE,Q =]:(KPKE(h,glNP)) and (PKPKEysKPKF) =
PKE.Setup(l*;erE,l).
(II) OUtPUt (-F(]f, (h7 611\'}’))771'(7\'}71(13 = (PKPKI-1,7"PKI-1,2))~

Fig. 6. Constrained-Key.Prog ...

CVPRF.Constrain(SKcyprry M) — SKovpreiM } = (HK, PPsco, Wo, STOREg, PPiry,
Vo, P1, P2, P3, Peverr): On input the master CVPRF key SKevprr = (K, Kpkp,
HK) and a TM M = (Q, Yixp, Zrares 9, Q0 dac, @res) € My, the setup authority
proceeds identically to CPRF.Constrain(SKcprr, M) with the only difference
that in place of Pepre it includes Poypre = ZO(Constrained-Key.Prog, ppe [M,
T = 2) PPycc, PPig, K, Ko, K1, - . ., K, Kgps,a]) within the constrained key
SKoverr{M }, where the program Constrained-Key.Prog, ... is depicted in
Fig. 6.

CVPRF.Prove-Constrained(SKeypre {M },z) — (y = F(K, (h,Lz)), Tovere =
(PKpkg, Texe,2)) OF L: A user takes as input its constrained key SKovpre{M } =
(HK, PP,cq, Wo, STOREq, PPy, Vg, P1, P2, P3, Peverr) corresponding to some
legitimate TM M = (Q, Xwp, XZrare, 9, 90, Gac, Grey) and an input = =
Zo...Te,—1 € Xovere With |z| = £;. It proceeds in the exact same manner
as the algorithm CPRF.Eval-Constrained (SKcpre{ M },) described in Sect. 3.4.
However, note that now the constrained key SKcyprr{M } of the user contains
the obfuscated program Peypgrr instead of Peprp. Thus, it utilizes the program
Peverr in place of Peprr in the course of execution.

CVPREF Verify(VKcyprrs T, Ys Toverr) — B e {0,1}: A verifier takes as input the
public verification key VKeyprer = (HK, Voyprr), an input @ = xg...2¢,—1 €
Xeverr, Where |z| = £, a value y € Vevprr, and a proof meverr = (PKpke,) €
I yprr- It executes the following:

1. It first computes h = Hyx ().

2. Next, it computes (PKpkg, CTpke) = Vovere (R, £z).

3. If [PKpxp = PKpgp] A [PKE.Encrypt(PKpyp,y;7) = CTpkg), it outputs 1.
Otherwise, it outputs 0.

486 P. Datta et al.

Theorem 4.1. Assuming ZO is a secure indistinguishability obfuscator for
P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
PRG is a secure injective pseudorandom generator, and PKE is a perfectly correct
CPA secure public key encryption scheme, our CVPRF construction satisfies all
the properties of a secure CVPRF.

The proof of Theorem4.1 is given in the full version of this paper.

5 Our DCPRF for Turing Machines

5.1 Notion

Definition 5.1. (Delegatable Constrained Pseudorandom Function
for Turing Machines: DCPRF). Let M, be a family of TM’s with
(worst-case) running time bounded by T = 2*. A delegatable constrained
pseudorandom function (DCPRF) with key space Kpeprr, input domain
Xocere € {0,1}*, and output space Vpeprr C {0,1}* for the TM fam-
ily M, consists of an additional key space Kpcprp-const and PPT algorithms
(DCPRF.Setup, DCPRF.Eval, DCPRF.Constrain, DCPRF.Delegate, DCPRF.Eval-
Constrained) described as follows:

DCPRF.Setup(l’\) — SKpeprr - The setup authority takes as input the security
parameter 1* and generates the master DCPRF key SKpcprr € Kpepre-

DCPRF.Eval(SKpcprr,) — ¥ : On input the master DCPRF key SKpcpre along
with an input * € Xpcprr, the setup authority computes the value of the
DCPRF y € Ypeprr- For simplicity of notation, we will use DCPRF(SKpcpry,)
to indicate the output of this algorithm.

DCPRF.Constrain(SKpcpres M) — SKpepre{M} : Taking as input the master
DCPRF key SKpcprr € Kpeprr and a TM M € My, the setup authority provides
a constrained key SKpcpre{M } € Kpeprr-consr t0 a legitimate user.

DCPRF.Delegate(SKpcprr{ M}, M) — SKpoprei M A M} : Taking as input a con-
strained key SKpcpre{M} € Kpeprrconsr corresponding to a legitimate TM
M € M along with another TM M e M, a user gives a delegated con-
strained key SKpepre{M A M} € Kpcpri-consr t0 a legitimate delegate.

DCPRF.Eval-Constrained (SKpcprr{ M } /SKpcpre {M A M},x) — yor L : A user
takes as input a constrained key SKpcprr{M } € Kpeprr-const Obtained from the
setup authority, corresponding to TM M € M, or a delegated constrained
key SKpopre{M A M} € Kpopriconsr delegated by a constrained key holder
holding the constrained key SKpcprr{ M} € Kpcprr-consr, corresponding to TM
M e M, along with an input z € Xpcpre. It outputs either a value y € Vycprre
or | indicating failure.

The algorithms DCPRF.Eval and DCPRF.Eval-Constrained are deterministic,
while, all the others are randomized.

CPRF’s for Unconstrained Inputs Revisited 487

» Correctness under Constraining/Delegation: Let us consider any secu-

rity parameter \, & € Xpopnes SKporre <~ DCPRF.Setup(1*), M,M € My,

SKpcprr{M } & DCPRF.Constrain(SKpcpres M) and SKpepre{M A]\7} &

DCPRF.Delegate(SKpepre{ M}, M). The following must hold:

DCPRF.Eval-Constrained(SKpcpre { M }/SKpcpre { M A M}, x) =

{ DCPRF(SKpeprr,), if M(z) =1/[M(z) =1] A [M/(a:) =1]
L otherwise

)

The security notion of a DCPRF, namely, the pseudorandomness property is
formally defined in the full version of this paper.

5.2 Techniques Adapted in Our DCPRF Construction

Here again our starting point is our CPRF construction. We again use a perfectly
correct and CPA secure PKE scheme for accomplishing key delegation. Precisely,
while generating a constrained key corresponding to some TM M, we create a
PPRF key K’ specific to that constrained key. We then modify the output of the
next step program, which we refer to as Ppcprr, when it reaches the accepting
state. In stead of outputting the PRF value, the program Ppcprr outputs an
encryption of the PRF value. For performing this encryption it generates a PKE
public key PKpke. The program computes the randomness rpxg 1 for generating
the PKE public key PKpg as well as the randomness rpig 2 for the encryption
as Tpip,1||Ten,2 = F(K', (h, fixe)), where h and £iy» denote respectively the SSB
hash value and length of the PRF input. We also include the PPRF key K’ in
the clear within the constrained key. Thus, while evaluating the PRF on some
input using the constrained key, the evaluator will be able to recompute the
pseudorandom string rpxp 1 using K’ and then can generate the necessary PKE
secret key SKpie by running the setup algorithm using the randomness 7pi,1 on
its own. Once the secret key SKpg is obtained, the evaluator can simply decrypt
the ciphertext obtained from the next step program Ppcprr to uncover the PRF
value. However, if a party does not have the key K’ or the randomness that
would have to be used for creating the required PKE secret key, then it cannot
derive the PRF value from the ciphertext obtained from the next step program
Poerrr- We encash this idea to design the key delegation functionality.

The structure of our delegated key is as follows: Suppose a party holding a
constrained key, corresponding to some TM M, wishes to construct a delegated
key for M A M, where M is some other TM. The party generates all the compo-
nents and obfuscated programs as those formed while constructing a constrained
key for M with the only exception that it embeds the PPRF key K, included
in its constrained key, inside the obfuscated next step program for M in place
of the PPRF key K, which is part of the master PRF key and provides the PRF
output. In fact, since the party only has a constrained key and not the master
key, it does not possess the key K in the clear and hence cannot embed it within

488 P. Datta et al.

the obfuscated programs that it generates. The delegated key, corresponding to
M AN M consists of all the generated components and obfuscated programs for
M together with all the components and obfuscated programs included in the
constrained key for M possessed by the delegator except the PPRF key K.

The idea is that, while evaluating the PRF on some input x using the del-
egated key for M A M, the evaluator proceeds in three steps. In the first step,
provided M (z) = 1, the evaluator computes the output of F with key K’ on the
SSB hash value and length of « by making use of the delegated key components
pertaining to M. Next, using the obtained PPRF output, the evaluator runs the
PKE setup algorithm to obtain the necessary PKE secret key. In the second step,
utilizing the delegated key components associated to M, the evaluator obtains
a ciphertext encrypting the PRF output on z, provided M (z) = 1. Finally, the
evaluator decrypts the ciphertext using the computed PKE secret key to reveal
the PRF output.

5.3 Formal Description of Our DCPRF

In this section, we will present our DCPRF for TM’s. The construction pre-
sented here considers only one level of delegation, however, it can readily be
generalized to support multiple delegation levels. Let A be the underlying secu-
rity parameter. Consider the class My of TM’s, the members of which have
(worst-case) running time bounded by 7' = 2*, input alphabet Xy, = {0, 1},
and tape alphabet Xp,p, = {0,1,_}. Our DCPRF construction is an augmenta-
tion of our CPRF construction with a delegation functionality and employs all
the cryptographic building blocks utilized by our CPRF construction. In addi-
tion, we use a perfectly correct and CPA secure public key encryption scheme
PKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) with an appropriate message
space. The formal description of our DCPRF follows:

DCPRF.Setup(l)‘) — SKpepre = (K, HK): The setup authority takes as input
the security parameter 1* and proceeds the same way as CPRF.Setup(l’\)
described in Sect. 3.4.

DCPRF.Eval(SKpcpres) — y = F(K, (h, £,)): Taking as input the master DCPRF
key SKpeprr = (K, HK) and an input = xqg...2¢,—1 € Xpcprr, Where |z| = £y,
the setup authority executes identical steps as CPRF.Eval(SKcprr,) described
in Sect. 3.4.

DCPRF.Constrain(SKpcpres M) — SKpepre{M} = (K',HK, PP,cq, Wo, STOREq,
PPirr, Vo, P1, P2, Ps, Pocprr): On input the master DCPRF key SKpeppr =
(K,HK) and a TM M = (Q, Xip, Zrare, 9, Q0, Gac, Gres) € My, the setup
authority performs the following steps:

1. At first, it selects PPRF keys K/ Ki,...,Kx Ksa, Kasp o

F Setup(1*).

2. Next, it generates (PP,qc, Wp, STORE) & ACC.Setup(1>‘7nACC,BLK = 2Y)
and (PPyrg, v0) S ITR.Setup(l)‘,nITR =2%).

3. Then, it constructs the obfuscated programs

CPRF’s for Unconstrained Inputs Revisited 489

Constants: PPRF key K’ along with everything hardwired within the program
Constrained-Key.Prog,... (Fig. 3.4)

Inputs: Same as those to the program Constrained-Key.Prog, .. (Fig. 3.4)

Output: Encryption of DCPRF value CTpxe, or Header Position (POSour, Symbol
SYMour, TM state STour, Accumulator value wour, Iterator value voyr,
Signature osps our, String SEEDour), or L

This program functions in the same fashion as the program Constrained-Key.Prog,, ..
(Fig. 3.4) except that Step 4.(b) is replaced with the following:

4(b) If STour = gres, output L.
Else if STour = ¢ac, perform the following steps:
(I) Compute TPKE,1 = ‘F(K/v (h’v ZINP)) and (PKPKE’ SKPKE) =
PKE.Setup(lA; TpE,1)-
(II) Output CTexe = PKE.Encrypt(PKexe, F (K, (b, bixe)); Toxs,2)-

Fig. 7. Constrained-Key.Prog, ...,

— P1 = ZO(Init-SPS.Prog|qo, wo, vo, Ksps,£]),
— Py = TO(Accumulate.Prog[ngss ik = 2%, HK, PPacc, PPirg, Ksps, 5]),
— P3 = ZO(Change-SPS.Prog[Ksps 4, Ksps.E]),
— Pocrre = ZO(Constrained-Key.Prog, ..u[M, T = 2*, PP scc, PPy, K, K,
K17) K)\aKSPS,AD7

where the programs Init-SPS.Prog, Accumulate.Prog, and Change-SPS.Prog
are depicted respectively in Figs. 1, 2 and 3 in Sect. 3.4, while the program
Constrained-Key.Prog, .ppr is described in Fig. 7.

4. Tt provides the constrained key SKpepre{M } = (K', HK, PPcc, Wo, STORE,
PPrr, Vo, P1, P2, Ps, Pocerr) to a legitimate user.

DCPRF. De|egate(SKDchF{M} M) — SKDCPRF{M A M} = (K’ HK PPACC,PPACC,
Wo, U)(), STORE, STORE07 PPirr, PPITRa Vo, UOa Pla P17 PQ, PQ; PSa P37
Poc pRF,PD(prr): A user takes as input a constrained key SKpeprp{ M} = (K,
HK, PP scc, Wo, STORE, PPITR,vo,Pl,Pg,”Pg,”PDCPRF) Corresponding to a legit-
imate TM M € M, and another TM M = (Q YiNpy ZrAPE, 5 , 405 Gacs Qres) €
M. It proceeds as follows:

1. It first picks fresh PPRF keys K',Ky,....Kx Kesa Kasp <

F Setup(1*).
2. Next it generates (ﬁ’ACC,{Z)O,SmO) & ACC.Setup(1*, nycopx = 2*)
and (PPyrx, Up) TR Setup(1*, nypy = 2*) afresh.
3. Then, it constructs the obfuscated programs
- 771 ZO(Init-SPS. Prog[qo,wo,vo,Kbps,E])
- 7)2 IO(AccumU|ate-Prog[nSSB—BLK = 2)\a HK, f’\f)/\cm P/)\E’ITRa KSPS,E])a
— P3 = ZTO(Change-SPS.Prog[Ksps 4, Ksps.E]),

490 P. Datta et al.

— Poopne = ZO(Constrained-Key.Prog,, [M,T = 2 PPycc, PP, K,
K' K, .. K,\,KSP57A})

where the programs Inlt—SPS.Prog, Accumulate.Prog, and Change-SPS.Prog
are depicted respectively in Figs. 1, 2 and 3 in Sect. 3.4, while the program
Constrained-Key.Prog, ., is described in Fig. 7.

4. Tt gives the delegated key SKDCPRF{M A M} = (K’ HK PPACC,PPACC,
wo, Wo, STORE, STORE(, PPirr, PPirr, U0, 00, P1, P1, P2, P2, Ps, Ps, Pocerrs
Poorre) to a legitimate delegate.

DCPRF.Eval-Constrained (SKpcpre{ M } /SKpcpre{ M A]T/f}w) -y = F(K,(h,
l;)) or L: A wuser takes as input a constrained key SKpcpre{M}
= (K',HK, PPcc, Wo, STOREq, PPirg, Vo, P1, P2, P3, Poeprr) Obtained from the
setup authority, corresponding to some legitimate TM M = (Q NPy 2ITAPES
6, qo,qAC,qu> € M,, or a delegated key SKpepre{M A M} (IN(’ HK,
PPACC,PPACC,wO,wO, STOREO,STOREQ,PP“R, PP“R,vo,vo,Pl,Pl,Pg,Pg,Pg,
Pg,PDCPRF,PDCPRF) obtained from the holder of the constrained key
SKDCPRF{M}7 corresponding to TM M = <Q; 2inps Zrare; 05 0, Gacs q~REJ> € M,,
along with an input © = xg...2¢,—1 € Xpeere With || = £,. It proceeds as
follows:

(A) If M(x) =0, it outputs L. Otherwise, it performs the following steps:
1. Tt first computes h = Hyk ().
2. Next, it computes Ggps,0 = P1(h).
3. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes mgsp j—1 & SSB.Open(HK, z,j — 1).
(b) It computes AUX,; = ACC.Prep-Write(PP ¢, STORE;_1,j — 1).
(C) It computes OUT = PQ(.] -1, Tj—1,q0, Wj—1,AUX;, V51, &Sps,j_l, h,

WSSB,j—l)-

(d) If ouT = L, it outputs OUT. Else, it parses OUT as OUT = (wj, vj,
Tsps,j)-

(e) It computes STORE; = ACC.Write-Store(PP,¢c, STORE;_1,j — 1,
.Z‘j_l).

4. It computes ogps, o = PS(QOa Wy, Ve, Ry Ly, Cursps,zm)~

. It sets POSp7,0 = 0 and SEED(= .

6. Suppose, M accepts x in t, steps. For t = 1,... t,, it iteratively
performs the following steps:

(@1

(a) It computes (SYMM,tflv’]TACC,tfl) = ACC.Prep-Read(PP,cc,
STOREy, +¢—1, POSpMt—1)-

(b) It computes AUXg, 4+ = ACC.Prep-Write(PP4oc, STORE, 411,
POSM t—1)-

(c) It computes OUT = Ppepre(t, SEEDi—1,POSas¢—1,SYMas—1,

STA t—1, We,4t—1, Tace,t—1, AUXe, 41, Veptt—1, s by Osps 1—1).
(d) If t = t,, it sets CTpxr = OUT. Otherwise, it parses OUT as OUT =
WRITE
(POSAL,e, SYMGY ™, STar e, We, 14, Ve, 4+, Tsps,i SEEDy).
(e) It computes STOREy, y+ = ACC.Write-Store(PPscc, STORE, ++—1,

WRITE
POSp -1, SYMth))

CPRF’s for Unconstrained Inputs Revisited 491

(B) If the user is using the constrained key SKpcpre{M }, then it computes
TPKEJ”TPKE,Q = f(K/a(hygx))y(PKPK]%SKPKE) = PKE-SetUpu)\; rPKE,l)a
and outputs PKE.Decrypt(SKpkg, CTpkr). On the other hand, if the user
is using the delegated key SKpcpre{M A M} and M(x) = 0, then it
outputs L, while if M (z) = 1, it further executes the following steps:

1. It computes gsps,o = 751(h).
2. Then for j =1,...,4,, it iteratively performs the following:
(a) Tt computes %SSB] 1 S ssB. Open(HK, z,j — 1)
(b) It computes AUX; = ACC.Prep-Write(PPcc, STORE] 1,J— 1).
(¢) It computes OUT—PQ(j 1, @-1,q0, Wj—1,AUX;, Vj_1, Osps,j—1, P,

Wsaﬂ;l) - . .
(d) If OUT = L, it outputs OUT. Else, it parses OUT as OUT = (wj, v;,
5sps,j)-
(e) It computes Smj = ACC.Write—Store(f)\ﬁACC,Smj_l,j -1,
Tj-1). ~
3. It computes Tgps 0 = Pg(qo, We,,, Vg, s My Uy, Gsps .,)-
4. Tt sets POSy; Mo = = 0 and SEEDy = e

5. Suppose, M accepts = in 1, steps. For t = 1,...,1,, it iteratively
performs the following steps:

(a) It computes (SYMMt_l,%Accyt,l) = ACC.Prep-Read(PP 4,
STOREy, +4-1,POS57 -

(b) It computes AUX;, 1y = ACC.Prep-Write(PPscc, STORE, 141,
POS77 ;)-

(c) It computes OUT = PDchF(t SEED;_ 1,POSG7 1 SYMyr,),

STR7 415 W, 441, %Acc,t—laAUxﬁm—&-t; Vgyyt—1, M la, Osps,t—1)-
(d) If t = t,, it sets CTpxp = OUT. Otherwise, it parses OUT as OUT =

(WRITE) ~ ~ ~ —~
(POSM 1 SYM s STRF 13 We,+t5 Ve, 4t Osps,t SEEDy).

(e) It computes STOREe 1+ = ACC.Write-Store(PPcc, STOREy, 141,
(WRITF)
POSg7 1, SYM—).
(C) Finally, it computes
Ty = F(K', (b, 1)),
- (PKPKE7 SKPKE) = PKE Setup(15 TPkE, 1)
(SK

SKpic, CTpxe),
- (PKPKEH SKPKE) = PKE Setup(5 TPKE,I)»
and outputs PKE.Decrypt(SKpkg, CTpkg)-

Theorem 5.1. Assuming ZO is a secure indistinguishability obfuscator for
P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
PRG is a secure injective pseudorandom generator, and PKE is CPA secure, our
DCPRF construction satisfies the correctness and selective pseudorandomness
properties.

492

P. Datta et al.

The proof of Theorem 5.1 is given in the full version of this paper.

References

1.

10.

11.

12.

13.

14.

Abusalah, H., Fuchsbauer, G.: Constrained PRF's for unbounded inputs with short
keys. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol.
9696, pp. 445-463. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39555-5_24
Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded
inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413-428. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-29485-8_24

Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM
computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 3-30. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5_1

. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-

homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 31-60. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7_2

Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520-537. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0_30

Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol. 8270, pp.
280-300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0_15

Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501-519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0_-29

Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1-30. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_1
Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522
(2014)

Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions
for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 124-153. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5_5

Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions
for unconstrained inputs. Cryptology ePrint Archive, Report 2016/301, Version
20160819:153952 (2016)

Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M.,
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95-114. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-10879-7_7

Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS, vol.
8874, pp. 82-101. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_5
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40-49. IEEE (2013)

http://dx.doi.org/10.1007/978-3-319-39555-5_24
http://dx.doi.org/10.1007/978-3-319-29485-8_24
http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-46497-7_2
http://dx.doi.org/10.1007/978-3-662-46497-7_2
http://dx.doi.org/10.1007/978-3-642-54631-0_30
http://dx.doi.org/10.1007/978-3-642-54631-0_30
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/978-3-662-49896-5_5
http://dx.doi.org/10.1007/978-3-662-49896-5_5
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/978-3-662-45608-8_5

15.

16.

17.

18.

19.

20.

21.

22.

23.

CPRF’s for Unconstrained Inputs Revisited 493

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792-807 (1986)

Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. Cryptology ePrint Archive, Report 2014/720 (2014)
Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79-102. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6_4

Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: The 2015 Conference on Innovations in Theoretical
Computer Science, pp. 163-172. ACM (2015)

Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: The 2013 ACM SIGSAC Confer-
ence on Computer Communications Security, pp. 669-684. ACM (2013)

Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: The 47th Annual ACM on Symposium on
Theory of Computing, pp. 419-428. ACM (2015)

Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, pp. 120-130. IEEE (1999)
Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of some-
where statistically binding hashing and positional accumulators. In: Iwata, T.,
Cheon, J.H. (eds.) ASTACRYPT 2015. LNCS, vol. 9452, pp. 121-145. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6_6

Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: The 46th Annual ACM Symposium on Theory of Computing,
pp. 475-484. ACM (2014)

http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_6

	Constrained Pseudorandom Functions for Unconstrained Inputs Revisited: Achieving Verifiability and Key Delegation
	1 Introduction
	2 Preliminaries
	2.1 Turing Machines
	2.2 Indistinguishability Obfuscation
	2.3 IO-Compatible Cryptographic Primitives

	3 Our CPRF for Turing Machines
	3.1 Notion
	3.2 The CPRF Construction of Deshpande et al.
	3.3 Our Techniques to Fix the Flaw of [10]
	3.4 Formal Description of Our CPRF

	4 Our CVPRF for Turing Machines
	4.1 Notion
	4.2 Techniques Adapted in Our CVPRF Construction
	4.3 Formal Description of Our CVPRF

	5 Our DCPRF for Turing Machines
	5.1 Notion
	5.2 Techniques Adapted in Our DCPRF Construction
	5.3 Formal Description of Our DCPRF

	References

