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Abstract. In a recent result, Dachman-Soled et al. (TCC 2015) pro-
posed a new notion called locally decodable and updatable non-malleable
codes, which informally, provides the security guarantees of a non-
malleable code while also allowing for efficient random access. They also
considered locally decodable and updatable non-malleable codes that
are leakage-resilient, allowing for adversaries who continually leak infor-
mation in addition to tampering. Unfortunately, the locality of their
construction in the continual setting was Ω(log n), meaning that if the
original message size was n blocks, then Ω(log n) blocks of the codeword
had to be accessed upon each decode and update instruction.

In this work, we ask whether super-constant locality is inherent in this
setting. We answer the question affirmatively by showing tight upper and
lower bounds. Specifically, in any threat model which allows for a rewind
attack—wherein the attacker leaks a small amount of data, waits for the
data to be overwritten and then writes the original data back—we show
that a locally decodable and updatable non-malleable code with block
size X ∈ poly(λ) number of bits requires locality δ(n) ∈ ω(1), where
n = poly(λ) is message length and λ is security parameter. On the
other hand, we re-visit the threat model of Dachman-Soled et al. (TCC
2015)—which indeed allows the adversary to launch a rewind attack—
and present a construction of a locally decodable and updatable non-
malleable code with block size X ∈ Ω(λ1/µ) number of bits (for constant
0 < μ < 1) with locality δ(n), for any δ(n) ∈ ω(1), and n = poly(λ).

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [22]
as a relaxation of error-correcting codes, and are useful in settings where
privacy—but not necessarily correctness–is desired. Informally, a coding scheme
is non-malleable against a tampering function if by tampering with the code-
word, the function can either keep the underlying message unchanged or change
it to an unrelated message. The main application of non-malleable codes pro-
posed in the literature is for achieving security against leakage and tampering
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attacks on memory (so-called physical attacks or hardware attacks), although
non-malleable codes have also found applications in other areas of cryptogra-
phy [16,17,29] and theoretical computer science [12].

Standard non-malleable codes are useful for protecting small amounts of
secret data stored on a device (such as a cryptographic secret key) but unfor-
tunately are not suitable in settings where, say, an entire database must be
protected. This is due to the fact that non-malleable codes do not allow for ran-
dom access: Once the database is encoded via a non-malleable code, in order to
access just a single location, the entire database must first be decoded, requiring
a linear scan over the database. Similarly, in order to update a single loca-
tion, the entire database must be decoded, updated and re-encoded. In a recent
result, [18] proposed a new notion called locally decodable and updatable non-
malleable codes, which informally speaking, provides the security guarantees of
a non-malleable code while also allowing for efficient random access. In more
detail, we consider a message m = m1, . . . , mn consisting of n blocks, and an
encoding algorithm enc(m) that outputs a codeword Ĉ = ĉ1, . . . , ĉn̂ consisting
of n̂ blocks. As introduced by Katz and Trevisan [35], local decodability means
that in order to retrieve a single block of the underlying message, one does not
need to read through the whole codeword but rather, one can access just a
few blocks of the codeword. Similarly, local updatability means that in order to
update a single block of the underlying messages, one only needs to update a
few blocks of the codeword.

As observed by [18], achieving these locality properties requires a modifica-
tion of the previous definition of non-malleability: Suppose a tampering function
f only modifies one block of the codeword, then it is likely that the output of
the decoding algorithm, dec, remains unchanged in most locations. (Recall dec
gets as input an index i ∈ [n] and will only access a few blocks of the code-
word to recover the i-th block of the message, so it may not detect the mod-
ification.) In this case, the (overall) decoding of the tampered codeword f(Ĉ)
(i.e. (decf(Ĉ)(1), . . . ,decf(Ĉ)(n))) can be highly related to the original message,
which intuitively means it is highly malleable.

To handle this issue, [18] consider a more fine-grained experiment. Informally,
they require that for any tampering function f (within some class), there exists
a simulator that, after every update instruction, computes a vector of decoded
messages m∗, and a set of indices I ⊆ [n]. Here I denotes the coordinates of
the underlying messages that have been tampered with. If I = [n], then the
simulator thinks that the decoded messages are m∗, which should be unrelated
to the most recent messages placed in each position by the updater. On the other
hand, if I � [n], the simulator thinks that all the messages not in I remain
unchanged (equivalent to the most recent values placed there by the simulator
or the original message, if no update has occurred in that position), while those
in I become ⊥. This intuitively means the tampering function can do only one
of the following cases:

1. It destroys a block (or blocks) of the underlying messages while keeping the
other blocks unchanged, OR
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2. If it modifies a block of the underlying message to a valid encoding, then
it must have modified all blocks to encodings of unrelated messages, thus
destroying the original message.

It turns out, as shown by [18], that the above is sufficient for achieving
tamper-resilience for RAM computations. Specifically, the above (together with
an ORAM scheme) yields a compiler for any RAM program with the guarantee
that any adversary who gets input/output access to the compiled RAM program
Π running on compiled database D who can additionally apply tampering func-
tions f ∈ F to the database D adaptively throughout the computation, learns
no more than what can be learned given only input/output access to Π running
on database D. Dachman-Soled et al. in [18] considered locally decodable and
updatable non-malleable codes that are also leakage-resilient, thus allowing for
adversaries who continually leak information about D in addition to tampering.
The locality achieved by the construction of [18] is Θ(log(n)), meaning that when
encoding messages of length n number of blocks, the decode and update proce-
dures each require access to Θ(log(n)) number of blocks of the encoding. Thus,
when using the encoding scheme of [18] to compile a RAM program into its secure
version, the overhead is at least Ω(log(n)) memory accesses for each read/write
access in the underlying program. In practice, such an overhead is often pro-
hibitive.1 In this work, we ask whether it is possible to construct leakage-resilient,
locally decodable and updatable non-malleable codes that achieve significantly
better locality.

Rewind attacks. When considering both leakage and tampering attacks (even just
a single leakage query followed in a later round by a single tampering query) so-
called rewind attacks become possible. In a rewind attack, the attacker does the
following (1) leak information on only a “few” blocks of memory in rounds 1, . . . , i;
(2) wait during rounds i + 1, . . . , j until these memory locations are (with high
probability) modified by the “updater” (the entity that models the honest com-
putation on the data); (3) re-write the old information into these memory loca-
tions in round j + 1, with the goal of causing the state of the computation to be
rewound. Rewind attacks can be thwarted by ensuring that when the old informa-
tion is written back, it becomes inconsistent with other positions of the codeword
and an error is detected. On the other hand, a bad outcome of a rewind attack
occurs if when decoding certain blocks of memory, with non-negligible probabil-
ity, the old values from round i are recovered and no error is detected. This is a
problem since such an outcome cannot be simulated by a simulator as required
in the security definition: The decoding of these blocks depends on the original
message and yet is no longer equal to “same” (since the values decoded are not
the most recent values placed in those positions by the updater).

1 Although the ORAM scheme used in the compiler also has ω(log(n)) overhead,
in many applications of interest, properties of the specific RAM program can be
leveraged so that the overhead of ORAM can be reduced such that it becomes
practically feasible. On the other hand, the Θ(log(n)) overhead of the encoding
scheme of [18] is entirely agnostic to the RAM program being run on top and thus,
the high overhead would be incurred in all applications.
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1.1 Our Results

Our results show that any construction of locally decodable and updatable non-
malleable codes in a threat model which allows for a rewind attack as above
will require “high locality.” Specifically, we show tight upper and lower bounds:
(1) Every such construction will require super-constant locality, moreover;
(2) Super-constant locality is sufficient for achieving constructions in the same
threat model as [18] (which, as discussed, allows for rewind attacks). Throughout
the paper, we assume that the decode and update procedures are non-adaptive
in the sense that once an encoding scheme Π = (enc,dec) is specified, then
for each n ∈ N, the sets of codeword blocks Si := Sdec

i ∪ Sup
i accessed in order

to decode/update the i-th message block, i ∈ [n], are fixed (and do not depend
on the codeword Ĉ). This is a natural requirement, which holds true for the
encoding scheme of [18].

Specifically, we show the following:

Theorem 1 (Informal). Let λ be security parameter and let Π = (enc,dec)
be a locally decodable and updatable non-malleable code with non-adaptive decode
and update which takes messages over alphabet Σ and outputs codewords over
alphabet ̂Σ, where |Σ|, | ̂Σ| ∈ poly(λ), in a threat model which allows for a rewind
attack. Then, for n = poly(λ), Π has locality δ(n) ∈ ω(1).

Moreover, for every δ(n) ∈ ω(1), there exists a Π = (enc,dec) with non-
adaptive decode and update in a threat model which allows for a rewind attack,
which takes messages over alphabet Σ and outputs codewords over alphabet ̂Σ,
where |Σ| ∈ poly(λ) and | ̂Σ| ∈ Ω(λ1/μ) for constant 0 < μ < 1, such that for
n = poly(λ), Π has locality δ(n).

Specifically, for the positive result, the construction of leakage resilient locally
decodable updatable codes is secure against the same classes of tampering and
leakage functions, F , G, as the construction of [18], but improves the locality
from O(log n) to δ(n), for any δ(n) ∈ ω(1).

We emphasize that, for the lower bound, our attack works even in a threat
model which allows only a single bit of leakage in each round. We leave as an open
question extending our lower bound to the setting where decode and update may
be adaptive (i.e. the next position accessed by decode and/or update depends
on the values read in the previous positions) or randomized.

1.2 Our Techniques

Lower Bound. We assume that there exists a locally decodable and updatable
non-malleable code with non-adaptive decode and update and constant locality,
c, for all message lengths n = poly(λ) (where n is the number of blocks in the
message). We then arrive at contradiction by showing that for every constant
c, there exists a constant c′ > c, such that the security guarantee cannot hold
when encoding messages of length X c′

number of blocks, where X ∈ poly(λ)
is the bit length of the codeword blocks. Specifically, for messages of length
n := X c′ ∈ poly(λ) number of blocks, we will present an explicit attacker and
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an explicit updater for which there cannot exist a simulator as required by the
definition of locally decodable and updatable non-malleable codes.

The attack we present is a rewind attack, as discussed before. Intuitively,
the main difficulty of designing the attack is to determine which positions of the
codeword are to be leaked and subsequently re-wound to their original values so
that with high probability in the real game, the corresponding message block will
decode (with no error detected) to the original value in that position, as opposed
to the most recently updated value. For purposes of our attack, we assume that
the original message is either equal to 0 in all n blocks or equal to 1 in all n
blocks.

Sunflower Lemma. For i ∈ [n], let the sets Si ⊆ [n̂] correspond to the blocks
(where each block has size X ∈ poly(λ) bits) of the codeword accessed in order to
decode/update the i-th block of the message. Note that by the locality assump-
tion, the size of each set Si is |Si| = c. We use the Sunflower Lemma of Erdős
and Rado [24] to choose constant c′ large enough such that when the message
is of length n := X c′

number of blocks, we are guaranteed to have a Sunflower
SF := {Si0 , Si1 , . . . , Sik

}, where i0, . . . , ik ∈ [n], of size k + 1, where k � X · c. A
sunflower is a collection of sets such that the intersection of any pair is equal to
the core core, i.e. Sij

∩ Si�
= core for all j �= 	. There exists k petals, Sij

\core,
and it is required that none of them are empty. See Sects. 3.1 and 3.2 for more
details.

The Compression Function. Given a fixed initial codeword Ĉ and sunflower
SF (as defined above) we define a (randomized) compression function FĈ :
{0, 1, same}k → {0, 1}X·c which takes as input values x1, . . . , xk ∈ {0, 1, same}
indicating how to update (or not) the corresponding message block ij , j ∈ [k],
where Sij

is in the sunflower. Specifically, for j = 1 to k: If xj = same, mes-
sage block ij does not get updated. Otherwise updateĈ(ij , xj) is executed.
The output of the function FĈ is the contents of the sunflower core, core,
after all the updates have been completed. Note that core can consist of at
most c codeword blocks since core ⊆ Sij

for all j ∈ [k]. Therefore, the out-
put length of FĈ is at most X · c bits. Note that this means that FĈ is a
compression function, since we chose k � X · c. Now this, in turn, means
that the output of FĈ cannot contain all of the information in its input.
Indeed, it can be shown (cf. [20]) that with high probability over the choice
of j∗ ∈ [k], the two distributions FĈ(X1, . . . , Xj∗−1, same,Xj∗+1, . . . , Xk) and
FĈ(X1, . . . , Xj∗−1,Xj∗ ,Xj∗+1, . . . , Xk) are statistically close when each Xj ,
j ∈ [k] is chosen uniformly at random from {0, 1, same}. See Sects. 3.1, 3.3 and
3.4 for more details.

The Attacker and the Updater. The attacker first finds the sunflower SF := {Si0 ,
Si1 , . . . , Sik

} in polynomial time and then chooses j∗ ∈ [k] at random. In the
first round (or multiple rounds if the attacker is allowed only a single bit of
leakage) the attacker leaks the contents of the positions in Ĉ corresponding
to decoding of ij∗ (Sij∗ ), minus the contents of the blocks in the core of the
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sunflower. We denote the entire leaked information by yj∗ . The attacker then
writes those same values, yj∗ , back in the k + 1-st round. The updater chooses
values x1, . . . , xk ∈ {0, 1, same} and in each round from 1 to k, requests the
corresponding update (i.e. update message block ij to 0, if xj = 0, update to
1 if xj = 1 and do not update this block at all, if xj = same). See Sect. 3.5 for
more details.

Putting it All Together. Note that the input to the decoding algorithm when
decoding position ij∗ is exactly: (yj∗ , FĈ0

(X1, . . . , Xj∗−1,Xj∗ ,Xj∗+1, . . . , Xk))
(the contents of the positions in Ĉ corresponding to decoding of ij∗ , minus the
contents of the blocks in the core of the sunflower, and the core itself). Addi-
tionally, note that since {Si0 , Si1 , . . . , Sik

} form a sunflower, if xj∗ = same, then
the rewind attack has no effect (since the blocks in Sij∗ \core were not accessed
during any update request) and so decode on input (yj∗ , FĈ0

(X1, . . . , Xj∗−1,
same, Xj∗+1, . . . , Xk)) must correctly output 1 if the original encoding was
1 and 0 if the original encoding was 0 (without outputting ⊥). Since FĈ is
a compression function, it means that with high probability decode on input
(yj∗, FĈ(X1, . . . , Xj∗−1, Xj∗ , Xj∗+1, . . . , Xk)) will output 1 if the original encod-
ing was 1 and 0 if the original encoding was 0, regardless of the value of Xj∗ .
Intuitively, since the output of decode now depends on the original message
block in the ij∗ -th position, as opposed to the most recently updated value, the
simulator must fail in at least one of the two cases (either when the original mes-
sage was 0 or 1) and so the encoding scheme cannot satisfy the non-malleability
definition. See Sect. 3.6 for more details.

Upper Bound. Here we take advantage of the fact that codeword blocks are
large–X ∈ Ω(λ1/μ) number of bits, for constant 0 < μ < 1–to replace the
Merkle Tree used in the original construction of [18] with an alternative data
structure we call a t-slice Merkle Tree. Note that the Ω(log λ) locality of the
construction of [18] came from the fact that an entire path (and siblings) of the
binary Merkle tree from root to leaf of length log(n) had to be traversed for each
decode and update instruction. Our new data structure is a t := X 1−μ-ary tree
for constant 0 < λ < 1 and uses as a building block a collision resistant hash
function h : {0, 1}X → {0, 1}X μ

(note h has output length X μ ∈ Ω(λ)) and so,
for messages of length n = poly(λ) blocks, an entire path of the tree from root
to leaf will always have length less than δ(n), for any δ(n) ∈ ω(1). Moreover, the
root of the tree can be updated and verified without reading any of the siblings
along the path from root to leaf, due to the use of a carefully constructed hash
function with a specific structure. This allows us to achieve a locally decodable
and updatable code with locality δ(n), for any δ(n) ∈ ω(1). See Sect. 4 for more
details.

1.3 Related Work

Non-Malleable Codes. The concept of non-malleability was introduced by Dolev,
Dwork and Naor [19] and has been applied widely in cryptography since. It has
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since been studied in both the computational as well as the information-theoretic
setting. Error-correcting codes and early works on tamper resilience [28,32] gave
rise to the study of non-malleable codes. The notion of non-malleable codes was
formalized in the seminal work of Dziembowski, Pietrzak and Wichs [22]. Split
state classes of tampering functions introduced by Liu and Lysyanskaya [37], have
subsequently received a lot of attention with a sequence of improvements achiev-
ing reduced number of states, improved rate, or adding desirable features to the
scheme [1–3,6,11,21]. Recently [5,7] gave efficient constructions of non-malleable
codes for “non-compartmentalized” tampering function classes. Other works on
non-malleable codes include [2,4,8,10,15,25,33]. We guide the interested reader
to [34,37] for illustrative discussion of various models for tamper and leakage
resilience. There are also several inefficient, existential or randomized construc-
tions for much more general classes of functions (sometimes presented as efficient
constructions in a random-oracle model) in addition to those above [14,22,27].

Locally Decodable Codes. The idea of locally decodable codes was introduced by
Katz and Trevisan in [35], when they considered the possibility of recovering
the message by looking at a limited number of bits from a (possibly) corrupted
encoding obtained from an error correcting code. They also showed the impossi-
bility of achieving the same for schemes with linear encoding length. This work
was followed by [13,23,38] who achieved constant locality with super-polynomial
code length, while on the other hand locally decodable codes with constant rate
and sub-linear locality have been constructed by [30,31,36]. We refer the inter-
ested reader to [39], a survey on locally decodable codes by Yekhanin.

Locally Updatable and Locally Decodable Codes. The notion of locally updatable
and locally decodable codes was introduced by Chandran et al. in [9] where the
constraint of locality, i.e. restricting the number of bits accessed, is also applied to
updating any codeword obtained from encoding of another message. They gave
information theoretic construction with amortized update locality of O(log2 k)
and read locality of (super-linear) polynomial in k, where k is the length of input
message. Another variant called locally updatable and locally decodable-detectable
codes was also introduced in the same work which ensures that decoding never
outputs an incorrect message. Chandran et al. in [9] gave the construction of
such codes in computational setting with poly-logarithmic locality.

Locally Decodable and Updatable Non-Malleable Codes. Dachman-Soled et al.
in [18] introduced the notion of locally decodable and updatable non-malleable
codes and presented a construction in the computational setting. The construc-
tion of [18] also achieves leakage resilience in addition to the tamper resilience.
Dachman-Soled et al. in [18] then used this notion to construct compilers that
transform any RAM machine into a RAM machine secure against leakage and
tampering. This application was also studied by Faust et al. [26], who presented
a different approach which does not use locally decodable and updatable non-
malleable codes. Recently, Chandran et al. [10] gave a construction of locally
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decodable and updatable non-malleable codes in the information-theoretic set-
ting. However, they addressed only the one-time leakage and tampering case,
and to achieve continual leakage and tampering, require a periodic refresh of
the entire memory. The locality of their construction is super-constant, thus
affirming our results.

Bounds on Non-Malleable Codes. Cheragachi and Guruswami [14] studied the
“capacity” of non-malleable codes in order to understand the optimal bounds
on the efficiency of non-malleable codes. This work has been instrumental in
asserting the claims of efficient constructions for non-malleable codes since then
(cf. [1,5,6]). We note that our work is the first study establishing similar tight
bounds for the locality of the locally decodable and updatable non-malleable codes.

2 Definitions

Definition 1 (Locally Decodable and Updatable Code). Let Σ, Σ̂ be sets
of strings, and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and
updatable coding scheme consists of three algorithms (enc,dec,update) with
the following syntax:

– The encoding algorithm enc (perhaps randomized) takes input an n-block (in
Σ) message and outputs an n̂-block (in Σ̂) codeword.

– The (local) decoding algorithm dec takes input an index in [n], reads at most
p blocks of the codeword, and outputs a block of message in Σ. The overall
decoding algorithm simply outputs (dec(1),dec(2), . . . ,dec(n)).

– The (local) updating algorithm update (perhaps randomized) takes inputs
an index in [n] and a string in Σ ∪ {ε}, and reads/writes at most q blocks
of the codeword. Here the string ε denotes the procedure of refreshing without
changing anything.

Let Ĉ ∈ Σ̂n̂ be a codeword. For convenience, we denote decĈ ,updateĈ as
the processes of reading/writing individual block of the codeword, i.e. the code-
word oracle returns or modifies individual block upon a query. Here we view Ĉ
as a random access memory where the algorithms can read/write to the memory
Ĉ at individual different locations. In binary settings, we often set Σ = {0, 1}κ

and Σ̂ = {0, 1}κ̂.

Definition 2 (Correctness). An (n, n̂, p, q) locally decodable and updatable
coding scheme (with respect to Σ, Σ̂) satisfies the following properties. For any
message M = (m1,m2, . . . , mn) ∈ Σn, let Ĉ = (ĉ1, ĉ2, . . . , ĉn̂) ← enc(M) be a
codeword output by the encoding algorithm. Then we have:

– for any index i ∈ [n], Pr[decĈ(i) = mi] = 1, where the probability is over the
randomness of the encoding algorithm.
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– for any update procedure with input (j,m′) ∈ [n]×Σ∪{ε}, let Ĉ ′ be the resulting
codeword by running updateĈ(j,m′). Then we have Pr[decĈ′

(j) = m′] = 1,
where the probability is over the encoding and update procedures. Moreover,
the decodings of the other positions remain unchanged.

Remark 1. The correctness definition can be directly extended to handle any
sequence of updates.

Definition 3 (Continual Tampering and Leakage Experiment). Let
k be the security parameter, F ,G be some families of functions. Let
(enc,dec,update) be an (n, n̂, p, q)-locally decodable and updatable coding
scheme with respect to Σ, Σ̂. Let U be an updater that takes input a message
M ∈ Σn and outputs an index i ∈ [n] and m ∈ Σ. Then for any blocks of mes-
sages M = (m1,m2, . . . , mn) ∈ Σn, and any (non-uniform) adversary A, any
updater U , define the following continual experiment CTamperLeakA,U,M :

– The challenger first computes an initial encoding Ĉ(1) ← enc(M).
– Then the following procedure repeats, at each round j, let Ĉ(j) be the current

codeword and M (j) be the underlying message:
– A sends either a tampering function f ∈ F and/or a leakage function

g ∈ G to the challenger.
– The challenger replaces the codeword with f(Ĉ(j)), or sends back a leakage

	(j) = g(Ĉ(j)).
– We define m(j) def=

(

decf(Ĉ(j))(1), . . . ,decf(Ĉ(j))(n)
)

.

– Then the updater computes (i(j),m) ← U(m(j)) for the challenger.
– Then the challenger runs updatef(Ĉ(j))(i(j),m) and sends the index i(j)

to A.
– A may terminate the procedure at any point.

– Let t be the total number of rounds above. At the end, the experiment outputs
(

	(1), 	(2), . . . , 	(t),m(1), . . . ,m(t), i(1), . . . , i(t)
)

.

Definition 4 (Non-malleability and Leakage Resilience against Contin-
ual Attacks). An (n, n̂, p, q)-locally decodable and updatable coding scheme with
respect to Σ, Σ̂ is continual non-malleable against F and leakage resilient against
G if for all ppt (non-uniform) adversaries A, and ppt updaters U , there exists
some ppt (non-uniform) simulator S such that for any M = (m1, . . . , mn) ∈
Σn, CTamperLeakA,U,M is (computationally) indistinguishable to the follow-
ing ideal experiment IdealS,U,M :

– The experiment proceeds in rounds. Let M (1) = M be the initial message.
– At each round j, the experiment runs the following procedure:

– At the beginning of each round, S outputs (	(j), I(j),w(j)), where I(j) ⊆
[n].
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– Define

m(j) =
{

w(j) ifI(j) = [n]
m(j)|I(j) := ⊥,m(j)|Ī(j) := M (j)|Ī(j) otherwise,

where x|I denotes the coordinates x[v] where v ∈ I, and the bar denotes
the complement of a set.

– The updater runs (i(j),m) ← U(m(j)) and sends the index i(j) to the
simulator. Then the experiment updates M (j+1) as follows: set M (j+1) :=
M (j) for all coordinates except i(j), and set M (j+1)[i(j)] := m.

– Let t be the total number of rounds above. At the end, the experiment outputs
(

	(1), 	(2), . . . , 	(t),m(1), . . . ,m(t), i(1), . . . , i(t)
)

.

3 Lower Bound

In this section we prove the following theorem:

Theorem 2. Let λ be security parameter and let Π = (enc,dec) be a locally
decodable and updatable non-malleable code with non-adaptive decode and update
which takes messages over alphabet Σ and outputs codewords over alphabet ̂Σ,
where log |Σ|, log | ̂Σ| ∈ poly(λ), in a threat model which allows for a rewind
attack. Then, for n := n(λ) ∈ poly(λ), Π has locality δ(n) ∈ ω(1).

We denote by X := log | ̂Σ| ∈ poly(λ) the number of bits in each block of the
codeword. For purposes of the lower bound, we can take X to be any polynomial
in λ (or smaller).

In the following, we assume that Π = (enc,dec) is a locally decodable and
updatable non-malleable code with non-adaptive decode and update and with
constant locality. We then present an efficient rewind attacker along with an
updater that break the security of Π, thus proving the theorem.

3.1 Attack Preliminaries

Definition 5 (Sunflower). A sunflower (or Δ-system) is a collection of sets
Si for 1 ≤ i ≤ k such that the intersection of any two set is core Y , i.e. Si ∩Sj =
core for all i �= j. There exists k petals Si\core and it’s required that none of
them are empty. A family of pairwise disjoint sets form a sunflower with an
empty core.

The following famous lemma is due to Erdős and Rado.

Lemma 1 (Sunflower Lemma [24]). Let F be family of sets each of cardi-
nality s. If |F| > s!(k − 1)s then F contains a sunflower with k petals.



320 D. Dachman-Soled et al.

Definition 6 (Statistical Distance). Let D1 and D2 be two distribution over
a shared universe of outcomes. let supp(D) be the set of values assumed by D
with nonzero probability, and let D(u) := Pr[D = u]. The statistical distance of
D1 and D2 is defined as

||D1 − D2||stat :=
1
2

∑

u∈supp(D1)∪supp(D2)

|D1(u) − D2(u)|.

Definition 7 (Distributional Stability [20]). Let U be a finite universe
and t, n ≥ 1 be integers. Let Di for 1 ≤ i ≤ t be a collection of t mutually
independent distributions over {0, 1}n and F be a possibly-randomized mapping
F (x1, . . . , xt) : {0, 1}n×t → U , for j ∈ [t] let

γj := E
y∼Dj

[||F (D1, . . . ,Dj−1, y,Dj+1, . . . ,Dt) − F (D1, . . . ,Dt)||stat].

F is δ-distributionally stable for δ ∈ [0, 1] with respect to D1, . . . ,Dt if

1
t

t
∑

j=1

γj ≤ δ.

Lemma 2 (Compression Functions are Distributionally Stable [20]).
Let R(x1, . . . , xt) : {0, 1}n×t → {0, 1}≤t′

be any possibly-randomized mapping,
for any n, t, t′ ∈ N+. R is δ-distributionally stable with respect to any independent
input distributions D1, . . . ,Dt, where it may take either of the following two
bounds:

1. δ :=
√

ln 2
2 . t′+1

t

2. δ := 1 − 2− t′
t −3.

3.2 Applying the Sunflower Lemma

For i ∈ [n], the sets Si ⊆ [n̂] correspond to the blocks (each of size X ) of
the codeword accessed in order to update/decode mi (i.e. the set Si := Sdec

i ∪
Sup

i , where Sdec
i , Sup

i are the sets of blocks accessed by the decode and update
procedures, respectively). By hypothesis, we have that for i ∈ [n], |Si| = c, for
constant c. Choose n = X c′ ∈ poly(λ), where c′ is a constant such that

X c′
> c! · (22, 500 · c · X )c

Then by the Sunflower Lemma, {S1, . . . , Sn} contains a sunflower with k + 1 :=
22, 500 · c · X + 1 petals. Let SF := {Si0 , Si1 , . . . , Sik

}, where i0, . . . , ik ∈ [n]. For
codeword Ĉ, Let core(Ĉ) denote the content of the set of blocks that make up
the core of the sunflower. For set S�, 	 ∈ [n], let set�(Ĉ) denote the content of
the blocks in set S�.
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3.3 The Compression Functions

Given a fixed initial codeword Ĉ, sunflower SF := {Si0 , . . . , Sik
}, where

i0, . . . , ik ∈ [n] (as defined above) with k + 1 := 22, 500 · c · X + 1 petals, define
the following (randomized) function FĈ : {0, 1, same}k → {0, 1}X·c as follows:

– On input x1, . . . , xk ∈ {0, 1, same}
– For j = 1 to k:

• If xj = same, run updateĈ(i0, 0).
• Otherwise run updateĈ(ij , xj).

where Ĉ denotes the current codeword at any point in time.
– Run updateĈ(i0, 0).
– Output the contents of core(Ĉ).

3.4 Closeness of Distributions

For 	 ∈ [k], let X� be a random variable distributed as X, where X is distrib-
uted as U{0,1,same}, i.e. its value is chosen uniformly from the set {0, 1, same}.
Let Ĉ0 ← enc(0 . . . 0) and Ĉ1 ← enc(1 . . . 1). Let y0

j := setij
(Ĉ0)\core(Ĉ0)

denote the contents of the positions in Ĉ0 corresponding to decoding of ij ,
minus the contents of the blocks in the core of the sunflower. Similarly, let
y1

j := setij
(Ĉ1)\core(Ĉ1) denote the contents of the positions in Ĉ1 correspond-

ing to decoding of ij , minus the contents of the blocks in the core of the sunflower.
We prove the following claim, which will be useful in the subsequent analysis.

Claim 3.1. For every Ĉ0 ← enc(0 . . . 0) and Ĉ1 ← enc(1 . . . 1), we have that:

– With probability at least 0.8 over j ∼ [k], the statistical distance between
(y0

j , FĈ0
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y0

j , FĈ0
(X1, . . . , Xk)) is at

most 0.1.
– With probability at least 0.8 over j ∼ [k], the statistical distance between

(y1
j , FĈ1

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y1
j , FĈ1

(X1, . . . , Xk)) is at
most 0.1.

Proof. First, by Lemma 2 and the fact that FĈ is a compression function, we
have that for every codeword Ĉ:

1

k

k∑

j=1

E
x∼X

[||FĈ(X1, . . . , Xj−1, x, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat] <

√
c · X

k
.

By linearity of expectation, we have

E
x∼X

[
1

k

k∑

j=1

(||FĈ(X1, . . . , Xj−1, x, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat)
]

<

√
c · X

k
.
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Now, by Markov’s inequality, we have that

1

k

k∑

j=1

(||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat) < 3

√
c · X

k
.

Applying Markov’s inequality again, we have that with probability at least 0.8
over choice of j ∼ [k],

||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat < 15 ·
√

c · X
k

= 0.1,

where the final equality holds since we take k + 1 := 22, 500 · c · X + 1. Finally,
since the above holds for every Ĉ, we have that for every Ĉ0 ← enc(0 . . . 0), and
Ĉ1 ← enc(1 . . . 1):

– With probability at least 0.8 over j ∼ [k], the statistical distance between
FĈ0

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk) and FĈ0
(X1, . . . , Xk) is at most 0.1.

– With probability at least 0.8 over j ∼ [k], the statistical distance between
FĈ1

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk) and FĈ1
(X1, . . . , Xk) is at most 0.1.

The above implies that for every Ĉ0 ← enc(0 . . . 0) and Ĉ1 ← enc(1 . . . 1),
we have that with probability at least 0.8 over j ∼ [k], the statistical distance
between (y0

j , FĈ0
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y0

j , FĈ0
(X1, . . . , Xk))

is at most 0.1, and with probability at least 0.8 over j ∼ [k], the
statistical distance between (y1

j , FĈ1
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and

(y1
j , FĈ1

(X1, . . . , Xk)) is at most 0.1, since y0
j , y1

j can be deduced from Ĉ0, Ĉ1,
respectively, and Ĉ0, Ĉ1 are part of the description of the functions. This con-
cludes the proof of the claim.

3.5 The Attack

In this section we describe the polynomial-time attacker and updater:
Description of attacker:

– Find the Sunflower SF := {Si0 , . . . , Sik
}, where i0, . . . , ik ∈ [n] and k + 1 :=

22, 500 · c · X + 1, contained in {S1, . . . , Sn} in O(n2) time.2
– Choose j∗ ∼ [k]
– In the first round, submit leakage function 	(Ĉ) defined as 	(Ĉ) :=

setij∗ (Ĉ)\core(Ĉ) which returns Leaked, i.e. the contents of the positions in Ĉ
corresponding to decoding of ij∗ , minus the contents of the blocks in the core
of the sunflower.3

2 This can be done by finding the pairwise intersection Si ∩ Sj for all i, j ∈ [n],
yielding sets core1, . . . , coren2 and the sorting these sets lexicographically. The core
of the sunflower core := corei, where corei is the most frequently appearing core. The
petals are the corresponding sets that share that pairwise intersection.

3 If the attacker may leak only a single bit per round, we instead add here r <
X · c number of rounds where in each round the attacker leaks a single bit from
setij∗ (Ĉ)\core(Ĉ). During each of these rounds, the updater requests a “dummy”

update, updateĈ(j)
(i0, 0).
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– Wait until the k+1-st round. In the k+1-st round, choose tampering function
f which replaces the contents of setij∗(Ĉ(k))\core(Ĉ(k)), i.e. the positions in
Ĉ(k) corresponding to decoding of ij∗ , minus the contents of the blocks in the
core of the sunflower, with the values, Leaked, that were leaked via 	.

Description of Updater:

– Choose x1, . . . , xk ∼ {0, 1, same}k.
– For j = 1 to k:

• If xj = same, request updateĈ(j)
(i0, 0)

• Otherwise request updateĈ(j)
(ij , xj)

where Ĉ(j) denotes the current codeword in round j.
– In round j > k, request updateĈ(j)

(i0, 0).

3.6 Attack Analysis

Let J∗ be the random variable corresponding to choice of j∗ in the attack
described above. For j ∈ [k], let upij

be the event that location ij gets updated
and let upij

be the event that location ij does not get updated. Recall that
for j ∈ [k], mij

denotes the original message in block ij . We have the following
properties, which can be verified by inspection:

Fact 1.(a) For j ∈ [k], Pr[upij
| mij

= 0] = Pr[upij
| mij

= 1] = 0.67;
Pr[upij

| mij
= 0] = Pr[upij

| mij
= 1] = 0.33.

(b) For j ∈ [k], if the ij-th block of original message was a mij
= 0, then

conditioned on an update occurring on block ij , m
(k)
ij

= 0 with probability

0.5 and m
(k)
ij

= 1 with probability 0.5. Conditioned on no update occurring

on block ij , m
(k)
ij

= 0 with probability 1.
(c) For j ∈ [k], if the ij-th block of original message was a mij

= 1, then
conditioned on an update occurring on block ij , m

(k)
ij

= 1 with probability

0.5 and m
(k)
ij

= 0 with probability 0.5. Conditioned on no update occurring

on block ij , m
(k)
i = 1 with probability 1.

We next present the main technical claim of this section:

Claim 3.2. For the attack and updater specified in Sect. 3.5:

Case 1: If the original message was m = 0, then with probability at least 0.7,
m

(k+1)
iJ∗ = 0.

Case 2: If the original message was m = 1, then with probability at least 0.7,
m

(k+1)
iJ∗ = 1.

We first show how to use Claim 3.2 to complete the proof of Theorem 2 and
then present the proof of Claim 3.2.
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Proof (of Theorem 2). We show that the above claim implies that the candidate
scheme is not secure under Definitions 3 and 4. Definition 4 requires the exis-
tence of a simulator S which (for the above attack and updater) outputs one of
{same,⊥}∪{0, 1}κ for the decoding of position i in round k +1. Recall that if S
outputs same, then the output of the experiment in the corresponding position,
denoted m

(k+1)
iJ∗ ,S , is set to m

(k+1)
iJ∗ ,S := m

(k)
iJ∗ . We begin by defining the following

notation for each j ∈ [k]:

p0up,j := Pr[S outputs same | mij
= 0 ∧ upij

]

p1up,j := Pr[S outputs same | mij
= 1 ∧ upij

]

p0up,j := Pr[S outputs same | mij
= 0 ∧ upij

]

p00,j := Pr[S outputs 0 | mij
= 0]

p10,j := Pr[S outputs 0 | mij
= 1]

Note that since S does not see the original message, we have that for each j ∈ [k]:

(a) p0up,j = p1up,j (b) p00,j = p10,j . (1)

Additionally we have, for each j ∈ [k]::

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

= Pr[upij
| mij

= 0] · Pr[S outputs same | mij
= 0 ∧ upij

]

· Pr[m(k)
ij

= 0 | mij
= 0 ∧ upij

]

= 0.67 · p0up,j · 0.5, (2)

where the first equality follows since (S outputs same | mij
= 0 ∧ upij

) and
(m(k)

ij
= 0 | mij

= 0∧upij
) are independent events and the last line follows from

Fact 1, items (a) and (b). Similarly, for each j ∈ [k]:

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1]

= Pr[upij
| mij

= 1] · Pr[S outputs same | mij
= 1 ∧ upij

]

· Pr[m(k)
ij

= 0 | mij
= 1 ∧ upij

]

= 0.67 · p1up,j · 0.5

= 0.67 · p0up,j · 0.5, (3)

where the second to last line follows from Fact 1, items (a) and (c), and the last
line follows due to (1a). Moreover, we have for each j ∈ [k]:

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

= Pr[upij
| mij

= 0] · Pr[S outputs same | mij
= 0 ∧ upij

]

= 0.33 · p0up,j , (4)
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where the last line follows from Fact 1, item (a). Finally, for each j ∈ [k]:

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1] = 0. (5)

Given Claim 3.2, in order for S to succeed, if the original message was m = 0,
then m

(k+1)
iJ∗ ,S must be equal to 0 with probability (nearly) 0.7, whereas if the

original message was m = 1, then m
(k+1)
iJ∗ ,S must be equal to 1 with probability

(nearly) 0.7. Thus we have that:

0.7 =
∑

j∈[k]

Pr[J∗ = j] · Pr[m(k+1)
ij ,S = 0 | mij

= 0]

=
∑

j∈[k]

1
k

· (Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

+ Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

+ Pr[S outputs 0 | mij
= 0])

=
∑

j∈[k]

1
k

· (0.67 · p0up,j · 0.5 + 0.33 · p0up,j + p00,j), (6)

where the last line follows due to (2) and (4). On the other hand we have:

0.3 ≥
∑

j∈[k]

Pr[J∗ = j] · Pr[m(k+1)
ij ,S = 0 | mij

= 1]

=
∑

j∈[k]

1
k

· (Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1]

+ Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1]

+ Pr[S outputs 0 | mij
= 1])

=
∑

j∈[k]

1
k

· (0.67 · p0up,j · 0.5 + p10,j)

=
∑

j∈[k]

1
k

· (0.67 · p0up,j · 0.5 + p00,j). (7)

where the second to last line follows due to (3) and (5) and the last line follows
due to (1b). But subtracting (7) from (6), this implies that 0.33·∑j∈[k]

1
k ·p0up,j ≥

0.4, which is impossible since for each j ∈ [k], pup,j ≤ 1. Thus we have reached
contradiction and so the theorem is proved.

We conclude by proving the Claim.

Proof (of Claim 3.2). The proof of the claim relies on the fact that decode takes
as input DEC(y0

j∗ , FĈ0
(X1, . . . , Xk)) in Case 1 and DEC(y1

j∗ , FĈ1
(X1, . . . , Xk)) in

Case 2, where y0
j := setij

(Ĉ0)\core(Ĉ0) denotes the contents of the positions in
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Ĉ0 corresponding to decoding of ij , minus the contents of the blocks in the core
of the sunflower, and similarly, y1

j := setij
(Ĉ1)\core(Ĉ1) denotes the contents of

the positions in Ĉ1 corresponding to decoding of ij , minus the contents of the
blocks in the core of the sunflower.

But note that, due to the structure of the Sunflower, updates to posi-
tions i0, . . . , ij∗−1, ij∗+1, . . . , ik do not modify the contents of setij∗ (Ĉ0)\core(Ĉ0)
(and setij∗ (Ĉ1)\core(Ĉ1)) and so DEC(y0

j∗ , Fĉ0(X1, . . . , Xj∗−1, same,Xj∗+1, . . . ,

Xk)) = 0 with overwhelming probability and DEC(y1
j∗ , Fĉ1(X1, . . . , Xj∗−1, same,

Xj∗+1, . . . , Xk)) = 1 with overwhelming probability, since when Xj = same, the
rewind attack has no effect and decode outputs the original message.

Moreover, we have shown in Claim 3.1 that for every Ĉ0 ← enc(0 . . . 0) and
Ĉ1 ← enc(1 . . . 1), we have that:

1. With probability at least 0.8 over j∗ ∼ [k], the statistical distance between
(y0

j , FĈ0
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y0

j , FĈ0
(X1, . . . , Xk)) is at

most 0.1.
2. With probability at least 0.8 over j∗ ∼ [k], the statistical distance between

(y1
j , FĈ1

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y1
j , FĈ1

(X1, . . . , Xk)) is at
most 0.1.

Hence with each will not be satisfied with probability at most 0.2. Now, con-
ditioned on each being satisfied, it can be concluded from (1) that the prob-
ability of DEC(y0

j , FĈ0
(X1, . . . , Xk)) = 1 is at most 0.1. Similarly from (2),

DEC(y1
j , FĈ1

(X1, . . . , Xk)) = 0 with probability at most 0.1. Taking a union
bound, we have that in each case, DEC procedure will fail to output the orig-
inal message with probability at most 0.3. This means that with probability at
least 0.7 over all coins, DEC(y0

j∗ , FĈ0
(X1, . . . , Xk)) = 0, whereas with probability

at least 0.7 over all coins DEC(y1
j∗ , FĈ1

(X1, . . . , Xk)) = 1, completing the proof
of the claim.

4 Matching Upper Bound

In this section we show how to construct a locally updatable and decodable
non-malleable code with super-constant locality. This is achieved by replacing
the Merkle Tree in the construction presented in [18] by a new data struc-
ture, t-slice Merkle Tree which we defined below (see Definition 8). Intuitively,
the locality of updating/decoding in the construction given by Dachman-Soled
et al. [18] is lower-bounded by the depth of the Merkle Tree, since, in order to
detect tampering, each update/decode instruction must check the consistency
of a leaf by traversing the path from leaf to root. Our initial idea is to replace
the binary Merkle Tree of depth log(n) with a t-ary Merkle tree (where t is a
super-constant function of n defined below) of constant depth. Unfortunately,
this simple solution does not quite work. Recall that in order to verify consis-
tency of a leaf in a standard Merkle tree, one needs to access not only the path
from leaf to root, but also the siblings of each node on the path. This would
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mean that in the t-ary tree, we would need to access at least Ω(t) sibling nodes,
where t is super-constant, thus still requiring super-constant locality. Our solu-
tion, therefore, is to construct t-ary Merkle trees of a particular form, where
verifying consistency of a leaf can be done by traversing only the path from leaf
to root, without accessing any sibling nodes. We call such trees t-slice Merkle
trees. Details of the construction follow in Definitions 8, 9, 10 and 11. Finally,
in Theorem 3 we show that the t-slice Merkle Tree is collision resistant, which
allows us to retain security while replacing the Merkle tree in the construction
of [18] with our t-slice Merkle Tree. This then leads to our matching upper bound
in Theorem 4.

Definition 8 (t-slice Merkle Tree). Let X and h : {0, 1}X → {0, 1}X/t be a
hash function that maps a block of size X to block of size X/t. Let a block of
data at level j with index i denoted by αj

i and M = (m1,m2, . . . , mn) being the
input data and set α0

i := mi+1 for 0 ≤ i ≤ n−1. A t-slice Merkle Tree Treet
h(M)

is defined recursively in the following way:

– Bottom layer of the tree contains n blocks of data each of size X , i.e.,
(α0

0, α
0
1, . . . , α

0
n−1).

– To compute the content of non-leaf node at level j with index i set αj
i :=

h(αj−1
i·t )|| . . . ||h(αj−1

((i+1)·t)−1).

– Once a single block αj
i remains, set the root of Merkle Tree Rootth(M) := h(αj

i )
and the height of tree H := j + 1 and terminate.

For k ∈ [0, . . . , t − 1], we denote the k-th slice of αj
i by αj

i [k] The internal blocks
of Merkle Tree (including the root) are denoted as Treet

h(M).

Definition 9 (Path). Given a Merkle Tree Treet
h(M) with n leaves of height

H and its root Rootth(M), a path pi := p0i , . . . , p
H−1
i , for i ∈ [0, . . . n − 1] is a

sequence of H blocks from leaf to root defined as follows: For j ∈ [0, . . . ,H − 1],
pj

i := αj
�, where 	 :=

∑H−1
k=j βk ·tk−j and βH−1, . . . , β0 is the base t representation

of i, where βH−1 is the most significant digit and β0 is the least significant digit.

Definition 10 (Consistency). Let βH−1, . . . , β0 be the base t representation
of i, where βH−1 is the most significant digit and β0 is the least significant digit.
Path pi := p0i , . . . , p

H−1
i is consistent with Rootth(M) if the following hold:

– pH−1
i = Rootth(M).

– For j ∈ [H − 2], h(pj
i ) = pj+1

i [	 mod t], where 	 :=
∑H−1

k=j βk · tk−j (i.e. the
hash of the j-th element on the path is equal to the (	 mod t)-th slice of the
j + 1-st element on the path).

Definition 11 (Update). Given a path pi := p0i , . . . , p
H−1
i in Merkle Tree

Treet
h(M) and new message block α′0

i , Let βH−1, . . . , β0 be the base t representa-
tion of i, where βH−1 is the most significant digit and β0 is the least significant
digit. The update procedure computes a modified path p′

i := p′0
i , . . . , p

′H−1
i as

follows (the rest of the tree remains the same):
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– p′0
i := α′0

i .
– For j ∈ [1, . . . ,H − 1], p′j+1

i [	 mod t] := h(p′j
i ), where 	 :=

∑H−1
k=j βk · tk−j

(i.e. the (	 mod t)-th slice of the j + 1-st element on the path is equal to the
hash of the j-th element on the path).

– For j ∈ [H − 1], γ ∈ [0, . . . , t]\{	 mod t}, where 	 :=
∑H−1

k=j βk · tk−j,
p′j+1

i [γ] := pj+1
i [γ] (i.e. all other slices of the j + 1-st element on the path

stay the same as in the original path pi).

Lemma 3. Let X ∈ Ω(λ1/μ), h : {0, 1}X → {0, 1}X μ

, and t := X 1−μ, for
constant 0 < μ < 1. Assuming n = poly(λ) := X c for constant c, the height of
the t-slice Merkle Tree will be constant H = c−1

1−μ .

Proof. In the beginning the message blocks M = (m1,m2, . . . , mn) are at the
leaves of the tree and size of each block is X , i.e. |mi| = X . After applying a hash
function to each of the blocks separately, their size becomes X μ and by concate-
nating X 1−μ number of hashes a single block of size X will be formed. In this level
there will therefore be X c

X 1−μ = X c+μ−1 block of size X . Applying hash function to
each of them will form new blocks of size X μ and there will be X c+2μ−2 blocks of
size X . In general in level i-th there will be X c+iμ−i blocks of size X . The root of
the t-slice Merkle Tree is of size X , so the height of the tree is for the case where
X c+iμ−i = X resulting the i and hence the height of tree is c−1

1−μ .

Theorem 3. Let X ∈ Ω(λ1/μ), h : {0, 1}X → {0, 1}X μ

, and t := X 1−μ, for
constant 0 < μ < 1. Assuming h is a collision resistant hash function, consider
the resulting t-slice Merkle Tree. Then for any message M = (m1,m2, . . . , mn)
with mi ∈ {0, 1}X , any polynomial time adversary A,

Pr
[
(m′

i, pi) ← A(M, h) : m′
i �= mi, pi is a consistent path with Rootth(M)

]
≤ negl(k).

Moreover, given a path pi passing the leaf mi, and a new value m′
i, the update

algorithm computes Rootth(M ′) in constant time H := c−1
1−μ , where M ′ =

(m1, . . . , mi−1,m
′
i,mi+1, . . . , mn).

Proof. The second part of Theorem 3 is immediate by inspection of Definition 11.
For the first part of the theorem, we assume towards contradiction that for

some message M = (m1,m2, . . . , mn) with mi ∈ {0, 1}X , there is an efficient
adversary A such that

Pr
[
(m′

i, p
′
i) ← A(M, h) : m′

i �= mi, p
′
i is a consistent path with Rootth(M)

]
= 1/poly(λ).

We construct adversary A′ which finds a collision in hash function h. The pro-
cedure is as follows:

– On input h, adversary A′ instantiates A on input (M,h).
– Adversary A returns (m′

i, p
′
i), where p′

i := p′0
i , . . . , p

′H−1
i .

– A′ checks that p′H−1
i = Rootth(M).
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– For j ∈ [H − 2], if p′j+1
i = pj+1

i , p′j
i �= pj

i and h(p′j
i ) = p′j+1

i [	 mod t], where
	 :=

∑H−1
k=j βk · tk−j , then A′ returns collision (p′j

i , p
j
i ).

Note that if m′
i �= mi, then p′

i �= pi and so at some point the “if statement”
above must hold. Moreover, if p′

i is a consistent path, then it must be the case
that p′H−1

i = Rootth(M) and for j ∈ [H − 2], h(p′j
i ) = p′j+1

i [	 mod t], where
	 :=

∑H−1
k=j βk · tk−j , by definition of consistency. Thus, the above adversary

A′ will succeeds with same probability as the adversary A and breaks collision
resistance of h with probability 1/poly(λ). Thus, we arrive at contradiction and
so the theorem is proved.

Theorem 4. Assume there exists a semantically secure symmetric encryption
scheme, and a non-malleable code against the tampering function class F , and
leakage resilient against the function class G. Then there exists a leakage resilient,
locally decodable and updatable coding scheme that is non-malleable against con-
tinual attacks of the tampering class

F̄ def=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f : Σ̂2n+1 → Σ̂2n+1 and |f | ≤ poly(k), such that :
f = (f1, f2), f1 : Σ̂2n+1 → Σ̂, f2 : Σ̂2n → Σ̂2n,

∀(x2, . . . , x2n+1) ∈ Σ̂2n, f1( · , x2, . . . , x2n+1) ∈ F ,
f(x1, x2, . . . , x2n+1) = (f1(x1, x2, . . . , x2n+1), f2(x2, . . . , x2n+1)) .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

and is leakage resilient against the class

Ḡ def=

⎧

⎨

⎩

g : Σ̂2n+1 → Y and |g| ≤ poly(k), such that :
g = (g1, g2), g1 : Σ̂2n+1 → Y ′, g2 : Σ̂2n → Σ̂2n,

∀ (x2, . . . , x2n+1) ∈ Σ̂2n, g1( · , x2, . . . , x2n+1) ∈ G.

⎫

⎬

⎭

.

Moreover, for n := X c ∈ poly(λ), the coding scheme has locality δ(n), for any
δ(n) ∈ ω(1).

Our construction is exactly the same as that of Dachman-Soled et al. [18],
except we replace their (standard) Merkle tree with our t-slice Merkle tree with
the parameters described above. We note that the only property of the Merkle
hash used in the security proof of [18] is the “collision resistance” property,
analogous to our Theorem 3 above for the t-slice Merkle tree. Thus, our security
proof follows exactly as theirs does and we therefore omit the full proof. On
the other hand, as described in Definitions 10 and 11, updates and consistency
checks require time and number of accesses to memory proportional to the height
of the tree, H, which is c−1

1−μ for our choice of parameters, as shown in Lemma 3
above. Since n = X c ∈ poly(λ), it means that the height of the tree will always
be less than δ(n), for any δ(n) ∈ ω(1). On the other hand, [18] used a standard
(binary) Merkle tree with height Θ(log n). Therefore, while [18] requires locality
Θ(log n), we achieve locality δ(n), for any δ(n) ∈ ω(1).

Finally, we give a concrete example of the resulting leakage and tam-
pering classes we can tolerate via Theorem 4 when instantiating the under-
lying non-malleable code with a concrete construction. Specifically, we con-
sider instantiating the underlying non-malleable code with the construction of
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Liu and Lysyanskaya [37], which achieves both leakage and tamper resilience for
split-state functions. Combining the constructions of [18,37] yields codewords
consisting of 2n + 1 blocks. We next describe the leakage and tampering classes
Ḡ, F̄ that can be tolerated on the 2n + 1-block codeword. Ḡ consists of leakage
functions g such that g restricted to the first block (i.e. g1) is any (poly-sized)
length-bounded split-state function; g2 on the other hand, can leak all other
parts. F̄ consists of tampering functions f such that f restricted to the first block
(i.e. f1) is any (poly-sized) split-state function. On the other hand f restricted
to the rest (i.e. f2) is any poly-sized function. We also remark that the function
f2 itself can depend on the split-state leakage on the first part.
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