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Abstract. A random oracle is an idealization that allows us to model
a hash function as an oracle that will output a uniformly random string
given any input. We introduce the notion of a universal sampler scheme
that extends the notion of a random oracle, to a method of sampling
securely from arbitrary distributions.

We describe several applications that provide a natural motivation for
this notion; these include generating the trusted parameters for many
schemes from just a single trusted setup. We further demonstrate the
versatility of universal samplers by showing how they give rise to simple
constructions of identity-based encryption and multiparty key exchange.
In particular, we construct adaptively secure non-interactive multiparty
key exchange in the random oracle model based on indistinguishability
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obfuscation; obtaining the first known construction of adaptively secure
NIKE without complexity leveraging.

We give a solution that shows how to transform any random oracle
into a universal sampler scheme, based on indistinguishability obfusca-
tion. At the heart of our construction and proof is a new technique we
call “delayed backdoor programming” that we believe will have other
applications.

1 Introduction

Many cryptographic systems rely on the trusted generation of common para-
meters to be used by participants. There may be several reasons for using such
parameters. For example, many cutting edge cryptographic protocols rely on the
generation of a common reference string.1 Constructions for other primitives such
as aggregate signatures [10] or batch verifiable signatures [15] require all users
to choose their public keys using the same algebraic group structure. Finally,
common parameters are sometimes used for convenience and efficiency—such as
when generating an EC-DSA public signing key, one can choose the elliptic curve
parameters from a standard set and avoid the cost of completely fresh selection.

In most of these systems it is extremely important to make sure that the
parameters were indeed generated in a trustworthy manner, and failure to do so
often results in total loss of security. In cryptographic protocols that explicitly
create a common reference string it is obvious how and why a corrupt setup
results in loss of security. In other cases, security breaks are more subtle. The
issue of trust is exemplified by the recent concern over NSA interference in
choosing public parameters for cryptographic schemes [2,27,30].

Given these threats it is important to establish a trusted setup process that
engenders the confidence of all users, even though users will often have competing
interests and different trust assumptions. Realizing such trust is challenging
and requires a significant amount of investment. For example, we might try to
find a single trusted authority to execute the process. Alternatively, we might
try to gather different parties that represent different interests and have them
jointly execute a trusted setup algorithm using secure multiparty computation.
For instance, one could imagine gathering disparate parties ranging from the
Electronic Frontier Foundation, to large corporations, to national governments.

Pulling together such a trusted process requires a considerable investment.
While we typically measure the costs of cryptographic processes in terms of com-
putational and communication costs, the organizational overhead of executing

1 Several cryptographic primitives (e.g. NIZKs) are realizable using only a common
random string and thus only need access to a trusted random source for setup. How-
ever, many cutting edge constructions need to use a common reference string that
is setup by some private computation. For example, the NIZKs in Sahai-Waters [32]
and the recent two-round MPC protocol of Garg et al. [19] uses a trusted setup
phase that generates public parameters drawn from a nontrivial distribution, where
the randomness underlying the specific parameter choice needs to be kept secret.
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a trusted setup may often be the most significant barrier to adoption of a new
cryptographic system. Given the large number of current and future cryposys-
tems, it is difficult to imagine that a carefully executed trusted setup can be
managed for each one of these. We address this problem by asking an ambitious
question:

Can a single trusted setup output a set of trusted parameters,
which can (securely) serve all cryptographic protocols?

In this work, we address this question by introducing a new primitive that we
call Universal Samplers, and we show how to achieve a strong adaptive notion of
security for universal samplers in the random oracle model, using indistinguisha-
bility obfuscation (iO). To obtain our result, we introduce a new construction
and proof technique called delayed backdoor programming. There are only a small
handful of known high-level techniques for leveraging iO, and we believe delayed
backdoor programming will have other applications in the future.

Universal Sampler Schemes. We want a cryptographic primitive that allows us to
(freshly) sample from an arbitrary distribution, without revealing the underlying
randomness used to generate that sample. We call such a primitive a universal
sampler scheme. In such a system there will exist a function, Sample, which
takes as input a polynomial-size circuit description, d, and outputs a sample
p = d(x) for a randomly chosen x. Intuitively, p should “look like” it was freshly
sampled from the distribution induced by the function d. That is from an attack
algorithm’s perspective it should look like a call to the Sample algorithm induces
a fresh sample by first selecting a random string x and then outputting d(x),
but keeping x hidden. (We will return to a formal definition shortly.)

Perhaps the most natural comparison of our notion is to the random oracle
model put forth in the seminal work of Bellare and Rogaway [5]. In the random
oracle model, a function H is modeled as an oracle that when called on a certain
input will output a fresh sample of a random string x. The random oracle model
has had a tremendous impact on the development of cryptography and several
powerful techniques such as “programming” and “rewinding” have been used to
leverage its power. However, functions modeled as random oracles are inherently
limited to sampling random strings. Our work explores the power of a primitive
that is “smarter” and can do this for any distribution.2 Indeed, our main result
is a transformation: we show how to transform any ordinary random oracle into
a universal sampler scheme, by making use of indistinguishability obfuscation
2 We note that random oracles are often used as a tool to help sample from various

distributions. For example, we might use them to select a prime. In RSA full domain
hash signatures [6], they are used to select a group element in Z

∗
N . This sampling

occurs as a two step process. First, the function H is used to sample a fresh string x
which is completely visible to the attacker. Then there is some post processing phase
such as taking x (mod N) to sample an integer mod N. In the literature this is often
described as one function for the sake of brevity. However, the distinction between
sampling with a universal sampler scheme and applying post processing to a random
oracle output is very important.
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applied to a function that interacts with the outputs of a random oracle – our
construction does not obfuscate a random oracle itself, which would be problem-
atic to model in a theoretically reasonable way.

On Random Oracles, Universal Samplers and Instantiation. We view
universal samplers as the next generation of the random oracle model. Universal
samplers are an intuitive yet powerful tool: they capture the idea of a trusted
box in the sky that can sample from arbitrary user-specified distributions, and
provide consistent samples to every user - including providing multiple samples
from the same user-specified distribution. Such a trusted box is at least as strong
as a random oracle, which is a box in the sky that samples from just the uniform
distribution. Our notion formalizes a conversion process in the other direction,
from a random oracle to a universal sampler that can sample from arbitrary
(possibly adaptively chosen) distributions.

An important issue is how to view universal samplers, given that our strongest
security model requires a random oracle for realization. We again turn to the
history of the random oracle model for perspective. The random oracle model
itself is a well-defined and rigorous model of computation. While it is obvious that
a hash function cannot actually be a random oracle, a cryptographic primitive
that utilizes a hash function in place of the random oracle, and is analyzed in
the random oracle model, might actually lead to a secure realization of that
primitive. While it is possible to construct counterexamples [16], there are no
natural cryptographic schemes designed in the random oracle model that are
known to break when utilizing a cryptographic hash function in place of a random
oracle.

In fact, the random oracle model has historically served two roles: (1) for
efficiency, and (2) for initial feasibility results. We focus exclusively on the latter
role. Our paper shows that for achieving feasibility results, by assuming iO,
one can bootstrap the random oracle model to the Universal Sampler Model.
And just as random oracle constructions led to standard model constructions in
the past, most notably for Identity-Based Encryption, we expect the Universal
Sampler Model to be a gateway to new standard model constructions. Indeed,
the random-oracle IBE scheme of Boneh-Franklin [9] led to the standard model
IBE schemes of Canetti-Halevi-Katz [17], Boneh-Boyen [8], and beyond. It is
uncontroverted that these latter constructions owe a lot to Boneh-Franklin [9],
even though completely new ideas were needed to remove the random oracle.

Similarly, we anticipate that future standard model constructions will share
intuition from universal sampler constructions, but new ideas will be needed as
well. Indeed, since the initial publication of our work, this has already happened:
for the notion of universal signature aggregators [25], an initial solution was
obtained using our universal samplers, and then a standard model notion was
obtained using additional ideas, but building upon the intuition conceived in the
Universal Sampler Model. We anticipate many other similar applications to arise
from our work. Indeed, identifying specific distributions that do not require the
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full power of iO may allow one to avoid both the random oracle model and iO.
But our work would provide the substrate for this exploration.

We stress that unlike the random oracle model, where heuristic constructions
of cryptographic hash functions preceded the random oracle model, before our
work there were not even heuristic constructions of universal samplers. Our work
goes further, and gives a candidate whose security can be rigorously analyzed in
the random oracle model. Moreover, just as iO and UCEs (universal computa-
tional extractors) [4] have posited achievable standard-model notions related to
ideal models like VBB and random oracles, we anticipate that future work will
do so for universal samplers. Our work lays the foundation for this; indeed our
bounded-secure notion of universal samplers is already a realizable notion in the
standard model, that can be a starting point for such work.

Our work and subsequent work give examples of the power of the univer-
sal sampler model. For example, prior to our work obtaining even weak notions
of adaptivity for NIKE required extremely cumbersome schemes and proofs,
whereas universal samplers give an extremely simple and intuitive solution,
detailed in the full version of our paper. Thus, we argue that having universal
samplers in the toolkit facilitates the development of new primitives by allowing
for very intuitive constructions (as evidenced in subsequent works [7,21,24,25]).

Last, but not least, in settings where only a bounded number of secure sam-
ples are required (including a subsequent work [28]), universal samplers are a
useful tool for obtaining standard model solutions.

1.1 Our Technical Approach

We now describe our approach. We begin with a high level overview of the defini-
tion we wish to satisfy; details of the definition are in Sect. 3. In our system there
is a universal sampler parameter generation algorithm, Setup, which is invoked
with security parameter 1λ and randomness r. The output of this algorithm are
the universal sampler parameters U . In addition, there is a second algorithm
Sample which takes as input the parameters U and the (circuit) description of
a setup algorithm, d, and outputs the induced parameters pd.

We model security as an ideal/real game. In the real game an attacker will
receive the parameters U produced from the universal parameter generation
algorithm. Next, it will query an oracle on multiple setup algorithm descriptions
d1, . . . , dq and iteratively get back pi = Sample(U, di) for i = 1, 2, . . . , q.

In the ideal world, the attacker will first get the universal sampler parameters
U , as before. Now, when the adversary queries on di, a unique true random string
ri is chosen for each distinct di, and the adversary gets back pi = di(ri), as if
obtaining a freshly random sample from di.

A scheme is secure if no poly-time attacker can distinguish between the real
and ideal game with non-negligible advantage after observing their transcripts.
Since pi is a deterministic function of di, this strong definition is only achievable
in the random oracle model. This strongest definition is formalized in Sect. 3.2.

To make progress toward our eventual solution we begin with a relaxed secu-
rity notion, which is in fact realizable in the standard model, without random
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oracles. We relax the definition in two ways: (1) we consider a setting where the
attacker makes only a single query to the oracle and (2) he commits to the query
statically (a.k.a. selectively) before seeing the sampler parameters U . While this
security notion is too weak for our long term goals, developing a solution will
serve as step towards our final solution and provide insights.

In the selective setting, in the ideal world, it will be possible to program U
to contain the output corresponding to the attacker’s query. Given this insight,
it is straightforward to obtain the selective and bounded notion of security by
using indistinguishability obfuscation and applying punctured programming [32]
techniques. In our construction we consider setup programs to all come from a
polynominal circuit family of size �(λ), where each setup circuit d takes in input
m(λ) bits and outputs parameters of k(λ) bits. The polynomials of �,m, k are
fixed for a class of systems; we often will drop the dependence on λ when it is
clear from context.

The Setup algorithm will first choose a puncturable pseudo random function
(PRF) key K for function F where F (K, ·) takes as input a circuit description d

and outputs coins x
$←{0, 1}m. The universal sampler parameters are created as

an obfuscation of a program that on input d computes and outputs d(F (K, d)).
To prove security we perform a hybrid argument between the real and ideal
games in the 1-bounded and selective model. First, we puncture out d∗, the
single program that the attacker queried on, from K to get the punctured key
K(d∗). We change the parameters to be an obfuscation of the program which
uses K(d∗) to compute the program for any d �= d∗. And for d = d∗ we simply
hardwire in the output z where z = d(F (K, d)). This computation is functionally
equivalent to the original program—thus indistinguishability of this step from
the previous follows from indistinguishability obfuscation. In this next step, we
change the hardwired value to d(r) for freshly chosen randomness r ∈ {0, 1}m.
This completes the transition to the ideal game.

Achieving Adaptive Security. We now turn our attention to achieving our orig-
inal goal of universal sampler generation for adaptive security. While selective
security might be sufficient in some limited situations, the adaptive security
notion covers many plausible real world attacks. For instance, suppose a group
of people perform a security analysis and agree to use a certain cryptographic
protocol and its corresponding setup algorithm. However, for any one algorithm
there will be a huge number of functionally equivalent implementations. In a
real life setting an attacker could choose one of these implementations based on
the universal sampler parameters and might convince the group to use this one.
A selectively secure system is not necessarily secure against such an attack, while
this is captured by the adaptive model.

Obtaining a solution in the adaptive unbounded setting will be significantly
more difficult. Recall that we consider a setting where a random oracle may
be augmented by a program to obtain a universal sampler scheme for arbitrary
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distributions3. Indeed, for uniformly distributed samples, our universal sampler
scheme will imply a programmable random oracle.

A tempting idea is to simply replace the puncturable PRF call from our
last construction with a call to a hash function modeled as a programmable
random oracle. This solution is problematic: what does it mean to obfuscate an
oracle-aided circuit? It is not clear how to model this notion without yielding
an impossibility result even within the random oracle model, since the most
natural formulation of indistinguishability obfuscation for random-oracle-aided
circuits would yield VBB obfuscation, a notion that is known to be impossible to
achieve [3]. In particular, Goldwasser and Rothblum [23] also showed a family of
random-oracle-aided circuits that are provably impossible to indistinguishably
obfuscate. However, these impossibilities only show up when we try to obfuscate
circuits that make random oracle calls. Therefore we need to obtain a solution
where random oracle calls are only possible outside of obfuscated programs. This
complicates matters considerably, since the obfuscated program then has no way
of knowing whether a setup program d is connected to a particular hash output.

A new proof technique: delayed backdoor programming. To solve this problem we
develop a novel way of allowing what we call “delayed backdoor programming”
using a random oracle. In our construction, users will be provided with universal
sampler parameters which consist of an obfuscated program U (produced from
Setup) as well as a hash function H modeled as a random oracle. Users will
use these overall parameters to determine the induced samples. We will use the
notion of “hidden triggers” [32] that loosely corresponds to information hidden
in an otherwise pseudorandom string, that can only be recovered using a secret
key.

Let’s begin by seeing how Setup creates a program, P , that will be obfuscated
to create U . The program takes an input w (looking ahead, this input w will
be obtained by a user as a result of invoking the random oracle on his input
distribution d). The program consists of two main stages. In the first stage,
the program checks to see if w encodes a “hidden trigger” using secret key
information. If it does, this step will output the “hidden trigger” x ∈ {0, 1}n,
and the program P will simply output x. However, for a uniformly randomly
chosen string w, this step will fail to decode with very high probability, since
trigger values are encoded sparsely. Moreover, without the secret information it
will be difficult to distinguish an input w containing a hidden trigger value from
a uniformly sampled string.

If decoding is unsuccessful, P will move into its second stage. It will compute
randomness r = F (K,w) for a puncturable PRF F . Now instead of directly
computing the induced samples using r, we add a level of indirection. The pro-
gram will run the Setup algorithm for a 1-bounded universal parameter gener-
ation scheme using randomness r—in particular the program P could call the

3 Note that once the universal sampler parameters of a fixed polynomial size are given
out, it is not possible for a standard model proof to make an unbounded number of
parameters consistent with the already-fixed universal sampler parameters.
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1-bounded selective scheme we just illustrated above4. The program P then
outputs the 1-bounded universal sampler parameters Uw.

In order to generate an induced sample by executing Sample(U, d) on an input
distribution d, the algorithm first calls the random oracle to obtain H(d) = w.
Next, it runs the program U to obtain output program Uw = U(w). Finally, it
obtains the induced parameters by computing pd = Uw(d). The extra level of
indirection is critical to our proof of security.

We now give an overview of the proof of security. At the highest level the goal
of our proof is to construct a sequence of hybrids where parameter generation is
“moved” from being directly computed by the second stage of U (as in the real
game) to where the parameters for setup algorithm d are being programmed in by
the first stage hidden trigger mechanism via the input w = H(d). Any poly-time
algorithm A will make at most a polynomial number Q = Q(λ) (unique) queries
d1, . . . , dQ to the random oracle with RO outputs w1, . . . , wQ. We perform a
hybrid of Q outer steps where at outer step i we move from using Uwi

to compute
the induced parameters for di, to having the induced parameter for di being
encoded in wi itself.

Let’s zoom in on the ith transition for input distribution di. The first hybrid
step uses punctured programming techniques to replace the normal computation
of the 1-time universal sampler parameters Uwi

inside the program, with a hard-
wired and randomly sampled value Uwi

= U ′. These techniques require making
changes to the universal sampler parameter U . Since U is published before the
adversary queries the random oracle on distribution di, note that we cannot
“program” U to specialize to di.

The next step5 involves a “hand-off” operation where we move the source
of the one time parameters U ′ to the trigger that will be hidden inside the
random oracle output wi, instead of using the hardwired value U ′ inside the
program. This step is critical to allowing an unbounded number of samples
to be programmed into the universal sampler scheme via the random oracle.
Essentially, we first choose U ′ independently and then set wi to be a hidden
trigger encoding of U ′. At this point on calling U(wi) the program will get
Uwi

= U ′ from the Stage 1 hidden trigger detection and never proceed to Stage
2. Since the second stage is no longer used, we can use iO security to return to
the situation where U ′ is no longer hardwired into the program—thus freeing up
the a-priori-bounded “hardwiring resources” for future outer hybrid steps.

Interestingly, all proof steps to this point were independent of the actual
program di. We observe that this fact is essential to our proof since the reduction
was able to choose and program the one-time parameters U ′ ahead of time into
U which had to be published well before di was known. However, now Uwi

= U ′

comes programmed in to the random oracle output wi obtained as a result of the

4 In our construction of Sect. 5 we directly use our 1-bounded scheme inside the
construction. However, we believe our construction can be adapted to work for any
one bounded scheme.

5 This is actually performed by a sequence of smaller steps in our proof. We simplify
to bigger steps in this overview.
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call to H(di). At this point, the program U ′ needs to be constructed only after
the oracle call H(di) has been made and thus di is known to the challenger. We
can now use our techniques from the selective setting to force U ′(di) to output
the ideally generated parameters di(r) for distribution di.

We believe our “delayed backdoor programming” technique may be useful
in other situations where an unbounded number of backdoors are needed in a
program of fixed size.

1.2 Applications of Universal Samplers

Universal setup. Our notion of arbitrary sampling allows for many applications.
For starters let’s return to the problem of providing a master setup for all cryp-
tographic protocols. Using a universal sampler scheme this is quite simple. One
will simply publish the universal sampler U ← Setup(1λ), for security para-
meter λ. Then if subsequently a new scheme is developed that has a trusted
setup algorithm d, everyone can agree to use p = Sample(U, d) as the scheme’s
parameters.

We can also use universal sampler schemes as a technical tool to build applica-
tions as varied as identity-based encryption (IBE), non-interactive key exchange
(NIKE), and broadcast encryption (BE) schemes. We note that our goal is not to
claim that our applications below are the “best” realizations of such primitives,
but more to demonstrate the different and perhaps surprising ways a universal
sampler scheme can be leveraged.

From the public-key to the identity-based setting. As a warmup, we show how
to transport cryptographic schemes from the public-key to the identity-based
setting using universal samplers. For instance, consider a public-key encryption
(PKE) scheme PKE = (PKGen,PKEnc,PKDec). Intuitively, to obtain an IBE
scheme IBE from PKE, we use one PKE instance for each identity id of IBE.

A first attempt to do so would be to publish a description of U as the master
public key of IBE, and then to define a public key pk id for identity id as pk id =
Sample(U, did), where did is the algorithm that first generates a PKE key pair
(pk , sk) ← PKGen(1λ) and then outputs pk . (Furthermore, to distinguish the
keys for different identities, did contains id as a fixed constant that is built
into its code, but not used.) This essentially establishes a “virtual” public-key
infrastructure in the identity-based setting.

Encryption to an identity id can then be performed using PKEnc under public
key pk id . However, at this point, it is not clear how to derive individual secret
keys sk id that would allow to decrypt these ciphertexts. (In fact, this first scheme
does not appear to have any master secret key to begin with.)

Hence, as a second attempt, we add a “master PKE public key” pk ′ from a
chosen-ciphertext secure PKE scheme to IBE’s master public key. Furthermore,
we set (pk id , c′

id) = Sample(U, did) for the algorithm did that first samples
(pk , sk) ← PKGen(1λ), then encrypts sk under pk ′ via c′ ← PKEnc′(pk ′, sk),
and finally outputs (pk , c′). This way, we can use sk ′ as a “master secret key”
to extract sk from c′

id – and thus extract individual user secret keys.
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We show that this construction yields a selectively-secure IBE scheme once
the used universal sampler scheme is selectively secure and the underlying PKE
schemes are secure. Intuitively, during the analysis, we substitute the user public
key pk id∗ for the challenge identity id∗ with a freshly generated PKE public key,
and we substitute the corresponding c′

id∗ with a random ciphertext. This allows
to embed an externally given PKE public key pk∗, and thus to use PKE’s security.

Non-interactive key exchange and broadcast encryption. We provide a very sim-
ple construction of a multiparty non-interactive key exchange (NIKE) scheme.
In an n-user NIKE scheme, a group of n parties wishes to agree on a shared
random key k without any communication. User i derives k from its own secret
key and the public keys of the other parties. (Since we are in the public-key
setting, each party chooses its key pair and publishes its public key.) Security
demands that k look random to any party not in the group.

We construct a NIKE scheme from a universal sampler scheme and a PKE
scheme PKE = (PKGen,PKEnc,PKDec) as follows: the public parameters are
the universal samplers U . Each party chooses a keypair (pk , sk) ← PKGen(1λ).
A shared key K among n parties with public keys from the set S =
{pk1, . . . , pkn} is derived as follows. First, each party computes (c1, . . . , cn) =
Sample(U, dS), where dS is the algorithm that chooses a random key k, and then
encrypts it under each pk i to ci (i.e., using ci ← PKEnc(pk i, k)). Furthermore,
dS contains a description of the set S, e.g., as a comment. (This ensures that
different sets S imply different algorithms dS and thus different independently
random Sample outputs.) Obviously, the party with secret key sk i can derive k
from ci. On the other hand, we show that k remains hidden to any outsiders,
even in an adaptive setting, assuming the universal sampler scheme is adaptively
secure, and the encryption scheme is (IND-CPA) secure.

We also give a variant of the protocol that has no setup at all. Roughly, we
follow Boneh and Zhandry [12] and designate one user as the “master party”
who generates and publishes the universal sampler parameters along with her
public key. Unfortunately, as in [12], the basic conversion is totally broken in
the adaptive setting. However, we make a small change to our protocol so that
the resulting no-setup scheme does have adaptive security. This is in contrast
to [12], which required substantial changes to the scheme, achieved only a weaker
semi-static security, and only obtained security though complexity leveraging.

Not only is our scheme the first adaptively secure multiparty NIKE without
any setup, but it is the first to achieve adaptive security even among schemes
with trusted setup, and it is the first to achieve any security beyond static secu-
rity without relying on complexity leveraging. Subsequent to our work, Rao [31]
gave an adaptive multi-party non-interactive key exchange protocol under adap-
tive assumptions on multilinear maps. One trade-off is that our scheme is only
proved secure in the random oracle model, whereas [12,31] are proved secure in
the standard model. Nevertheless, we note that adaptively secure NIKE with
polynomial loss to underlying assumptions is not known to be achievable out-
side of the random oracle model unless one makes very strong adaptive (non-
falsifiable) assumptions [31].
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Finally, using an existing transformation of Boneh and Zhandry [12], we
obtain a new adaptive distributed broadcast encryption from our NIKE scheme.

1.3 Subsequent Work Leveraging Universal Sampler Schemes

After the initial posting of our paper, a few other papers have applied universal
sampler schemes. Hohenberger, Koppula and Waters [25] used universal samplers
to achieve adaptive security without complexity leveraging for a new notion
they called universal signature aggregators. Hofheinz, Kamath, Koppula and
Waters [24] showed how to build adaptively secure constrained PRFs [11,14,26],
for any circuits, using universal parameters as a key ingredient. All previous
constructions were only selectively secure, or required complexity leveraging.

Our adaptively secure universal sampler scheme in the random oracle model,
also turns out to be a key building block in the construction of proof of human-
work puzzles of Blocki and Zhou [7]. Again, the abstraction of universal samplers
proved useful for constructing NIKE schemes based on polynomially-hard func-
tional encryption [21].

Another paper that appeared subsequent to ours [18], introduced the notion
of explainability compilers and used them to obtain adaptively secure, universally
composable MPC in constant rounds based on indistinguishability obfuscation
and one-way functions. We note that explainability compilers are related to our
notion of selectively secure universal samplers.

1.4 Organization of the Paper

We give an overview of indistinguishability obfuscation and puncturable PRFs,
the main technical tools required for our constructions, in Sect. 2. In Sect. 3, we
define our notion of universal sampler schemes. We give a realization and proof of
security for a 1-bounded selectively secure scheme in Sect. 4. In Sect. 5, we give
the construction and security overview for our main notion of an unbounded
adaptively secure scheme. The full proof of security of the adaptive unbounded
universal sampler scheme is in the full version. Applications of Universal Sam-
plers to IBE and NIKE are also detailed in the full version.

2 Preliminaries

2.1 Indistinguishability Obfuscation and PRFs

In this section, we define indistinguishability obfuscation, and variants of pseudo-
random functions (PRFs) that we will make use of. All variants of PRFs that
we consider can be constructed from one-way functions.
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Indistinguishability Obfuscation. The definition below is adapted from [20]:

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for circuits if the fol-
lowing conditions are satisfied:

– For all security parameters λ ∈ N, for all circuits C, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT adversaries Samp, D, there
exists a negligible function α such that the following holds: if Pr[|C0| =
|C1| and ∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − α(λ), then
we have:

∣
∣
∣Pr

[

D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)
]

−Pr
[

D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)
]
∣
∣
∣ ≤ α(λ)

We will sometimes omit λ from the notation whenever convenient and clear from
context.

Such indistinguishability obfuscators for circuits were constructed under
novel algebraic hardness assumptions in [20].

PRF variants. We first consider some simple types of constrained PRFs
[11,14,26], where a PRF is only defined on a subset of the usual input space.
We focus on puncturable PRFs, which are PRFs that can be defined on all bit
strings of a certain length, except for any polynomial-size set of inputs:

Definition 2. A puncturable family of PRFs F is given by a triple of Turing
Machines KeyF , PunctureF , and EvalF , and a pair of computable functions n(·)
and m(·), satisfying the following conditions:

– [Functionality preserved under puncturing]. For every PPT adversary
A such that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ)

where x /∈ S, we have that:

Pr
[
EvalF (K, x) = EvalF (KS , x) : K ← KeyF (1λ), KS = PunctureF (K, S)

]
= 1

– [Pseudorandom at punctured points]. For every PPT adversary (A1, A2)
such that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an exper-
iment where K ← KeyF (1λ) and KS = PunctureF (K,S). Then we have
∣
∣∣Pr
[
A2(σ, KS , S, EvalF (K, S)) = 1

]− Pr
[
A2(σ, KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,
EvalF (K,xk)) where S = {x1, . . . , xk} is the enumeration of the elements
of S in lexicographic order, negl(·) is a negligible function, and U� denotes the
uniform distribution over � bits.
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For ease of notation, we write F (K,x) to represent EvalF (K,x). We also
represent the punctured key PunctureF (K,S) by K(S).

The GGM tree-based construction of PRFs [22] from one-way functions are
easily seen to yield puncturable PRFs, as recently observed by [11,14,26]. Thus:

Theorem 1. [11,14,22,26] If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable PRF family that
maps n(λ) bits to m(λ) bits.

3 Definitions

In this section, we describe our definitional framework for universal sampler
schemes. The essential property of a universal sampler scheme is that given
the sampler parameters, and given any program d that generates samples from
randomness (subject to certain size constraints, see below), it should be possible
for any party to use the sampler parameters and the description of d to obtain
induced samples that look like the samples that d would have generated given
uniform and independent randomness.

We will consider two definitions – a simpler definition promising security for
a single arbitrary but fixed protocol, and a more complex definition promising
security in a strong adaptive sense against many protocols chosen after the sam-
pler parameters are fixed. All our security definitions follow a “Real World” vs.
“Ideal World” paradigm. Before we proceed to our definitions, we will first set
up some notation and conventions:

– We will consider programs d that are bounded in the following ways: Note
that we will use d to refer to both the program, and the description of the
program. Below, �(λ),m(λ), and k(λ) are all computable polynomials. The
description of d is as an �(λ)-bit string describing a circuit6 implementing d.
The program d takes as input m(λ) bits of randomness, and outputs samples
of length k(λ) bits. Without loss of generality, we assume that �(λ) ≥ λ and
m(λ) ≥ λ. When context is clear, we omit the dependence on the security
parameter λ. The quantities (�,m, k) are bounds that are set during the setup
of the universal sampler scheme.

– We enforce that every �-bit description of d yields a circuit mapping m bits
to k bits; this can be done by replacing any invalid description with a default
circuit satisfying these properties.

– We will sometimes refer to the program d that generates samples as a “proto-
col”. This is to emphasize that d can be used to generate arbitrary parameters
for some protocol.

A universal parameter scheme consists of two algorithms:
6 Note that if we assume iO for Turing Machines, then we do not need to restrict

the size of the description of d. Candidates for iO for Turing Machines were given
by [1,13].
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(1) The first randomized algorithm Setup takes as input a security parameter
1λ and outputs sampler parameters U .

(2) The second algorithm Sample takes as input sampler parameters U and a
circuit d of size at most �, and outputs induced samples pd.

Intuition. Before giving formal definitions, we will now describe the intuition
behind our definitions. We want to formulate security definitions that guarantee
that induced samples are indistinguishable from honestly generated samples to
an arbitrary interactive system of adversarial and honest parties.

We first consider an “ideal world,” where a trusted party, on input a pro-
gram description d, simply outputs d(rd) where rd is independently chosen true
randomness, chosen once and for all for each given d. In other words, if F is
a truly random function, then the trusted party outputs d(F (d)). In this way,
if any party asks for samples corresponding to a specific program d, they are
all provided with the same honestly generated value. This corresponds precisely
to the shared trusted public parameters model in which protocols are typically
constructed.

In the real world, however, all parties would only have access to the trusted
sampler parameters. Parties would use the sampler parameters to derive induced
samples for any specific program d. Following the ideal/real paradigm, we would
like to argue that for any adversary that exists in the real world, there should
exist an equivalently successful adversary in the ideal world. However, the general
scenario of an interaction between multiple parties, some malicious and some
honest, interacting in an arbitrary security game would be cumbersome to model
in a definition. To avoid this, we note that the only way that honest parties
ever use the sampler parameters is to execute the sample derivation algorithm
using the sampler parameters and some program descriptions d (corresponding
to the protocols in which they participate) to obtain derived samples, which
these honest parties then use in their interactions with the adversary.

Thus, instead of modeling these honest parties explicitly, we can “absorb”
them into the adversary, as we now explain: We will require that for every real-
world adversary A, there exists a simulator S that can provide simulated sampler
parameters U to the adversary such that these simulated sampler parameters
U actually induce the completely honestly generated samples d(F (d)) created
by the trusted party: in other words, that Sample(U, d) = d(F (d)). Note that
since honest parties are instructed to simply honestly compute induced samples,
this ensures that honest parties in the ideal world would obtain these completely
honestly generated samples d(F (d)). Thus, we do not need to model the honest
parties explicitly – the adversary A can internally simulate any (set of) honest
parties. By the condition we impose on the simulation, these honest parties would
have the correct view in the ideal world.

Selective (and bounded) vs. Adaptive (and unbounded) Security. We explore two
natural formulations of the simulation requirement. The simpler variant is the
selective case, where we require that the adversary declare at the start a single
program d∗ on which it wants the ideal world simulator to enforce equality
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between the honestly generated samples d∗(F (d∗)) and the induced samples
Sample(U, d∗). This simpler variant has two advantages: First, it is achievable in
the standard model. Second, it is achieved by natural and simple construction
based on indistinguishability obfuscation.

However, ideally, we would like our security definition to capture a scenario
where sampler parameters U are set, and then an adversary can potentially
adaptively choose a program d for generating samples for some adaptively chosen
application scenario. For example, there may be several plausible implementa-
tions of a program to generate samples, and an adversary could influence which
specific program description d is used for a particular protocol. Note, however,
that such an adaptive scenario is trivially impossible to achieve in the standard
model: there is no way that a simulator can publish sampler parameters U of
polynomial size, and then with no further interaction with the adversary, force
Sample(U, d∗) = d∗(F (d∗)) for a d∗ chosen after U has already been declared.
This impossibility is very similar to the trivial impossibility for reusable non-
interactive non-committing public-key encryption [29] in the plain model. Such
causality problems can be addressed, however, in the random-oracle model. As
discussed in the introduction, the sound use of the random oracle model together
with obfuscation requires care: we do not assume that the random oracle itself
can be obfuscated, which presents an intriguing technical challenge.

Furthermore, we would like our sampler parameters to be useful to obtain
induced samples for an unbounded number of other application scenarios. We
formulate and achieve such an adaptive unbounded definition of security in the
random oracle model.

3.1 Selective One-Time Universal Samplers

We now formally define a selective one-time secure universal sampler scheme.

Definition 3 (Selectively-Secure One-Time Universal Sampler
Scheme). Let �(λ), m(λ), k(λ) be efficiently computable polynomials. A pair of
efficient algorithms (Setup, Sample) where Setup(1λ) → U, Sample(U, d) → pd,
is a selectively-secure one-time universal sampler scheme if there exists an efficient
algorithm SimUGen such that:

– There exists a negligible function negl(·) such that for all circuits d of length �,
taking m bits of input, and outputting k bits, and for all strings pd ∈ {0, 1}k,
we have that:

Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1 − negl(λ)

– For every efficient adversary A = (A1,A2), where A2 outputs one bit, there
exists a negligible function negl(·) such that

∣
∣Pr[Real(1λ) = 1] − Pr[Ideal(1λ) = 1]

∣
∣ = negl(λ) (1)

where the experiments Real and Ideal are defined below (σ denotes auxiliary
information).
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The experiment Real(1λ) is as follows: The experiment Ideal(1λ) is as follows:
– (d∗, σ) ← A1(1λ) – (d∗, σ) ← A1(1λ)
– Output A2(Setup(1λ), σ) – Choose r uniformly from {0, 1}m

– Let pd = d∗(r)
– Output A2(SimUGen(1λ, d∗, pd), σ)

3.2 Adaptively Secure Universal Samplers

We now define universal sampler schemes for the adaptive setting in the random
oracle model, handling an unbounded number of induced samples simultaneously.
We do not assume obfuscation of circuits that call the random oracle. Thus, we
allow the random oracle to be used only outside of obfuscated programs.

We consider an adversary that uses a universal sampler to obtain samples on
(adaptively chosen) distributions of his choice. We want to guarantee that for
any distribution specified by the adversary, the output samples he obtains are
indistinguishable from externally generated parameters from the same distribu-
tion. In other words, there must exist a simulator that can force the adversary to
obtain the externally generated parameters as output of the universal sampler.

Converting this intuition into an actual formal definition turns out to be
somewhat complicated. The reason is that in the real world, the adversary must
be able to generate samples on his own, using the universal sampler provided to
him. However, the simulator which is required to force the external parameters
cannot learn the adversary’s queries to the sampler program. Such a simulator
must observe all of the adversary’s queries to the random oracle, and use them
to program the output of the samplers, without knowing any of the adversary’s
actual queries to the sampler program.

Definition 4 (Adaptively-Secure Universal Sampler Scheme). Let �(λ),
m(λ), k(λ) be efficiently computable polynomials. A pair of efficient oracle algo-
rithms (Setup, Sample) where SetupH(1λ) → U, SampleH(U, d) → pd is an
adaptively-secure universal sampler scheme if there exist efficient interactive
Turing Machines SimUGen, SimRO such that for every efficient admissible adver-
sary A, there exists a negligible function negl(·) such that:

∣
∣Pr[Real(1λ) = 1] − Pr[Ideal(1λ) = 1]

∣
∣ = negl(λ)

where admissible adversaries, the experiments Real and Ideal and our (non-
standard) notion of the Ideal experiment aborting, are described below.

– An admissible adversary A is an efficient interactive Turing Machine that
outputs one bit, with the following input/output behavior:

• A initially takes input security parameter λ and sampler parameters U .
• A can send a message (RO, x) corresponding to a random oracle query.

In response, A receives the output of the random oracle on input x.
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• A can send a message (sample, d), where d is a circuit of length �, taking m
bits of input, and outputting k bits. A does not expect any response to this
message. Instead, upon sending this message, A is required to honestly
compute pd = Sample(U, d), making use of any additional RO queries,
and append (d, pd) to an auxiliary tape.

Remark. Intuitively, (sample, d) corresponds to an honest party seeking a
sample generated by program d. Recall that A is meant to internalize the
behavior of honest parties that compute parameters by correctly querying
the random oracle and recording the sampler’s output7.

– The experiment Real(1λ) is as follows:
1. Throughout this experiment, a random oracle H is implemented by assign-

ing random outputs to each unique query made to H.
2. U ← SetupH(1λ)
3. A(1λ, U) is executed, where every message of the form (RO, x) receives

the response H(x).
4. The output of the experiment is the final output of the execution of

A(which is a bit b ∈ {0, 1}).
– The experiment Ideal(1λ) is as follows:

1. A truly random function F that maps � bits to m bits is implemented
by assigning random m-bit outputs to each unique query made to F8.
Throughout this experiment, a Samples Oracle O is implemented as fol-
lows: On input d, where d is a circuit of length �, taking m bits of input,
and outputting k bits, O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the
Samples Oracle O.

3. SimRO corresponds to the output of a programmable random oracle in the
ideal world.

4. A(1λ, U) and SimRO(τ) begin simultaneous execution. Messages for A or
SimRO are handled as:

• Whenever A sends a message of the form (RO, x), this is forwarded
to SimRO, which produces a response to be sent back to A.

• SimRO can make any number of queries to the Samples Oracle O9.
• Finally, after A sends a message of the form (sample, d), the auxil-

iary tape of A is examined until A adds an entry of the form (d, pd)
to it. At this point, if pd �= d(F (d)), the experiment aborts and we
say that an “Honest Sample Violation” has occurred. Note that this

7 Note that proving security against such admissible adversaries suffices to capture the
intuition behind a universal sampler and in particular suffices for all our applications.
This is because honest parties will still use the correctly generated output, and we
would like to guarantee that no malicious adversary will be able to distinguish the
samples used by honest parties from externally generated samples.

8 A does not have direct access to F , in fact A will only have access to SimRO which
we define later to model the output of a programmable random oracle.

9 Looking ahead, in our proof, SimRO will use the output of queries to O to generate
a programmed output of the Random Oracle.
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corresponds to a correctness requirement in the ideal world, and is the
only way that the experiment Ideal can abort10. In this case, if the
adversary itself “aborts”, we consider this to be an output of zero by
the adversary, not an abort of the experiment itself.

5. The output of the experiment is the final output of the execution of A
(which is a bit b ∈ {0, 1}).

Remark 1. We note that indistinguishability of the real and ideal worlds also
implies that: Pr[Ideal(1λ) aborts] < negl(λ)

4 Selective One-Time Universal Samplers

In this section, we show the following:

Theorem 2 (Selective One-Time Universal Samplers). If indistinguisha-
bility obfuscation and one-way functions exist, then there exists a selectively
secure one-time universal sampler scheme, according to Definition 3.

The required Selective One-Time Universal Sampler Scheme consists of pro-
grams Setup and Sample.

– Setup(1λ) first samples the key K for a PRF that takes � bits as input and
outputs m bits. It then sets Sampler Parameters U to be an indistinguisha-
bility obfuscation of the program11 Selective-Single-Samples in Figure 1. It
outputs U .

– Sample(U, d) runs the program U on input d to generate and output U(d).

Fig. 1. Program Selective-Single-Samples

10 Recall that an admissible adversary only honestly computes samples and adds them
to its tape – i.e., an admissible adversary always writes pd = SampleH(U, d) as the
honest output of the sampler program. Thus, an honest sample violation in the ideal
world indicates that the simulator did not force the correct samples d(F (d)) obtained
externally from a trusted party, into the output of the sampler program.

11 Appropriately padded to the maximum of the size of itself and Program Selective-
Single-Samples: 2 in Fig. 2.



How to Generate and Use Universal Samplers 733

4.1 Overview of Security Proof

The proof follows straightforwardly from the puncturing techniques of [32] and
we give a brief overview before giving the full proof. In the real world, the
adversary commits to his input d∗ and then the challenger gives the Selective-
Single-Samples program to the adversary. In the first hybrid, we puncture the
PRF key K at value d∗, and hardwire the output f∗ = d∗(PRF (K, d∗)) into
the program, arguing security by iO of the functionally equivalent programs. In
the next hybrid, PRF (K, d∗) can be replaced with a random value x, setting
f∗ = d∗(x) and arguing security because of the puncturable PRF. Finally, the
value f∗ can be replaced with the external sample pd.

4.2 Hybrids

We prove security by a sequence of hybrids, starting with the original experiment
Hybrid0 in the Real World and replacing the output at d∗ with an external sample
in the final hybrid (Ideal World). Each hybrid is an experiment that takes as
input 1λ. The output of each hybrid is the adversary’s output when it terminates.
We denote changes between subsequent hybrids using red underlined font.

Hybrid0:

– The adversary picks protocol description d∗ and sends it to the challenger.
– The challenger picks PRF key K and sends the adversary an iO of the pro-

gram12 Selective-Single-Samples in Fig. 1.
– The adversary queries the program on input d∗ to obtain the sample.

Hybrid1:

– The adversary picks protocol description d∗ and sends it to the challenger.
– The challenger picks PRF key K, sets f∗ = d∗(F (K, d∗)), punctures K at d∗

and sends the adversary an iO of the program13 Selective-Single-Samples: 2
in Fig. 2.

– The adversary queries the program on input d∗ to obtain the sample.

Hybrid2:

– The adversary picks protocol description d∗ and sends it to the challenger.
– The challenger picks PRF key K, picks x ← {0, 1}m, sets f∗ = d∗(x), punc-

tures K at d∗ and sends the adversary an iO of the program14 Selective-
Single-Samples: 2 in Fig. 2.

– The adversary queries the program on input d∗ to obtain the sample.

12 Padded to the maximum of the size of itself and Selective-Single-Samples: 2.
13 Padded to the maximum of the size of itself and Selective-Single-Samples.
14 Padded to the maximum of the size of itself and Selective-Single-Samples.
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Fig. 2. Program Selective-Single-Samples: 2

Hybrid3:

– This hybrid describes how SimUGen works.
– The adversary picks protocol description d∗ and sends it to the challenger.
– The challenger executes SimUGen(1λ, d∗), which does the following: It picks
PRF key K, sets f∗ = pd for externally obtained sample pd, punctures K at
d∗ and outputs an iO of the program15 Selective-Single-Samples: 2 in Fig. 2.
This is then sent to the adversary.

– The adversary queries the program on input d∗ to obtain the sample.

4.3 Indistinguishability of the Hybrids

To prove Theorem 2, it suffices to prove the following claims,

Claim. Hybrid0(1λ) and Hybrid1(1λ) are computationally indistinguishable.

Proof. Hybrid0 and Hybrid1 are indistinguishable by security of iO, since the pro-
grams Selective-Single-Samples and Selective-Single-Samples: 2 are functionally
equivalent. Suppose not, then there exists a distinguisher D1 that distinguishes
between the two hybrids. This can be used to break security of the iO via the
following reduction to distinguisher D.

D acts as challenger in the experiment of Hybrid0. He activates the
adversary D1 to obtain input d∗, and computes f∗ = d∗(F (K, d∗)), to
obtain circuits C0 = Selective-Single-Samples according to Fig. 1 and C1 =
Selective-Single-Samples: 2 according to Fig. 2 with inputs d∗, f∗. He gives C0, C1

to the iO challenger.
The iO challenger pads these circuits in order to bring them to equal size.

It is easy to see that these circuits are functionally equivalent. Next, the iO
challenger gives circuit Cx = iO(C0) or Cx = iO(C1) to D.

D continues the experiment of Hybrid1 except that he sends the obfuscated
circuit Cx instead of the obfuscation of Selective-Single-Samples to the adversary
D1. Since D1 has significant distinguishing advantage, there exists a polynomial
p(·) such that,

∣
∣
∣Pr

[D1(Hybrid0) = 1
] − Pr

[D1(Hybrid1) = 1
]
∣
∣
∣ ≥ 1/p(λ).

15 Padded to the maximum of the size of itself and Selective-Single-Samples.
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We note that Hybrid0 and Hybrid1 correspond exactly to Cx being C0 and
C1 respectively, thus we can just have D echo the output of D1 such that the
following is true, for α(·) = 1/p(·)

∣
∣
∣Pr

[D(σ, iO(n,C0)) = 1
] − Pr

[D(σ, iO(n,C1)) = 1
]
∣
∣
∣ ≥ α(λ)

Claim. Hybrid1(1λ) and Hybrid2(1λ) are computationally indistinguishable.

Proof. Hybrid1 and Hybrid2 are indistinguishable by security of the punctured
PRF K{d∗}. Suppose they are not, then consider an adversary D2 who distin-
guishes between these hybrids with significant advantage.

This adversary can be used to break selective security of the punctured PRF
K via the following reduction algorithm to distinguisher D, that first gets the
protocol d∗ after activating the distinguisher D2. The PRF challenger gives the
punctured PRF K along with challenge a to the PRF attacker D, which is
either the output of the PRF at d∗ or is set uniformly at random in {0, 1}m.
D sets f∗ = d∗(a) and continues the experiment of Hybrid1 against D2. Then,
∣
∣
∣Pr

[D2(Hybrid1) = 1
]−Pr

[D2(Hybrid2) = 1
]
∣
∣
∣ ≥ 1/p(λ) for some polynomial p(·).

If a is the output of the punctured PRF K at d∗, then we are in Hybrid1. If a
was chosen uniformly at random, then we are in Hybrid2. Therefore, we can just
have D echo the output of D2 such that

∣
∣
∣Pr

[D(F (K{d∗}, d∗)) = 1
] − Pr

[D(y ← {0, 1}n) = 1
]
∣
∣
∣ ≥ 1/p(λ).

Claim. Hybrid2(1λ) and Hybrid3(1λ) are identical.

Proof. These are identical since x is sampled uniformly at random in {0, 1}n.

Claim. Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1

Proof. It follows from inspection of our construction that the program always
outputs the external samples in the ideal world, therefore condition (1) in Defi-
nition 3 is fulfilled.

5 Adaptively Secure Universal Samplers

Theorem 3 (Adaptively Secure Universal Samplers). If indistinguisha-
bility obfuscation and one way functions exist, then there exists an adaptively
secure universal sampler scheme, according to Definition 4, in the Random Ora-
cle Model.

Our scheme consists of algorithms Setup and Sample, defined below. We rely
on injective PRGs and indistinguishability obfuscation.
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– Setup(1λ, r) first samples PRF keys K1,K2,K
′
2 and then sets Sampler Para-

meters U to be an indistinguishability obfuscation of the program Adaptive-
Samples 16, Figure 3. The first three steps in the program look for “hidden
triggers” and extract an output if a trigger is found, the final step represents
the normal operation of the program (when no triggers are found).

The program takes as input a value u, where |u| = n2 and v where |v| = n,
such that u||v is obtained as the output of a random oracle H on input d.
Here, n is the size of an iO of program17 PK3(Figure 4). As such, n will be
some fixed polynomial in the security parameter λ. The key to our proof is to
instantiate the random oracle H appropriately to generate the sample for any
input protocol description d.

Denote by F
(n)
1 = {F 1,0

1 , F 1,1
1 , F 2,0

1 , F 2,1
1 . . . Fn,0

1 , Fn,1
1 } a sequence of 2n

puncturable PRF’s that each take n-bit inputs and output n bits. For some
key sequence {K1,0

1 ,K1,1
1 ,K2,0

1 ,K2,1
1 . . . Kn,0

1 ,Kn,1
1 }, denote the combined key

by K
(n)
1 . Then, on a n-bit input v1, denote the combined output of the function

F
(n)
1 using key K

(n)
1 by F

(n)
1 (K(n)

1 , v1). Note that the length of this combined
output is 2n2. Denote by F2 a puncturable PRF that takes inputs of (n2 + n)
bits and outputs n1 bits, where n1 is the size of the key K3 for the program
PK3 in Fig. 4. In particular, n1 = λ. Denote by F ′

2 another puncturable PRF
that takes inputs of (n2 + n) bits and outputs n2 bits, where n2 is the size of
the randomness r used by the iO given the program PK3 in Fig. 4. Denote by
F3 another puncturable PRF that takes inputs of � bits and outputs m bits.
Denote by PRG an injective length-doubling pseudo-random generator that
takes inputs of n bits and outputs 2n bits.

Here m is the size of uniform randomness accepted by d(·), k is the size of
samples generated by d(·).

– Sample(U, d) queries the random oracle H to obtain (u, v) = H(d). It then runs
the program U generated by Setup(1λ) on input (u, v) to obtain as output
the obfuscated program P . It now runs this program P on input d to obtain
the required samples.

5.1 Overview of the Security Game and Hybrids

We convert any admissible adversary A - that is allowed to send any message
(RO, x) or (params, d) - and construct a modified adversary, such that whenever
A sends message (params, d), our modified adversary sends message (RO, d) and
then sends message (params, d). It suffices to prove the security of our scheme
with respect to such modified adversaries because this modified adversary is
functionally equivalent to the admissible adversary. Because the modified adver-
sary always provides protocol description d to the random oracle, our proof will

16 This program must be padded appropriately to maximum of the size of itself and
other corresponding programs in various hybrids, as described in the next section.

17 Appropriately padded to the maximum of the size of itself and P ′
K3,p∗

j ,d∗
j

in future

hybrids.
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Fig. 3. Program Adaptive-Samples

Fig. 4. Program PK3

not directly deal with messages of the form (params, d) and it will suffice to
handle only messages (RO, d) sent by the adversary.

We prove via a sequence of hybrids, that algorithms Setup and
Sample satisfy the security requirements of Definition 4 in the Ran-
dom Oracle Model. Hybrid0 corresponds to the real world in the secu-
rity game described above. Suppose the adversary makes q(λ) queries
to the random oracle H, for some polynomial q(·). The argument pro-
ceeds via the sequence Hybrid0,Hybrid1,1,Hybrid1,2, . . .Hybrid1,13, Hybrid2,1,
. . .Hybrid2,13 . . .Hybridq(λ),13, each of which we prove to be indistinguishable
from the previous one. We define Hybrid0 ≡ Hybrid0,13 for convenience. The
final hybrid Hybridq(λ),13 corresponds to the ideal world in the security game
described above, and contains (implicitly) descriptions of SimUGen, SimRO as
required in Definition 4. For brevity, we only describe Hybrid0 and Hybrids,13

for a generic s ∈ q(λ) in this section. We also give a short overview of how
the sequence of hybrids progresses. The complete sequence of hybrids along
with complete indistinguishability arguments, beginning with Hybrid0 and then
Hybrids,1, Hybrids,2, . . .Hybrids,13 for a generic s ∈ [q(λ)], can be found in the
next sections.
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In the following experiments, the challenger chooses PRF keys K
(n)
1 ,K2 and

K ′
2 for PRFs F

(n)
1 , F2 and F ′

2. Each hybrid is an experiment that takes input 1λ.
The output of any hybrid experiment denotes the output of the adversary upon
termination. Changes between hybrids are denoted using red underlined font.

Hybrid0:

– The challenger pads the program Adaptive-Samples in Fig. 3 to be the maxi-
mum of the size of itself and all corresponding programs (Adaptive-Samples:
2, Adaptive-Samples: 3) in other hybrids. Next, he sends the obfuscation of
the program in Fig. 3 to the adversary.

– Set j = 0. While the adversary queries the RO, increment j and repeat:
1. Let the adversary query the random oracle on protocol description d∗

j .
2. The challenger sets the output of the RO, (u∗

j , v
∗
j ) ← {0, 1}n2+n.

– The adversary then outputs a single bit b′.

Hybrids,13:

– The challenger pads the program Adaptive-Samples in Fig. 5 appropriately 18

and sends an iO of the program to the adversary.
– Set j = 0. While the adversary queries the RO, increment j and repeat:

1. Let the adversary query the random oracle on protocol description d∗
j .

2. If j ≤ s, the challenger sets the output of the random oracle, v∗
j ← {0, 1}n.

He sets K3 ← {0, 1}n, e′ ← {0, 1}n. He queries the oracle to obtain the
sample p∗

j and sets g = iO(P ′
K3,p∗

j ,d∗
j
, e′) (See Fig. 7).

For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗
1,0, y

∗
1,1), . . . , (y

∗
n,0, y

∗
n,1)

= F1(K
(n)
1 , v∗

j ), u∗
j [i] = y∗

i,gi
, where gi is the ith bit of g.

3. If j > s, challenger sets the RO output, (u∗
j , v

∗
j ) ← {0, 1}n2+n.

– The adversary then outputs a single bit b′.

Note that Hybridq(λ),13 is the Ideal World and it describes how SimUGen and
SimRO work in the first and second bullet points above, respectively.

From Hybrids−1,13 to Hybrids,13.

We now outline a series of sub-hybrids from Hybrids−1,13 to Hybrids,13 for a
generic s ∈ [1, q], where we program the universal sampler U to output external
parameters on the sth query of the adversary. Our proof comprises of two main
steps: the first step consists in hardwiring a fresh single-use program into the
random oracle output for the sth query – this is done by first hardwiring values
into the obfuscated program, then changing the output of the random oracle,
and then un-hardwiring these values from the obfuscated program.

Once this is done, the second step comprises of hardwiring the external para-
meters into this single-use program. The complete hybrids and indistinguisha-
bility arguments are in the next subsection.
18 To the maximum of the size of itself and all corresponding programs in the other

hybrids.
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Fig. 5. Program Adaptive-Samples

Fig. 6. Program PK3

Fig. 7. Program P ′
K3,p∗

j ,d∗
j

First step. Hybrids,1: Let the sth random oracle query of the adversary be on
input d∗

s. We first use punctured programming to hardwire computation corre-
sponding to input d∗

s into the Adaptive-Samples program.
To do this, in Hybrids,1 the challenger picks v∗

s uniformly at random as the
output of the random oracle on input d∗

s. He sets (y∗
1,0, y

∗
1,1, . . . y

∗
n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗

s ). Then, for all b ∈ {0, 1}, i ∈ [n] he sets z∗
i,b = PRG(y∗

i,b). Next, he
adds a check at the beginning of the main program such that for v = v∗

s , if u[i] =
z∗
i,b, the program sets xi = b. The program Adaptive-Samples of Hybrids−1,13

is replaced by the program Adaptive-Samples: 2 illustrated in Fig. 8. This is
indistinguishable from the previous hybrid by the security of indistinguishability
obfuscation, because the programs Adaptive-Samples and Adaptive-Samples: 2
are functionally equivalent.
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Fig. 8. Program Adaptive-Samples: 2

Hybrids,2: In Hybrids,2, the output of PRF F1 on input v∗
s is replaced with ran-

dom. That is for all b ∈ {0, 1}, i ∈ [n], he sets yi,b
$← {0, 1}n. This hybrid is

indistinguishable from Hybrids,1 by security of the puncturable PRF.

Hybrids,3: Next, the string z∗ is set uniformly at random. That is, for each
i ∈ [n], b ∈ {0, 1}, instead of setting z∗

i,b = PRG(y∗
i,b), the challenger sets z∗

i,b
$←

{0, 1}2λ. This hybrid is indistinguishable from Hybrids,2 by security of the PRG.
Note that this step “deactivates” the extra check we had added in Hybrids,1,
because with overwhelming probability, z∗ will lie outside the image of the PRG.

Hybrids,4: Once this is done, for u∗
s and v∗

s both fixed uniformly at ran-
dom as random oracle response to query d∗

s, in Hybrids,4 the challenger sets
e = F2(K2, u

∗
s |v∗

s ), e′ = F ′
2(K

′
2, u

∗
s|v∗

s ), g = iO(Pe, e
′) and adds an initial check

in the main program: if input u = u∗
s and v = v∗

s , then output g and exit. Simul-
taneously, the challenger punctures the keys K2 and K ′

2 in the main program.
The modified program Adaptive-Samples: 3 is depicted in Fig. 9. At this point,
we have hardwired Adaptive-Samples: 3 to output g on input values (u∗

s, v
∗
s ),

obtained from the RO on input d∗
s. This is indistinguishable from Hybrids,3 by

the security of indistinguishability obfuscation, because the programs Adaptive-
Samples: 3 and Adaptive-Samples: 2 are functionally equivalent.

Hybrids,5: In this hybrid, the challenger generates e uniformly at random instead
of the output of the punctured PRF F2.
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Fig. 9. Program Adaptive-Samples: 3

Hybrids,6: In this hybrid, the challenger generates e′ uniformly at random instead
of the output of the punctured PRF F ′

2. This will be needed in the next few
hybrids when we start programming the single-use parameters.

Hybrids,7: Since the (bounded size) program Adaptive-Samples: 3 must remain
programmable for an unbounded number of samples, we now move the hardwired
single-use paramters g from the Adaptive-Samples: 3 program to a hidden trigger
encoding in the output of the random oracle, u∗

s. Specifically, this is done by
setting for all i ∈ [1, n], z∗

i,gi
= PRG(u∗

s[i]) in Hybrids,7. This is made possible
also by injectivity of the PRG. Once u∗

s has been programmed appropriately to
encode the value g, hardwiring g into the program becomes redundant, and it
is possible to replace Adaptive-Samples: 3 with the previous program Adaptive-
Samples: 2.

At this point, we can seal back the punctured keys, un-hardwire g from the
program and return to the original program Adaptive-Samples in a sequence of
hybrids, Hybrids,8 to Hybrids,10 which reverse our sequence of operations from
Hybrids,1 to Hybrids,3. More specifically, Hybrids,8 involves generating z∗

i,b for all
i ∈ [n], b ∈ {0, 1} as outputs of a PRG, and this is indistinguishable by security of
the PRG. Then Hybrids,9 involves generating (y∗

1,0, y
∗
1,1 . . . y∗

n,0, y
∗
n,1 as the output

of F1(K
(n)
1 , v∗

s ), and this is indistinguishable by security of the puncturable PRF.
At this point, hardwiring the z∗ values becomes redundant, and it is possible

to go back to program Adaptive-Samples, in Hybrids,10 arguing indistinguisha-
bility via indistinguishability obfuscation.
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Now, Hybrids,10 becomes identical to Hybrids−1,13 except for a trapdoor that
has been programmed into the random oracle output u∗

s, which outputs specific
selective single-use parameters.

Second Step. Now, it is straightforward (following the same sequence of hybrids
as the selective single-use case) to force the single-use parameters that were
programmed into u∗

s to output external parameters p∗
s, in hybrids Hybrids,11

through Hybrids,13. Please refer to the full version for a more detailed proof.

No honest sample violations. At this point, in the final hybrid, whenever the
adversary queries H on any input d, in the final hybrid we set (u, v) = H(d) to
output the externally specified samples p∗

s. Thus, the correctness requirement
in the ideal world is always met, and there are no honest sample violations
according to Definition 4.

Acknowledgements. The authors would like to thank the anonymous Asiacrypt 2016
reviewers for their helpful comments, and in particular for pointing out the contents
of Remark 1.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013, p. 689 (2013)

2. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. The Guardian (2013). http://www.theguardian.com/
world/2013/sep/05/nsa-gchq-encryption-codes-security

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random Oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 23

5. Bellare, M., Rogaway, P.: Random Oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on Com-
puter and Communications Security, Fairfax, Virginia, USA, 3–5 November 1993,
pp. 62–73 (1993)

6. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign
with RSA and Rabin. In: Proceeding Advances in Cryptology - EUROCRYPT
1996, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, 12–16 May 1996, pp. 399–416 (1996)

7. Blocki, J., Zhou, H.: Designing proof of human-work puzzles for cryptocurrency
and beyond. IACR Cryptology ePrint Archive 2016, p. 145 (2016). http://eprint.
iacr.org/2016/145

8. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptology 24(4), 659–693 (2011). http://dx.doi.org/10.1007/s00145-
010-9078-6

http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-642-40084-1_23
http://eprint.iacr.org/2016/145
http://eprint.iacr.org/2016/145
http://dx.doi.org/10.1007/s00145-010-9078-6
http://dx.doi.org/10.1007/s00145-010-9078-6


How to Generate and Use Universal Samplers 743

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 26

11. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. IACR Cryptology ePrint Archive 2013, p. 352 (2013)

12. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

13. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive 2013, p. 401 (2013)

15. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signa-
tures. J. Cryptology 25(4), 723–747 (2012)

16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

17. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptology 20(3), 265–294 (2007)

18. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 23

19. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 4

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

21. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. IACR Cryptology ePrint Archive 2016, p. 102 (2016). http://
eprint.iacr.org/2016/102

22. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479 (1984)

23. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70936-7 11

24. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. IACR Cryptology ePrint Archive 2014, p. 720 (2014)

25. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 1

26. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. IACR Cryptology ePrint Archive 2013,
p. 379 (2013)

http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-662-46497-7_23
http://dx.doi.org/10.1007/978-3-662-46497-7_23
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://eprint.iacr.org/2016/102
http://eprint.iacr.org/2016/102
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-662-46803-6_1


744 D. Hofheinz et al.

27. Larson, J., Perlroth, N., Shane, S.: Revealed: The NSA’s secret campaign to
crack, undermine internet security. Pro-Publica (2013). http://www.propublica.
org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption

28. Liang, B., Li, H., Chang, J.: The generic transformation from standard signa-
tures to identity-based aggregate signatures. In: Lopez, J., Mitchell, C.J. (eds.)
ISC 2015. LNCS, vol. 9290, pp. 21–41. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23318-5 2

29. Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/
3-540-45708-9 8

30. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on web. Internation New York Times (2013). http://www.nytimes.com/2013/09/
06/us/nsa-foils-much-internet-encryption.html

31. Rao, V.: Adaptive multiparty non-interactive key exchange without setup in the
standard model. Cryptology ePrint Archive, Report 2014/910 (2014). http://
eprint.iacr.org/

32. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

http://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://dx.doi.org/10.1007/978-3-319-23318-5_2
http://dx.doi.org/10.1007/978-3-319-23318-5_2
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/3-540-45708-9_8
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://eprint.iacr.org/
http://eprint.iacr.org/

	How to Generate and Use Universal Samplers
	1 Introduction
	1.1 Our Technical Approach
	1.2 Applications of Universal Samplers
	1.3 Subsequent Work Leveraging Universal Sampler Schemes
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Indistinguishability Obfuscation and PRFs

	3 Definitions
	3.1 Selective One-Time Universal Samplers
	3.2 Adaptively Secure Universal Samplers

	4 Selective One-Time Universal Samplers
	4.1 Overview of Security Proof
	4.2 Hybrids
	4.3 Indistinguishability of the Hybrids

	5 Adaptively Secure Universal Samplers
	5.1 Overview of the Security Game and Hybrids

	References


