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Abstract. We consider Galbraith’s space efficient LWE variant, where
the (m × n)-matrix A is binary. In this binary case, solving a vectorial
subset sum problem over the integers allows for decryption. We show how
to solve this problem using (Integer) Linear Programming. Our attack
requires only a fraction of a second for all instances in a regime for m that
cannot be attacked by current lattice algorithms. E.g. we are able to solve
100 instances of Galbraith’s small LWE challenge (n,m) = (256, 400)
all in a fraction of a second. We also show under a mild assumption
that instances with m ≤ 2n can be broken in polynomial time via LP
relaxation. Moreover, we develop a method that identifies weak instances
for Galbraith’s large LWE challenge (n,m) = (256, 640).
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1 Introduction

Over the last decade, the Learning with Errors (LWE) problem [16] has proved to
be extremely versatile for the construction of various cryptographic primitives.
Since LWE is as hard as worst-case lattice problems, it is consider one of the most
important post-quantum candidates. Let us recall that an LWE instance consists
of a random (m × n)-matrix A with elements from Zq and an m-dimensional
vector b ∈ Z

m
q , where b = As + e mod q with a secret random s ∈ Z

n
q and

where the entries of e ∈ Z
m
q are from a discretized normal distribution.

The LWE decisional problem is to distinguish (A, b) from (A,u) for random
u ∈ Z

m
q . While LWE has some intriguing hardness properties, it is known that one

has to choose quite large n in order to reach a desired security level against lattice
reduction attacks. This in turn makes the size of LWE instances (A, b), and thus
the size of public keys, undesirably large. For practical reasons, people therefore
looked into various variants of LWE, such as ring-LWE [13,14], LWE with short
secret [2,15] or LWE with short error [10,15]. Recently, some special instances of
ring-LWE were identified to have serious weaknesses [4,6], but these instances were
not suggested for cryptographic use. Moreover, it was shown that LWE with binary
secrets and errors can be attacked in slightly subexponential time 2O(n/ log log n)
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by a BKW-type algorithm [11], where LWE dimension n = 128 was practically
brokenwithinhalf a day.Also, LWEwithbinary secret leads tomore efficient lattice
attacks [3]. While choosing special variants of LWE seems to slightly decrease the
security, the improved attacks do not substantially endanger the security of these
variants in general.

In this paper, we look at another LWE variant due to Galbraith [8]. In this
variant, A is replaced by a binary matrix. This makes Galbraith’s variant very
tempting for low-weight devices that are not capable of storing a sufficiently
large LWE instance.

In [8], Galbraith instantiates Regev’s encryption system [16] with his binary
matrix A and suggests to use the parameters (n,m, q) = (256, 640, 4093) that
were originally proposed by Lindner and Peikert [12] for Regev’s original scheme.
Galbraith also gives a thorough security analysis based on lattices, where in his
experiments he fixes n and tries to break encryption for increasing m. Based on
this analysis, he concludes that instances with m ≥ 400 might be hard to break
with lattice techniques.

For Regev’s original scheme, security follows from hardness of LWE for appro-
priate parameters; this is not automatically the case for binary matrix A with-
out changing parameters. For Galbraith’s choices, in order to break encryp-
tion, one can solve an equation of the form uA = c1 for a known matrix
A ∈ {0, 1}m×n, some known ciphertext component c1 ∈ Z

n and some unknown
vector u ∈ {0, 1}m. In other words, one has to find a subset of all rows of A
that sums to c1. We call this problem therefore a vectorial integer subset sum.
If the unknown vector u is short, a vectorial integer subset sum can certainly
be solved by finding a closest vector in some appropriate lattice. This is the
standard analysis that was carried out in [8] against this avenue of attack.

However, a vectorial integer subset sum is by its definition also an Integer
Linear Programming (ILP) problem. Namely, we are looking for an integral
solution u ∈ Z

m of m linear equations over the integers. While it is known
that ILP is in general NP-hard, it is also known that in many cases removing
the integrality constraint on u provides a lot of useful information about the
problem. Removing the integrality constraint is called a LP relaxation of the
problem. Without integrality constraints, the resulting problem can be solved in
polynomial time, using e.g. the ellipsoid method [9].

We show under a mild assumption on A that the vectorial subset sum prob-
lem can for parameters m ≤ 2n be solved by its LP relaxation (with success
probability 1

2 ). More precisely, the LP solution has the property that it is already
integral. This in turn means that vectorial integer subset sums with m ≤ 2n can
be solved in polynomial time. In practice, we are able to solve instances with
n = 256 and m ≤ 2n in a fraction of a second. Notice that this is already a
regime for m that seems to be infeasible to reach with current lattice reduction
algorithms.

However, m ≤ 2n does not quite suffice to break Galbraith’s (n,m) =
(256, 640)-challenge in practice. Namely, when we look at instances with m > 2n
the success probability of our MATLAB ILP solver drops quite quickly – when
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we allow only some fixed, small computation time. Yet, when looking at a large
number of instances of our vectorial integer subset sums, we realize experimen-
tally that there is still a significant number of weak instances that are vul-
nerable to LP relaxation with some additional tricks (such as e.g. the cutting
plane method). More concretely, we are able to show that at least 1 out of 215

instances of Regev-type encryptions with (n,m) = (256, 640) can be solved in
about 30 min. Interestingly, we are able to compute a simple score for every
instance I that accurately predicts whether I is indeed weak – based on an esti-
mation of the volume of the search space that comes from the LP relaxation. We
find that such a quick test for identifying weak instances I is a quite remarkable
property of Linear Programming. We are not aware of a similar property for
other cryptanalytic methods. We hope that our results motivate more cryptan-
alytic research using (Integer) Linear Programming.

Note that our attack breaks Galbraith’s instantiation of LWE encryption
with binary matrices, but does not break binary LWE itself. Due to that, our
attack allows ciphertext recovery, but not key recovery.

Our paper is organized as follows. In Sect. 2, we recall Galbraith’s scheme and
its cryptanalysis challenges. In Sect. 3, we model vectorial integer subset sums
in form of an Integer Linear Programming. We attack instances with m ≤ 2n in
Sect. 4 and show that they actually admit a polynomial time attack. In Sect. 5, we
show how to identify weak instances for large m and we present our experimental
results for Galbraith’s large challenge (n,m) = (256, 640).

2 Galbraith’s Binary Matrix LWE

Let us briefly recall Regev’s LWE encryption scheme. Let q be prime. One chooses
a public A ∈R Z

m×n
q and a private s ∈R Z

n
q . One then compute b = As +

e mod q, where the ei are sampled from a discrete normal distribution with
mean 0 and standard deviation σ. The public key consists of (A, b).

For encrypting some message M ∈ {0, 1}, one chooses a random nonce u ∈R

{0, 1}m and computes the ciphertext

c = (c1, c2) = (uA mod q, 〈u , b〉 + M
⌊
q
2

⌋
mod q) ∈ Z

n
q × Zq.

For decryption to 0 respectively 1, one checks whether c1s − c2 is closer to 0
respectively q

2 .
After analyzing lattice attacks, Lindner and Peikert [12] suggest to use the

parameters
(n,m, q) = (256, 640, 4093)

for medium security level and estimate that these parameters offer roughly 128-
bit security. However, for these parameters the public key (A, b) has already 247
kilobytes, which is way too much for constrained devices.

Therefore, Galbraith [8] suggested to construct the public matrix A with
binary entries simply from the seed of a PRNG. All that one has to store in
this case is the seed itself, and the vector b. A similar trick is also used in other
contexts to shorten the public key size [5].
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Moreover, Galbraith gives a thorough security analysis of his LWE variant,
based on its lattice complexity. In his security analysis he considers the problem
of recovering the nonce u from

c1 = uA. (1)

Notice that since now A ∈ {0, 1}m×n, every entry of c1 is an inner product of two
random binary length-m vectors. Thus, the entries of c1 are random variables
from a binomial distribution B(m, 1

4 ) with expected value m
4 . Since m

4 � q, the
equality c1 = uA does not only hold modulo q, but also over the integers.

Hence, recovering u from (c1,A) can be seen as a vectorial integer subset sum
problem. Once u is recovered, one can easily subtract 〈u , b〉 from c2 and thus
recover the message m. Hence, solving the vectorial integer subset sum problem
gives a ciphertext only message recovery attack.

We would like to stress that this attack does not allow for key recovery of s.
We also note that in Regev’s original scheme, the security proof shows IND-CPA
security assuming that the LWE problem is hard. For this reduction, we need
that c1 is essentially independent of A, which is proven using the Leftover Hash
Lemma by setting parameters sufficiently large. In particular, u is required to
have sufficient entropy and Eq. (1) has many solutions for u in Regev’s non-
binary scheme, whereas the parameters in Galbraith’s binary scheme are set
such that u is the unique solution to Eq. (1). Due to that, our attack does not
give an attack on binary LWE. In fact, binary LWE was shown to be at least
as secure as standard LWE in [1], provided n is increased by a factor O(log q).
Consequently, it seems unlikely that the attack extends to binary LWE.

2.1 Previous Cryptanalysis and Resulting Parameter Suggestions

In his security analysis, Galbraith attacks the vectorial integer subset sum by
lattice methods. Namely, he first finds an arbitrary integer solution w ∈ Z

m

with c1 = wA. Then he solves CVP with target vector w in the lattice

L = {v ∈ Z
m | vA ≡ 0 mod q}.

Let v be a CVP-solution, then we usually have u = w − v .
Galbraith reports that for n = 256 and m ∈ [260, 340], the CVP-method

works well. He further conjectures that with additional tricks one should be able
to handle values up to m = 380 or 390, but that “it would be impressive to
solve cases with m > 400 without exploiting weeks or months of computing
resources”.

Based on his analysis, Galbraith raised the two following cryptanalysis chal-
lenges:

– C1 with (n,m) = (256, 400): The goal is to compute u from (A, c1) in less
than a day on an ordinary PC.

– C2 with (n,m) = (256, 640): The goal is mount an attack using current com-
puting facilities that would take less than a year.

According to Galbraith, breaking C1 should be interpreted “as causing
embarrassment to the author”, while C2 should be considered a “total break”.
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3 Modeling Our Vectorial Integer Subset Sum
as an Integer Linear Program

In the canonical form of an Integer Linear Program (ILP), one is given linear
constraints

A′x ≤ b ′,x ≥ 0 and x ∈ Z
m,

for which one has to maximize a linear objective function 〈f ,x 〉 for some f ∈ R
m

that can be freely chosen.
Notice that it is straightforward to map our vectorial integer subset sum

problem uA = c1 from Eq. (1) into an ILP. Namely, we define the inequalities

ATu ≤ c1

−ATu ≤ −c1 and
ui ≤ 1 for all i = 1, . . . , m.

ui ≥ 0 for all i = 1, . . . , m.

(2)

We can for simplicity chose f = 0, since we are interested in any feasible
solution to Eq. (2), and it is not hard to see that by the choice of our parameters
our solution u is a unique feasible solution. Namely, look at the map

{0, 1}m →
(
B

(
m, 1

4

))n

,

u 
→ uA,

where X ∼ B(m, 1
4 ) is a binomially distribution random variable with m exper-

iments and Pr[X = 1] = 1
4 for each experiment. Notice that the jth entry,

1 ≤ j ≤ n, of uA can be written as u1a1,j + . . . + umam,j , where we have the
event Xi that uiai,j = 1 iff ui = ai,j = 1, i.e. with probability 1

4 . Hence, we can
model the entries of uA as random variables from B(m, 1

4 ).
For the usual parameter choice q > m, the solution u of Eq. (2) is unique

as long as this map is injective, i.e. as long as the entropy of
(
B(m, 1

4 )
)n is

larger than m. The entropy of the binomial distribution
(
B(m, 1

4 )
)n is roughly

n
2 log2(

3
8πem). Thus, one can compute for which m we obtain unique solutions

u . Choosing e.g. n = 256, we receive unique u for m ≤ 1500. Hence, in the
remaining paper we can safely assume unique solutions to our vectorial subset
sum problem.

4 Attacking m ≤ 2n: Solving Challenge C1

We ran 100 instances of Eq. (2) on an ordinary 2.8 GHz laptop with n = 256
and increasing m. We used the ILP solver from MATLAB 2015, which was
stopped whenever it did not find a solution after time tmax = 10 s. We found
that the success probability of our attack dropped from 100% at m = 490 to
approximately 1% at m = 590, cf. Table 1. The largest drop of success probability
takes place slightly after m = 2n.
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For comparison, we also solved the LP relaxation, i.e. Eq. (2) without inte-
grality constraint on u . This is much faster than ILP, so we solved 1000 instances
for each m. We checked whether the returned non-integral solution matched our
desired integral solution for u , in which case we call a run successful. The success
rate of LP relaxation is also given in Table 1.

It turns out that Galbraith’s small C1 challenge can already solely be solved
by its LP relaxation. Since LP relaxation is only the starting point for ILP, it
does not come as a surprise that ILP has a slightly larger success rate. However,
it is impressive that LP relaxation alone is already powerful enough to solve a
significant fraction of all instances.

Table 1. Success probability for solving Eq. (2) for n = 256. We used MATLAB 2015
and restricted to tmax = 10 s for the ILP.

m 400 450 480 490 500 510 512 520

Success (ILP) 100% 100% 100% 100% 96% 83% 79% 63%

Success (LP) 100% 99.6% 93.3% 82.3% 68.8% 55.6% 48.1% 35.4%

m 530 540 550 560 570 580 590 600

Success (ILP) 60% 32% 25% 12% 3% 1% 1% 0%

Success (LP) 19.8% 11.0% 4.5% 1.9% 0.8% 0.3% 0% 0%

We now give a theoretical justification for the strength of LP relaxation,
showing that under some mild heuristic, for m ≤ 2n, the solution of the LP
relaxation is unique. Since, by construction, we know that there is an integral
solution u to Eq. (2), uniqueness of the solution directly implies that the LP
solver has to find the desired u .

In the following lemma, we replace our linear constraints from A by some
random linear constraints from some matrix Ā over the reals. This will give us
already uniqueness of the solution u . Afterwards, we will argue why replacing
Ā back by our LWE matrix A should not affect the lemma’s statement.

Lemma 1. Let u ∈ {0, 1}2n. Let Ā ∈ R
n×2n be a random matrix, whose rows

are uniformly distributed on the sphere around 0 ∈ R
2n. Then

Pr[�x ∈ (R ∩ [0, 1])2n | Āx = Āu,x 
= u] =
1
2
.

Proof. Let us look at the 2n-dimensional unit cube U2n = {x ∈ (R ∩ [0, 1])2n}.
Obviously 0,u ∈ U2n, both lying at corners of U2n. Now, let us assume wlog.
that u = 0 (which can be achieved by reflections). Let H be the hyperplane
defined by the kernel of Ā.

Since Ā is randomly chosen from R
n×2n, it has full rank n with probability 1:

since we chose the entries of Ā from the reals R, we avoid any problems that
might arise from co-linearity. Thus, H as well as its orthogonal complement H⊥
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have dimension n. Notice that H⊥ = Im(ĀT). By construction, both H and
H⊥ intersect U2n in the corner 0 = u . We are interested whether one of the
hyperplanes goes through U2n.

The answer to this question is given by Farkas’ Lemma [7], which tells us
that exactly one of H and H⊥ passes through U2n. Notice first that not both can
pass through U2n. Now assume that H intersects U2n only in the zero point 0.
Then Farkas’ Lemma tells us that there is a vector in its orthogonal complement
H⊥ that fully intersects U2n. Notice that again by having vectors over the reals,
the intersection H⊥ ∩ U2n is n-dimensional.

By the randomness of Ā, the orientation of H in R
2n is uniformly random,

and hence the same holds for the orientation of H⊥. Since H and H⊥ share
exactly the same distribution, and since by Farkas’ Lemma exactly one out of
both has a trivial intersection with U2n, we have

Pr[H ∩ U2n = {u}] = Pr[H⊥ ∩ U2n = {u}] =
1
2
.

Let b = Āu = 0. Since H = ker(Ā), it follows that u is a unique solution to
the equation Ax = b in the case that H has trivial intersection with U2n. ��
Theorem 1. Under the heuristic assumption that our matrix AT behaves like
a random (n × m)-matrix, whose rows are uniformly distributed on the sphere
around 0m, LP relaxation solves Eq. (2) in polynomial time for all m ≤ 2n.

Proof. Notice that the case m = 2n follows directly from Lemma 1, since LP
relaxation has to find the unique solution u , and its running time is polynomial
using e.g. the ellipsoid method. For the case m < 2n we can simply append
2n − m additional columns to AT, and add a random subset of these to c1.

Now let us say a word about the heuristic assumption from Theorem 1. Our
assumption requires that the discretized AT defines a random orientation of a
hyperplane just as Ā. Since AT has by definition only positive entries, its columns
always have non-negative inner product with the all-one vector 1n. This minor
technical problem can be fixed easily by centering the entries of AT around 0 via
the following transformation of Eq. (2):

First, guess the Hamming weight w =
∑m

i=1 ui. Then subtract (12 , . . . , 1
2 )

from every column vector of AT and finally subtract w
2 from every entry of c1.

After this transformation AT has entries uniform from {± 1
2} and should fulfill

the desired heuristic assumption of Theorem 1.

5 Attacking m = 640: Solving Challenge C2

In order to tackle the m = 640 challenge, we could in principle proceed as in the
previous section, identify a weak instance for e.g. m = 590, brute-force guess 50
coordinates of u and run each time an ILP solver for 10 s.

However, we found out experimentally that even in dimension m = 640 the
density of weak instances is not negligible. Hence, it seems to be much more
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effective to identify weak instances than to brute-force coordinates. So in the
following we try to identify what makes particular instances weak.

We follow the paradigm that an ILP is the easier to solve, the more the LP
relaxation “knows about the problem”. In particular, we expect that a problem
is easy to solve if the solution polytope P of the LP relaxation of Eq. (2) is
small. In the extreme case, if P = {u}, then the problem can be solved by the
LP solver alone (cf. Theorem 1). To quantify the size of the solution space in
an easy-to-compute way, we compute the length of a random projection of P .
It turns out that this length, henceforth called score gives a very good prediction
on the hardness of an instance.

More concretely, for an instance I = (A, c), we choose a vector r with
random direction. Then we maximize and minimize the linear objective function
〈r ,u〉 under the linear constraints given by the LP relaxation of Eq. (2) and
consider their difference D. Clearly, Sr := D

‖r‖ is the length of the orthogonal
projection of P onto the span of r . Formally, the score of an instance I wrt. to
some direction r is defined as follows.

Definition 1. Let I = (A, c) be an instance. Consider the solution polytope P
of the LP relaxation of Eq. (2), i.e. P is defined as P = [0, 1]m ∩ {x | ATx = c}.
Let r ∈ R

m. Then the score Sr is defined via

fmax := max
x∈P

〈r ,x〉
fmin := min

x∈P
〈r ,x〉

Sr :=
fmax − fmin

‖r‖

(3)

Note that Sr can be computed by solving two LP problems, hence in polynomial
time.

Since Sr quantifies the search space for the ILP, instances with small score
should be easier to compute. For m = 640, we computed the scores of 219

instances, which took approximately 1 s per instance.

Independence of r andReliability of Our Score.We experimentally confirm
that for a given instance I, the value of Sr is mainly a function of I and does not
depend significantly on the particular choice of r . Therefore, we choose the fixed
vector r = (1, . . . , 1,−1, . . . ,−1) for r with exactly m

2 ones and m
2 −1’s. We use

the score S = Sr for this particular choice of r and sort instances according to S.
We confirm that the score S is a very good predictor for the success of ILP

solvers and the success probability drops considerably at some cutoff value for S.
E.g. for m = 520 and within a 10 s time limit, we find that we can solve

• >99% of instances with S ≤ 1.22,
• 60% of instances with 1.22 ≤ S ≤ 1.54 and
• <3% of instances with S > 1.54.
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Distribution of S . Average values for S can be found in Table 2. Figure 1
shows the distribution of S. Note that while the distribution looks suspiciously
Gaussian for m = 640, there is a considerable negative skewness and the tail
distribution towards 0 is much fatter than for a Gaussian (cf. Fig. 2). This fat
tail enables us to find a significant fraction of weak instances even for large m.

Notice that a score S = 0 basically means that LP relaxation finds the
solution.

Table 2. Average values for S for n = 256 and varying m. We used 1000 instances for
each m.

m 400 450 480 490 500 510 512 520

average of S 0 0.002 0.07 0.22 0.43 0.69 0.83 1.15

m 530 540 550 560 570 580 590 600

average of S 1.76 2.16 2.74 3.16 3.60 4.04 4.34 4.80

m 610 620 630 640

average of S 5.18 5.52 5.83 6.18

Results for m = 640. We generated a large number N = 219 of instances with
n = 256, m = 640, and tried to solve only those 271 instances with the lowest
score S, which in our case meant S < 3.2. We were able to solve 16 out of
those 271 weakest instances in half an hour each. We found 15 instances with
S < 2.175, of which we solved 12. The largest value of S, for which we could
solve an instance, was S ≈ 2.6.

Fixing Coordinates. Let us provide some more detailed explanation why
an ILP solver works well on instances with small score S. Consider some
r ∈ {0,±1}m of low Hamming weight |r |1 = w, so ‖r‖ =

√
w. Heuristically,

we expect that Sr should be approximately S, as Sr mainly depends on the
instance and not on the choice of r . Of course, for a vector r ∈ {0,±1}m with
low Hamming weight we have

Sr =
1√
w

(
max
x∈P

〈r , x 〉 − min
x∈P

〈r , x 〉
)
≤ 1√

w

(
max

x∈[0,1]m
〈r , x 〉 − min

x∈[0,1]m
〈r , x 〉

)
=

√
w,

but that only means we should expect Sr to be even smaller. Since we know
that for the true integer solution u , we have 〈r ,u〉 ∈ Z, we can add the cuts
〈r ,u〉 ≤ �fmax� and 〈r ,u〉 ≥ �fmin� to the set of equations, where fmax resp.
fmin are the maximum resp. minimum computed for Sr .

This is a special case of what is called cut generation in Integer Linear Pro-
gramming. If Sr <

√
w, i.e. fmax − fmin < w, then adding such a new inequality

always makes the solution space of the LP relaxation smaller. In fact, such an
inequality restricts the possible set that w out of the m variables ui can jointly
obtain. So if Sr <

√
w for many different r , we get lots of sparse relations

between the ui. Such inequalities are called good cuts.



12 G. Herold and A. May

Score S
1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m=520

P[S=0]=0.36

Score S
1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m=570

P[S=0]=0.0076

Score S
1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

m=640

Fig. 1. pdf’s of S for n = 256 and varying values of m. Note that the y-axis is cropped
and does not show the true density at S = 0 (where the distribution technically does
not even have a finite continuous density). We rather give the probability for S = 0.
For m = 640, we never encountered an instance with S = 0.
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Fig. 2. Comparison of distribution of S for n = 256,m = 640 with a normal distribution.
The distribution of S has negative skewness and a much fatter tail towards 0. Hence, we
obtain more weak instances than we would expect from a normal distribution.

In particular, consider the case w = 1 and r = (0, 0, . . . , 0, 1, 0, . . . , 0), i.e. we
maximize/minimize an individual variable ui over P . If this maximum is <1, we
know that ui = 0 holds and if the minimum is >0, we know ui = 1. So if Sr < 1
holds for some r with |r |1 = 1, we can fix one of the ui’s and reduce the number
of unknowns by one – which makes fixing further ui’s even easier. If the score S
is small, we expect that the ILP solver can find lots of such good cuts, possibly
even cuts with w = 1.

Indeed, in all instances that we could solve, some variables could be fixed by
such good cuts with w = 1. For dimensions m ≤ 550, most instances that were
solved by the ILP could be solved by such cuts alone.

In fact, we preprocessed our 271 weak instances for m = 640 by trying to fix
each individual coordinate. This alone was sufficient to determine an average of
>100 individual coordinates of the solution u for S < 2.175, and in one case it
was sufficient to completely solve the problem.

6 Conclusion

According to Galbraith’s metric for the challenge C2 in Sect. 3, the results of
Sect. 5 can be seen as total break for binary matrix LWE. On the other hand, one
could easily avoid weak instances I by simply rejecting weak I’s during ciphertext
generation. This would however violate the idea of lightweight encryption with
binary matrix LWE.

Still, during our experiments we got the feeling that the vectorial integer
subset sum problem gets indeed hard for large m, even for its weakest instances.
So Galbraith’s variant might be safely instantiated for large m, but currently we
find it hard to determine m’s that fulfill a concrete security level of e.g. 128 bit.
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One possibility to render our attack inapplicable is to change parameters such
that modular reductions mod q occur in Eq. (1), since our attack crucially relies
on the fact that we work over Z. Note here that while there are standard ways to
model modular reduction via ILP as c1 = uA − kq, this renders LP relaxation
useless: by allowing non-integral k , we can choose any value for c1,u .
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