
Nonlinear Invariant Attack

Practical Attack on Full SCREAM, iSCREAM, and Midori64

Yosuke Todo1,3(B), Gregor Leander2, and Yu Sasaki1

1 NTT Secure Platform Laboratories, Tokyo, Japan
{todo.yosuke,sasaki.yu}@lab.ntt.co.jp
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Abstract. In this paper we introduce a new type of attack, called
nonlinear invariant attack. As application examples, we present new
attacks that are able to distinguish the full versions of the (tweakable)
block ciphers Scream, iScream and Midori64 in a weak-key setting. Those
attacks require only a handful of plaintext-ciphertext pairs and have min-
imal computational costs. Moreover, the nonlinear invariant attack on
the underlying (tweakable) block cipher can be extended to a ciphertext-
only attack in well-known modes of operation such as CBC or CTR.
The plaintext of the authenticated encryption schemes SCREAM and
iSCREAM can be practically recovered only from the ciphertexts in the
nonce-respecting setting. This is the first result breaking a security claim
of SCREAM. Moreover, the plaintext in Midori64 with well-known modes
of operation can practically be recovered. All of our attacks are experi-
mentally verified.

Keywords: Nonlinear invariant attack · Boolean function · Ciphertext-
only message-recovery attack · SCREAM · iSCREAM · Midori64 · CAE-
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1 Introduction

Block ciphers are certainly among the most important cryptographic primitives.
Since the invention of the DES [1] in the mid 70’s and even more with the design
of the AES [2], a huge amount of research has been done on various aspects
of block cipher design and block cipher analysis. In the last decade, many new
block ciphers have been proposed that aim at highly resource constrained devices.
Driven by new potential applications like the internet of things, we have wit-
nessed not only many new designs, but also several new cryptanalytic results.
Today, we have at hand a well established set of cryptanalytic tools that, when
are carefully applied, allow to gain significant confidence in the security of a
block cipher design. The most prominent tools here are certainly differential [5]
and linear [21] attacks and their numerous variations [4,7,14,15].
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Despite this fact, quite some of the recently proposed lightweight block
ciphers got broken rather quickly. One of the reasons for those attacks, on what is
supposed to be a well-understood field of cryptographic designs, is that the new
lightweight block ciphers are designed more aggressive than e.g. most of the AES
candidates. Especially when it comes to the design of the key schedule, many new
proposals keep the design very simple, often using identical round keys. While
there is no general defect with such a key schedule, structural attacks become
much more of an issue compared to a cipher that deploys a more complicated key
schedule. In this paper we introduce a new structural attack, named nonlinear
invariant attack. At first glance, it might seem quite unlikely that such an attack
could ever be successfully applied. However, we give several examples of ciphers
that are highly vulnerable to this attack.

1.1 Our Contribution

Given a block cipher Ek : F
n
2 → F

n
2 , the general principle of the nonlinear

invariant attack is to find an efficiently computable nonlinear Boolean function
g : Fn

2 → F2 such that
g(x) ⊕ g(Ek(x))

is constant for any x and for many possible keys k. Keys such that this term is
constant are called weak keys. The function g itself is called nonlinear invariant
for Ek. Clearly, when the block cipher Ek has a (non-trivial) nonlinear invariant
function g, g(p)⊕g(Ek(p)) is constant for any plaintext p and any weak key k. On
the other hand, the probability that random permutations have this property is
about 2−N+1 when g is balanced. Therefore, attackers can immediately execute
a distinguishing attack. Moreover, if the constant depends on the secret key, an
attacker can recover one bit of information about the secret key by using one
known plaintext-ciphertext pair.

For round-based block ciphers, our attack builds the nonlinear invariants
from the nonlinear invariants of the single round functions. In order to extend
the nonlinear invariant for a single round to the whole cipher, all round-keys
must be weak keys. It may be infeasible to find such weak-key classes for block
ciphers with a non-trivial key schedule. However, as mentioned above, many
recent block ciphers are designed for lightweight applications, and they adopt
more aggressive designs to achieve high performance even in highly constrained
environments. Several lightweight ciphers do not deploy any key schedule at all,
but rather use the master key directly as the identical round key for all rounds.
In such a situation, the weak-key class of round keys is trivially converted into
the weak-key class of the secret key. In particular, when all round keys are weak,
this property is iterative over an arbitrary number of rounds.

(Ciphertext-Only) Message-Recovery Attacks. The most surprising
application of the nonlinear invariant attack is an extension to ciphertext-only
message-recovery attacks. Clearly, we cannot execute any ciphertext-only attack
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without some information on the plaintexts. Therefore, our attack is ciphertext-
only attack under the following environments. Suppose that block ciphers which
are vulnerable against the nonlinear invariant attack are used in well-known
modes of operation, e.g., CBC, CFB, OFB, and CTR. Then, if the same unknown
plaintext is encrypted by the same weak key and different initialization vectors,
attackers can practically recover a part of the plaintext from the ciphertexts
only.

Applications. We demonstrate that our new attack practically breaks the full
authenticated encryption schemes SCREAM1 [11] and iSCREAM [10] and the
low-energy block cipher Midori64 [3] in the weak-key setting.

Table 1. Summary of the nonlinear invariant attack

# of weak keys Max. # of recovered bits Data complexity Time complexity

SCREAM 296 32 bits 33 ciphertexts 323

iSCREAM 296 32 bits 33 ciphertexts 323

Midori64 264 32h bits 33h ciphertexts 323 × h

h is the number of blocks in the mode of operation.

We show that the tweakable block ciphers Scream and iScream have a non-
linear invariant function, and the number of weak keys is 296. Midori64 also has
a nonlinear invariant function, and the number of weak keys is 264. Table 1 sum-
marizes the result of the nonlinear invariant attack against SCREAM, iSCREAM,
and Midori64. The use of the tweakable block cipher Scream is defined by the
authenticated encryption SCREAM, and the final block is encrypted like CTR
when the byte length of a plaintext is not multiple of 16. We exploit this pro-
cedure and recover 32 bits of the final block of the plaintext if the final block
length ranges from 12 bytes to 15 bytes. We can also execute a similar attack
against iSCREAM. Note that our attack breaks SCREAM and iSCREAM in the
nonce-respecting model. Midori64 is a low-energy block cipher, and we consider
the case that Midori64 is used by well-known modes of operation. As a result,
we can recover 32 bits in every 64-bit block of the plaintext if Midori64 is used
in CBC, CFB, OFB, and CTR.

Comparison with Previous Attacks. Leander et al. proposed invariant sub-
space attack on iSCREAM [19], which is a weak-key attack working for 296 weak
keys. The attack can be a distinguishing attack and key recovery attack in the
chosen-message and chosen-tweak model. Guo et al. presented a weak-key attack
on full Midori64 [12], which works for 232 weak keys, distinguishes the cipher with
1 chosen-plaintext query, and recovers the key with 216 computations.

1 Note that throughout the paper SCREAM always refer to the latest version as
SCREAM, i.e. SCREAM (v3).
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Compared to [19], our attack has the same weak key size and we distinguish
the cipher in the known-message and chosen-tweak model. Compared to [12],
our weak-key class is much larger and the cipher is distinguished with 2 known-
plaintext queries. In both applications, the key space can be reduce by 1 bit,
besides a part of message/plaintext can be recovered from the ciphertext.

1.2 Related Work

The nonlinear invariant attack can be regarded as an extension of linear crypt-
analysis [21]. While linear cryptanalysis uses a linear function to approximate the
cipher, the nonlinear invariant attack uses a nonlinear function and the proba-
bility of the nonlinear approximation is one. When g is linear, ciphers that are
resistant against the linear cryptanalysis never have a linear approximation with
probabilistically one.

The use of the nonlinear approximation has previously been studied. This
extension was first discussed by Harpes et al. [13], and Knudsen and Robshaw
later investigated the effectiveness deeply [16]. However, they showed that there
are insurmountable problems in the general use of nonlinear approximations. For
instance, one cannot join nonlinear approximations for more than one round of
a block cipher because the actual approximations depend on the specific value of
the state and key. Knudsen and Robshaw demonstrated that nonlinear approxi-
mations can replace linear approximations in the first and last rounds only [16].
Unfortunately, nonlinear cryptanalysis has not been successful because of this
limited application. Our attack can be seen as the first application of the non-
linear cryptanalysis against real ciphers in the past two decades.

Other related attacks are the invariant subspace attack [18,19] and symmet-
ric structures [8,17,23]. Similar to the nonlinear invariant attack, those attacks
exploit a cryptanalytic property which continues over an arbitrary number of
rounds in the weak-key setting. While those attacks have to choose plaintexts,
i.e. are chosen plaintext attacks, the nonlinear invariant attack does not need to
choose plaintexts in general. This in particular allows us to extend the nonlin-
ear invariant attack from a pure distinguishing attack to the (ciphertext-only)
message-recovery attack.

1.3 Paper Organization

We explain the general ideas and principles of the new attack in Sect. 2. Section 3
explains how, in many cases, the attack can be constructed in an almost auto-
matic way using an algorithmic approach that is for most ciphers practical.
Moreover, we give a structural reason why some ciphers, more precisely some
linear layers, are inherently weak against our attack and why our attacks are
possible against those ciphers. In Sect. 4 we explain in detail our attacks on
SCREAM and iSCREAM. Moreover, Sect. 5 details our nonlinear invariant attack
on Midori64. Finally, in Sect. 6, we give some additional insights into the general
structure of nonlinear invariant functions and outline some future work.
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2 Nonlinear Invariant Attack

In this section, we describe the basic principle of the attack and its extension
to (ciphertext-only) message-recovery attacks when used in common modes of
operations. While our attack can be applied to any cipher structure in princi-
ple, we focus on the case of key-alternating ciphers and later on substitution
permutation networks (SPN) ciphers to simplify the description. We start by
explaining the basic idea and later how, surprisingly, the attack can be extended
to a (ciphertext-only) message-recovery attack in many scenarios.

2.1 Core Idea

Let F : Fn
2 → F

n
2 be the round function of a key-alternating cipher and Fk(x) =

F (x ⊕ k) be the round function including the key XOR. Thus, for an r-round
cipher, the ciphertext C is computed from a plaintext P using round keys ki as

x0 = P

xi+1 = Fki
(xi) = F (xi ⊕ ki) 0 ≤ i ≤ r − 1

C = xr

where we ignore post-whitening key for simplicity.
The core idea of the nonlinear invariant attack is to detect a nonlinear

Boolean function g such that

g(F (x ⊕ k)) = g(x ⊕ k) ⊕ c = g(x) ⊕ g(k) ⊕ c ∀x

for many keys k, where c is a constant in F2. Keys for which this equality holds
will be called weak keys. The function g itself is called nonlinear invariant in
this paper.

The important remark is that, if all round-keys ki are weak then

g(C) = g(F (xr−1 ⊕ kr−1))
= g(xr−1) ⊕ g(kr−1) ⊕ c

= g(F (xr−2 ⊕ kr−2)) ⊕ g(kr−1) ⊕ c

= g(xr−2) ⊕ g(kr−2) ⊕ g(kr−1)
...

= g(P ) ⊕
r−1⊕

i=0

g(ki) ⊕
r−1⊕

i=0

c.

Thus, the invariant is iterative over an arbitrary number of rounds and immedi-
ately leads to a distinguishing attack.
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Distinguishing Attack. Assume that we found a Boolean function g that is
nonlinear invariant for the round function Fk of a block cipher. Then, if all
round keys are weak, this function g is also nonlinear invariant over an arbitrary
number of rounds.

Let (Pi, Ci) 1 ≤ i ≤ N be N pairs of plaintexts and corresponding cipher-
texts. Then, g(Pi)⊕g(Ci) is constant for all pairs. If g is balanced, the probability
that random permutations have this property is about 2−N+1. Note that the case
that g is unbalanced can be handled as well, but is not the main focus of our
paper. Therefore, we can practically distinguish the block cipher from random
permutations under a known-plaintext attack .

Suitable Nonlinear Invariants. We next discuss a particular choice of a
nonlinear invariant g for which it is directly clear that weak keys exist. Imagine
we were able to identify a nonlinear invariant g for F , i.e. a function such that

g(F (x)) ⊕ g(x)

is constant, such that g is actually linear (or constant) in some of the inputs.
In this case, all round keys that are zero in the nonlinear components of g, are
weak.

More precisely, without loss of generality, assume that the nonlinear invariant
g is linear in the last t bits of input (implying that g is nonlinear in the first s
bits of input where s = n − t). Namely, we can view g as

g : (Fs
2 × F

t
2) → F2

such that

g(x, y) = g(x, 0) ⊕ g(0, y) = f(x) ⊕ �(y)

where f is the nonlinear part of g, and � is the linear part of g. As g is a nonlinear
invariant for F , it holds that

g(x, y) ⊕ g(F (x, y)) = c,

where c is a constant in F2. Now consider a round key k ∈ F
s
2 × F

t
2 of the form

(0, k′). That is, we consider a round key such that its first s bits are zero. Then
it holds that

g(Fk(x, y)) = g(F (x, y ⊕ k′))
= g(x, y ⊕ k′) ⊕ c

= f(x) ⊕ �(y ⊕ k′) ⊕ c

= f(x) ⊕ �(y) ⊕ �(k′) ⊕ c

= g(x, y) ⊕ g(0, k′) ⊕ c.

In other words, all those round-keys that are zero in the first s bits are weak.
Phrased differently, the density of weak keys is 2−s.
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Example 1. Let g : F4
2 → F2 be a nonlinear invariant as

g(x4, x3, x2, x1) = x4x3 ⊕ x3 ⊕ x2 ⊕ x1.

Then, the function g can be viewed as

g(x4, x3, x2, x1) = f(x4, x3) ⊕ �(x2, x1).

Now consider a round key k ∈ F
2
2 × F

2
2 of the form (0, k′). Then, the function g

is a nonlinear invariant for the key XOR because

g(x) ⊕ g(x ⊕ k) = g(x) ⊕ g(x) ⊕ g(0, k′) = g(0, k′).

On Key Schedule and Round Constants. Many block ciphers generate
round keys from the master key by a key schedule. For a proper key schedule,
it is very unlikely that all round keys are weak in the above sense. However,
many recent lightweight block ciphers do not have a well-diffused key schedule,
but rather use (parts of) the master key directly as the round keys. From a
performance point of view, this approach is certainly preferable.

However, the direct XORing with the secret key often causes vulnerabilities
like the slide attack [6] or the invariant subspace attack [18]. To avoid those
attacks, round constants are additionally XORed in such lightweight ciphers.
While dense and random-looking round constant would be a conservative choice,
many such ciphers adopt sparse round constants because they are advantageous
in limited memory requirements.

Focusing on the case of identical round keys, assume that there is a Boolean
function g which is nonlinear invariant for the round function F . Now if all used
round constants ci are such that ci is only involved in the linear terms of g, the
function g is nonlinear invariant for this constant addition. This follows by the
same arguments for the weak keys above. We call such constants, in line with
the notation of weak keys from above, weak constant.

To conclude, given a key-alternating cipher with identical round-keys and
weak round-constants, any master-key that is weak, is immediately weak for an
arbitrary number of rounds. In this scenario, the number of weak keys is 2t, or
equivalently, the density of weak keys is 2−s.

2.2 Message Recovery Attack

As described so far, the nonlinear invariant attack leaks at most one bit of
the secret key. However, if a block cipher that is vulnerable to the nonlinear
invariant attack is used in well-known modes of operation, e.g., CBC, CFB,
OFB, and CTR, surprisingly, the attack can be turned into a ciphertext-only
message recovery attack.

Clearly, we cannot execute any ciphertext-only attack without some infor-
mation on the plaintexts. When block ciphers are used under well-known modes
of operation, the plaintext itself is not the input of block ciphers and the input
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is rather initialization vectors. Here we assume that an attacker can collect sev-
eral ciphertexts where the same plaintext is encrypted by the same (weak) key
and different initialization vectors. We like to highlight that this assumption is
more practical not only compared to the chosen-ciphertext attack but also to the
known-plaintext attack. In practice, for instance, assuming an application sends
secret password several times, we can recover the password practically. While
the feasibility depends on the behavior of the application, our attack is highly
practical in this case.

Attack Against CBC Mode. Figure 1 shows the CBC mode, where h mes-
sage blocks are encrypted. Let Pj be the jth plaintext block, and Ci

j denotes
the jth ciphertext block by using the initialization vector IV i. The attacker
aims at recovering the plaintext (P1, P2, . . . , Ph) by observing the ciphertext
(IV i, Ci

1, C
i
2, . . . , C

i
h). Moreover, we assume that the block cipher Ek is vulner-

able against the nonlinear invariant attack, i.e., there is a function g such that
g(x) ⊕ g(y) is constant, where x and y denote the input and output of the block
cipher.

EK

P1

C1

EK

P2

C2

EK

P3

C3

EK

Ph

Ch

IV

Fig. 1. CBC mode

First, we explain how to recover the plaintext P1 by focusing on the first
block. Since Ek is vulnerable against the nonlinear invariant attack, there is a
function g such that g(P1 ⊕ IV i

1 ) ⊕ g(Ci
1) is constant for any i ∈ {1, 2, . . . , N}.

If g would be a linear function,

g(P1 ⊕ IV j
1 ) ⊕ g(Cj

1) = g(P1) ⊕ g(IV j
1 ) ⊕ g(Cj

1)

is constant, and the attacker could only recover at most one bit of secret infor-
mation. However, g is nonlinear in our attack. Therefore, we can guess and
determine the part of P1 that is involved in the nonlinear term of g. More pre-
cisely, assume as above – without loss of generality – that g is nonlinear in the
first s inputs and linear in the last t inputs, i.e.

g : Fs
2 × F

t
2
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such that
g(x, y) = f(x) ⊕ �(y)

where f is any Boolean function, and � is a linear Boolean function. Consider
again a plaintext P1 = (x, y) with x ∈ F

s
2 and y ∈ F

t
2. The corresponding

ciphertext Ci
1 is split as Ci

1 = (ci, di) and the IVs as IV i = (ai, bi). With this
notation, we can rewrite the following

g(P1 ⊕ IV i) = (f(x ⊕ ai) ⊕ �(y ⊕ bi)) ,

g(P1 ⊕ IV j) = (f(x ⊕ aj) ⊕ �(y ⊕ bj)) ,

g(Ci
1) = (f(ci) ⊕ �(di)) ,

g(Cj
1) = (f(cj) ⊕ �(dj)) .

Now, by using two distinct initialization vectors IV i and IV j

0 = g(P1 ⊕ IV i) ⊕ g(Ci
1) ⊕ g(P1 ⊕ IV j) ⊕ g(Cj

1)

implies

f(x ⊕ ai) ⊕ f(x ⊕ aj) = �(bi ⊕ bj) ⊕ g(Ci
1) ⊕ g(Cj

1). (1)

Assuming that the left side of Eq. (1) randomly changes depending on x, that
is the left part of P1, we can recover one bit of information on P1 by using
two initialization vectors. Similarly, we can recover N − 1 bits of P1 by using
N initialization vectors. Note that we can usually efficiently recover these bits
by solving linear systems if the algebraic degree of f is small [22]. We show
the specific procedure for SCREAM and Midori64 in Sects. 4 and 5, respectively.
The relationship among (P1, IV, C1) is equivalent to that among (Pi, Ci−1, Ci).
Therefore, we can similarly guess and determine the part of Pi from Ci−1 and
Ci for any of the plaintext blocks. One interesting remark is that as long as we
start to recover the message from the second block, the attack can be executed
even without the knowledge of the IV.

Attacks Against Other Modes. We can execute similar attack against the
CFB, OFB, and CTR modes.

In the CFB mode, the hth ciphertext block Ch is encrypted as

Ch = Ek(Ch−1) ⊕ Ph,

where the initialization vector IV is used as the input of the first block. For
simplicity, let C0 be IV . Then, we can recover the part of Ph from two ciphertext
blocks Ch−1 and Ch.

In the OFB mode, the hth ciphertext block Ch is encrypted as

Ch = (Ek)h(IV ) ⊕ Ph,
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where (Ek)h(IV ) is h times multiple encryption. Since the nonlinear invariant
property is iterative over an arbitrary number of rounds, the multiple encryp-
tion is also vulnerable against the nonlinear invariant attack. Therefore, we can
recover the part of Ph from IV and Ch.

In the CTR mode, the hth ciphertext block Ch is encrypted as

Ch = Ek(IV + h) ⊕ Ph.

Therefore, we can recover the part of Ph from IV + h and Ch.

3 Finding Nonlinear Invariants for SP-ciphers

We start by considering the very general problem of finding nonlinear invariants.
Namely, given any function

F : Fm
2 → F

m
2 ,

our goal is to find a Boolean function

g : Fm
2 → F2

such that

g(x) = g(F (x)) ⊕ c (2)

where c is a constant in F2.
The description so far is generic in the sense that it applies to basically any

block cipher. For now, and actually for the remainder of the paper, we focus
on key-alternating ciphers with a round function using a layer of S-boxes and a
linear layer, so called substitution-permutation networks (SPN).

3.1 SPN Ciphers

In the following, we consider the un-keyed round function only. That is to say
that we ignore the key schedule and also any round constants.

For simplicity, we focus on the case of identical S-boxes, but the more general
case can be handled in a very similar manner. We denote by t the number of
S-boxes and by n the size of one S-box. Thus, the block size processed is n · t
bits. With this notation, we consider one round R of an SPN

R : (Fn
2 )t → (Fn

2 )t

as consisting of a layer of S-boxes S with

S(x1, . . . , xt) = (S(x1), . . . , S(xt))

where S is an n-bit S-box and a linear layer

L : (Fn
2 )t → (Fn

2 )t
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which can also be seen as
L : Fnt

2 → F
nt
2 .

The round function R is given as the composition of the S-box layer and the
linear layer, i.e.

R(x) = L ◦ S(x).

We would like to find nonlinear invariant g for R. However, computing this
directly is difficult as soon as the block size is reasonable large. For any function
F , let us denote by

U(F ) := {g : Fm
2 → F2 | g(x) = g(F (x)) ⊕ c}

the set of all nonlinear invariants for F , and it holds that

g ∈ (U(S) ∩ U(L)) ⊂ U(R).

In other words, functions that are invariant under both S and L are clearly
invariants for their composition R.

As we will explain next, computing parts of U(S) ∩ U(L) is feasible, and
sufficient to automatically detect the weaknesses described later in the paper.

The S-box Layer. We start by investigating the S-box-layer. Given the S-box
as a function

S : Fn
2 → F

n
2

computing U(S) is feasible as long as n is only moderate in size.
Note that, for any function F , U(F ) is actually a subspace of Boolean func-

tions. To see this, note that given two Boolean functions f, g ∈ U(F ), it holds

(f ⊕ g)(x) = f(x) ⊕ g(x)
= (f(F (x)) ⊕ c) ⊕ (g(F (x)) ⊕ c′)
= (f ⊕ g)(F (x)) ⊕ (c ⊕ c′)

for any x. Thus the sum, f ⊕g, is in U(F ) as well. Moreover, the all-zero function
is in U(F ) for any F . Therefore, any nonlinear invariant gS ∈ U(S) can actually
be described by a linear combination of basis elements of U(S). More precisely,
let b1, . . . , bd : Fn

2 → F2 be a basis of U(S), then any gS ∈ U(S) can be written s

gS(x) =
d⊕

i=1

γibi(x)

for suitable coefficients γi in F2.
To identify a nonlinear invariant gS ∈ U(S), the idea is to consider the

algebraic normal form (ANF) of gS , that is to express gS as

gS(x) =
⊕

u∈F
n
2

λuxu,
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where λu ∈ F2 are the coefficients to be determined and xu denotes
∏

xui
i . The

key observation is that Eq. (2), for any fixed x ∈ F
n
2 , translates into one linear

(or affine) equation for the coefficients λu, namely
⊕

u∈F
n
2

λu(xu ⊕ S(x)u) = c.

The ANF of (xu ⊕ S(x)u) is computed for all u ∈ F
n
2 , and we can easily solve

the basis b1, . . . , bd ∈ U(S) for n not too big. AppendixA shows the algorithm
in detail. In particular, for commonly used S-box sizes of up to 8 bits, the space
U(S) can be computed in less than a second on a standard PC.

So far, we have considered only a single S-box, and it still needs to be dis-
cussed how those results can be translated into the knowledge of invariants for
the parallel execution of S-boxes, i.e. for S. Again, for a layer of S-boxes S com-
puting U(S) directly using its ANF is (in general) too expensive. However, we
can easily construct many elements in U(S) from elements in U(S) as summa-
rized in the following proposition.

Proposition 1. Let gi ∈ U(S), for i ∈ {1, . . . , t} be any set of invariants for
the S-box S. Then, any function of the form

gS(x1, . . . , xt) =
t⊕

i=1

αigi(xi)

with αi ∈ F2 is in U(S), that is an invariant for the entire S-box layer. The set
of function form a subspace of U(S) of dimension d ∗ t where d is the dimension
of U(S), and t is the number of parallel S-boxes.

We denote this subspace of invariants for S by U�(S), and U�(S) ⊂ U(S).
It turns out that, in general, many more elements are contained in U(S)

than those covered by the construction above. We decided to shift those details,
which are not directly necessary for the understanding of the attacks presented
in Sects. 4 and 5 to the end of the paper, in Sect. 6.

The Linear Layer. For the linear layer computing U(L) using its ANF seems
again difficult. But, as stated above, we focus on

g ∈ (U(L) ∩ U�(S)) ⊂ (U(L) ∩ U(S)) ⊂ U(R),

and computing U(L) ∩ U�(S) is feasible in all practical cases.
Recall that any nonlinear invariant g ∈ U(S) can actually be described by a

linear combination of basis of U(S) as

gS(x) =
d⊕

i=1

γibi(x)

for suitable coefficients γi in F2.
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As any f in U�(S) is itself a direct sum of elements in U(S), it can be written
as

f(x1, . . . , xt) =
t⊕

i=1

d⊕

j=1

βi,jbj(xi)

with βi,j ∈ F2. Computing those coefficients βi,j can again be done by solv-
ing linear system, as any fixed x ∈ (Fn

2 )t results in a linear equation for the
coefficients by using

f(x) = f(L(x)).

As long as the dimension of U�(S), i.e. the number of unknowns, is not too large,
this again can be computed within seconds on a standard PC.

Experimental Results. When the procedure explained above was applied to
the ciphers SCREAM and Midori, it instantaneously detected possible attacks.
Actually, as we will explain next, there is a common structural reason why non
linear invariant attacks are possible on those ciphers.

3.2 Structural Weakness with Respect to Nonlinear Invariant

Let us consider linear layers which are actually used in the LS-designs [9] (cf.
Sect. 4) and also in any AES-like cipher that uses a binary diffusion matrix as
a replacement for the usual MixColumns operation. Then, we consider a linear
layer that can be decomposed into the parallel application of n identical t × t
binary matrices M . The input for the first t × t matrix is composed of all the
first output bits of the t S-boxes, the input for the second matrix is composed
of all the second output bits of the S-boxes, etc.

Here, when M is an orthogonal matrix, that is if

〈x, y〉 = 〈xM, yM〉 ∀ x, y,

any quadratic nonlinear invariant for the S-box can be extended to a nonlinear
invariant of the whole round function as described in Theorem 1.

Note that from a design point of view, taking M as an orthogonal matrix
seems actually beneficial. Thanks to the orthogonality of M , bounds on the
number of active S-boxes for differential cryptanalysis directly imply the same
bounds on the number of active S-boxes for linear cryptanalysis.

Theorem 1. For the SPN ciphers whose round function follows the construction
used in LS-designs, let M ∈ F

t×t
2 be the binary representation of the linear layer

and M is orthogonal. Assume there is a nonlinear invariant gS for the S-box. If
gS is quadratic, then the function

g(x1, . . . , xt) :=
t⊕

i=1

gS(xi)

is a nonlinear invariant for the round function L ◦ S.
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Proof. First, due to Proposition 1, it is immediately clear that g is a nonlinear
invariant for the S-box layer S.

Next, let us consider the linear layer L. Let x ∈ (Fn
2 )t and y ∈ (Fn

2 )t be
the input and output of L, respectively. Moreover, xi[j] and yi[j] denotes the
jth bit of xi and yi, respectively. For simplicity, let xT ∈ (Ft

2)
n and yT ∈

(Ft
2)

n be the transposed input and output, respectively, where xT
j ∈ F

t
2 denotes

(x1[j], x2[j], . . . , xt[j]). Then, it holds yT
i = xT

i ×M for all i ∈ {1, 2, . . . , n}. Since
the Boolean function gS is quadratic, the function is represented as

gS(xi) =
n⊕

i1=1

n⊕

i2=1

γi1,i2(xi[i1] ∧ xi[i2]),

where γi1,i2 are coefficients depending on the function g. From the inner product
〈xT

i1
, xT

i2
〉 =

⊕t
i=1 xi[i1] ∧ xi[i2],

g(x) =
t⊕

i=1

gS(xi) =
n⊕

i1=1

n⊕

i2=1

γi1,i2〈xT
i1 , x

T
i2〉.

Then,

g(y) =
n⊕

i1=1

n⊕

i2=1

γi1,i2〈xT
i1M,xT

i2M〉

From the orthogonality of M ,

g(y) =
n⊕

i1=1

n⊕

i2=1

γi1,i2〈xT
i1 , x

T
i2〉

=
t⊕

i=1

gS(xi) = g(x)

Therefore, the function g(x) =
⊕t

i=1 gS(xi) is a nonlinear invariant for L. ��
Assuming that the matrix M is orthogonal, Theorem1 shows that there is a
nonlinear invariant for the round function L ◦ S if there is a quadratic function
which is nonlinear invariant for the S-box.

4 Practical Attack on SCREAM

The most interesting application of the nonlinear invariant attack is a practi-
cal attack against the authenticated encryption SCREAM and iSCREAM in the
nonce-respecting model. Both authenticated encryptions have 296 weak keys,
and we then practically distinguish their ciphers from a random permutation.
Moreover, we can extend this attack to a ciphertext-only attack.
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4.1 Specification of SCREAM

SCREAM is an authenticated encryption and a candidate of the CAESAR com-
petition [11]. It uses the tweakable block cipher Scream, which is based on the
tweakable variant of LS-designs [9].

LS-Designs. LS-designs were introduced by Grosso et al. in [9], and it is used to
design block ciphers. We do not refer to the design rational in this paper, and we
only show the brief structure to understand this paper. The state of LS-designs
is represented as an s × � matrix, where every element of the matrix is only one
bit, i.e., the block length is n = s×�. The ith round function proceeds as follows:

1. The s-bit S-box S is applied to � columns in parallel.
2. The �-bit L-box L is applied to s rows in parallel.
3. The round constant C(i) is XORed with the state.
4. The secret key K is XORed with the state.

Figure 2 shows the components of a LS-design. Let SB and LB be the S-box layer
and L-box layer, respectively. Then, we call the composite function (LB ◦SB) a
LS-function. Let x ∈ F

s×�
2 be the state of LS-designs. Then x[i, �] ∈ F

�
2 denotes

the row of index i of x, and x[�, j] ∈ F
s
2 denotes the column of index j of x.

Moreover, let x[i, j] be the bit in the (i + 1)th row and (j + 1)th column. The
S-box S is applied to x[�, j] for all j ∈ [0, �), and the L-box L is applied to x[i, �]
for all i ∈ [0, s).

Fig. 2. The components of a LS-design

Tweakable Block Cipher Scream. Scream is based on a tweakable LS-design
with an 8×16 matrix, i.e., the block length is 8×16 = 128 bits. Let x ∈ F

8×16
2 be

the state of Scream, then the entire algorithm is defined as Algorithm1. Here S
and L denote the 8-bit S-box and 16-bit L-box, respectively. The round constant
C(r) is defined as

C(r) = 2199 · r mod 216.
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Algorithm 1. Specification of Scream

1: x ← P ⊕ TK(0)
2: for 0 < σ ≤ Ns do
3: for 0 < ρ ≤ 2 do
4: r = 2(σ − 1) + ρ
5: for 0 ≤ j < 16 do
6: xT

j = S[x[�, j]]
7: end for
8: x ← x ⊕ C(r)
9: for 0 ≤ i < 8 do

10: xi = L[x[i, �]]
11: end for
12: end for
13: x ← x ⊕ TK(σ)
14: end for
15: return x

SB LB SB LB8

16

Fig. 3. The σth step function of Scream

The binary representation of C(r) is XORed with the first row x[0, �]. Scream
uses an 128-bit key K and an 128-bit tweak T as follows. First, the tweak is
divided into 64-bit halves, i.e., T = t0‖t1. Then, every tweakey is defined as

TK(σ = 3i) = K ⊕ (t0‖t1),
TK(σ = 3i + 1) = K ⊕ (t0 ⊕ t1‖t1),
TK(σ = 3i + 2) = K ⊕ (t1‖t0 ⊕ t1).

Here, the x[i, �] contains state bits from 16(i−1) to 16i−1, e.g., x[0, �] contains
state bits from 0 to 15 and x[1, �] contains state bits from 16 to 31. Moreover,
Fig. 3 shows the step function, where SB and LB are the S-box layer and L-box
layer, respectively.

Authenticated Encryption SCREAM. The authenticated encryption
SCREAM uses the tweakable block cipher Scream in the TAE mode [20]. SCREAM
consists of three steps: associated data processing, encryption of the plaintext
block, and tag generation. Since our attack exploits encryption of the plaintext
block, we explain the specification (see Fig. 4). Plaintext values are encrypted
by using Scream in order to produce the ciphertext values, and all blocks use
Tc = (N‖c‖00000000). If the last block is a partial block, its bitlength is
encrypted to generate a mask, which is then truncated to the partial block size
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EK

P0

T0 EK

P1

T1 Tm-2 EK

Pm-2

C0 C1 Cm-2

Tm-1 EK

Pm-1

Pm-1

Cm-1

Fig. 4. Encryption of plaintext blocks

and XORed with the partial plaintext block. Therefore, the ciphertext length is
the same as the plaintext length.

Security Parameter. Finally, we like to recall the security parameters of
SCREAM, as described by the designers. Let nb be the nonce bytesize, and
it can be chosen by the user between 1 and 15 bytes. However, the designers
recommend that nb = 11, and we also use the recommended parameter in this
paper.

SCREAM has three security parameters, i.e., lightweight security, single-key
security, and related-key security. They are summarized as follows.

Lightweight security: 80-bit security, with a protocol avoiding related keys.
Tight parameters: 6 steps, Safe parameters: 8 steps.

Single-key security: 128-bit security, with a protocol avoiding related keys.
Tight parameters: 8 steps, Safe parameters: 10 steps.

Related-key security: 128-bit security, with possible related keys. Tight para-
meters: 10 steps, Safe parameters: 12 steps.
More precisely, designers order their recommended sets of parameters as follows:

– First set of recommendations: SCREAM with 10 steps, single-key security.
– Second set of recommendations: SCREAM with 12 steps, related-key security.

4.2 Nonlinear Invariant for Scream

The L-box of Scream is chosen as an orthogonal matrix. Therefore, there is a
nonlinear invariant for the LS function from Theorem1 if we can find quadratic
Boolean function g : F8

2 → F2 which is a nonlinear invariant for the S-box S.
Let x ∈ F

8
2 and y ∈ F

8
2 be the input and output of the S-box S, respectively.

Moreover, x[j] ∈ F2 and y[j] ∈ F2 denote the jth bits of x and y, respectively.
Then, the Scream S-box has the following property

(x[1] ∧ x[2]) ⊕ x[0] ⊕ x[2] ⊕ x[5] = (y[1] ∧ y[2]) ⊕ y[0] ⊕ y[2] ⊕ y[5] ⊕ 1.
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Let gS : F8
2 → F2 be a quadratic Boolean function, where

gS(x) = (x[1] ∧ x[2]) ⊕ x[0] ⊕ x[2] ⊕ x[5].

Then, the function gS is a quadratic nonlinear invariant for S because

gS(x) ⊕ gS(S(x)) = gS(x) ⊕ gS(x) ⊕ 1 = 1.

Therefore, due to Theorem 1, the Boolean function

g(x) =
15⊕

j=0

gS(x[�, j]) =
15⊕

j=0

(
x[1, j] ∧ x[2, j] ⊕ x[0, j] ⊕ x[2, j] ⊕ x[5, j]

)

is a nonlinear invariant for the LS function. Note that this nonlinear invariant g
is clearly balanced, as it is linear (and not constant) in parts of its input.

Next, we show that this Boolean function is also a nonlinear invariant for
the constant addition and tweakey addition. The round constant C(r) is XORed
with only x[0, �]. Since C(r) linearly affects the output of the function g,

g(x ⊕ C(r)) = g(x) ⊕ g(C(r))

for any x. The tweakey TK(σ) is defined as

TK(σ = 3i) = K ⊕ (t0‖t1),
TK(σ = 3i + 1) = K ⊕ (t0 ⊕ t1‖t1),
TK(σ = 3i + 2) = K ⊕ (t1‖t0 ⊕ t1),

where T = t0‖t1. Therefore, if we restrict the key and tweak by fixing

K[1, �] = K[2, �] = 0,
T [1, �] = T [2, �] = T [5, �] = T [6, �] = 0,

TK(σ)[1, �] and TK(σ)[2, �] are always zero vectors. Then, since the tweakey
linearly affects the output of the function g,

g(x ⊕ TK(σ)) = g(y) ⊕ g(TK(σ)),

and all those keys are weak. Therefore, the density of weak keys is 2−32, i.e.,
there are 296 weak keys.

Let P and C be the plaintext and ciphertext of Scream, respectively. In
Ns-step Scream, the relationship between p and c is represented as

g(P ) = g(C) ⊕
2Ns⊕

r=1

g
(
C(r)

) Ns⊕

σ=0

g
(
TK(σ)

)

= g(C) ⊕ c ⊕ gT (Ns, T ) ⊕ gK(Ns,K),
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where c =
⊕2Ns

r=1 g
(
C(r)

)
, and gT (Ns, T ) and gK(Ns,K) are defined as

gT (Ns, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(t0‖t1) Ns = 0 mod 6,
g(t1‖0) Ns = 1 mod 6,
g(0‖t0 ⊕ t1) Ns = 2 mod 6,
g(t0‖t0) Ns = 3 mod 6,
g(t1‖t0 ⊕ t1) Ns = 4 mod 6,
0 Ns = 5 mod 6,

and

gK(Ns,K) =

{
g(K) Ns = 0 mod 2,
0 Ns = 1 mod 2,

respectively. When the master key belongs to the class of weak-keys, g(p)⊕g(c)⊕
gT (Ns, T ) is constant for all plaintexts and a given key. When the key does not
belong to the weak-key class, the probability that the output is constant is about
2−n+1 given n known plaintexts. Therefore, we can easily distinguish whether
or not the using key belongs to the weak-key class. Note that all recommended
numbers of rounds are even number. Therefore, from

g(K) = g(p) ⊕ g(c) ⊕ c ⊕ gT (Ns, T ),

we can recover one bit of information about the secret key K.

4.3 Practical Attack on SCREAM

Known-Plaintext Attack. We exploit the encryption step of SCREAM (see
Fig. 4). The nonlinear invariant attack is a chosen-tweak attack under the weak-
key setting. First, let us consider the class of weak tweaks. In the encryption
step, the tweak Tc = (N‖c‖00000000) is used, where we assume that nb = 11.
Figure 5 shows the structure of Tc. From the condition of the nonlinear invariant
attack, the following Tc

Tc[1, �] = Tc[2, �] = Tc[5, �] = Tc[6, �] = 0

are weak tweaks. Namely, we choose N whose 3rd, 4th, 5th, 6th, and 11th bytes
are zero. Then, if the counter c is less than 256, i.e. from T0 to T255, the tweak
fulfils the condition. Moreover, the actual nonce fulfils the needs of the tweak
if the nonce is implemented as a counter increment, which seems to occur in
practice. If the master key belongs to the weak-key class, we can recover one bit
of information about the secret key by using only one known plaintext. Moreover,
by using n known plaintexts, the probability that the output is constant is about
2−n+1 when the key does not belong to weak-key class. Therefore, an attacker
can distinguish whether or not the used key belongs to the weak-key class.
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nonce (11 bytes)
counter (4 bytes)
zero bits (1 byte)

0
1
2
3
4
5
6
7

Fig. 5. Tweak mapping

Ciphertext-Only Message Recovery Attack. The interesting application
of the nonlinear invariant attack is a ciphertext-only attack. This setting is more
practical than the known-plaintext attack.

We focus on the procedure of the final block. The input of Scream is the
bitlength of Pm−1, and the bitlength is encrypted to generate a mask. Then the
mask is truncated to the partial block size and XORed with Pm−1. Therefore,
the ciphertext length is the same as the plaintext length. In the ciphertext-only
attack, we cannot know Pm−1. On the other hand, we know ciphertext Cm−1 and
the bitlength |Pm−1| can be obtained from |Cm−1|. Therefore, we guess Pm−1

and evaluate

g(|Pm−1|) ⊕ g(Pm−1 ⊕ Cm−1) ⊕ gT (Ns, T ),

and the above value is always constant for any weak tweaks T . Therefore, from
two ciphertexts corresponding to the same final plaintext block encrypted by
distinct tweaks, we create a linear equation as

g(Pm−1 ⊕ Cm−1) ⊕ g(Pm−1 ⊕ C ′
m−1) = gT (Ns, T ) ⊕ gT (Ns, T

′). (3)

We can compute the right side of Eq. (3). Moreover, we regard the function g as

g(X) = f(X) ⊕ �(X),

where

f(X) =
15⊕

j=0

(
X[1, j] ∧ X[2, j]

)
,

�(X) =
15⊕

j=0

X[0, j] ⊕ X[2, j] ⊕ X[5, j].

Then,

g(Pm−1 ⊕ Cm−1) ⊕ g(Pm−1 ⊕ C ′
m−1)

= f(Pm−1 ⊕ Cm−1) ⊕ f(Pm−1 ⊕ C ′
m−1) ⊕ �(Cm−1) ⊕ �(C ′

m−1)
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=
15⊕

j=0

(
Cm−1[1, j]Pm−1[2, j] ⊕ Pm−1[1, j]Cm−1[2, j] ⊕ Cm−1[1, j]Cm−1[2, j]

)

15⊕

j=0

(
C ′

m−1[1, j]Pm−1[2, j] ⊕ Pm−1[1, j]C ′
m−1[2, j] ⊕ C ′

m−1[1, j]C
′
m−1[2, j]

)

⊕ �(Cm−1) ⊕ �(C ′
m−1).

The equation above is actual a linear equation in 32 unknown bits, Pm−1[1, j]
and Pm−1[2, j], as all other terms are known. Therefore, we can create t linear
equations by collecting t + 1 ciphertexts encrypted by distinct tweaks. We can
recover 32 bits, Pm−1[1, j] and Pm−1[2, j] by solving this system as soon as
the corresponding system has full rank. Assuming the system behaves like a
randomly generated system of linear equations, we can expect that the system
has full rank already when taking slightly more than 33 equations. The time
complexity for solving this system is negligible.

Note that the system involves four 16-bit words, Cm−1[0, j], Cm−1[1, j],
Cm−1[2, j], and Cm−1[5, j]. Since the bitlength of Cm−1 is equal to that of Pm−1,
we cannot solve this system if |Pm−1| < 96. Therefore, the necessary condition
of this attack is 96 ≤ |Pm−1| < 128.

Experimental Results. In order to verify our findings and in particular to
verify that the system indeed behaves like a random system of linear equations,
we implemented our ciphertext-only message recovery attack for SCREAM. In
our experiment, the key is randomly chosen from the weak-key class. Moreover,
we use N distinct nonces such that the corresponding tweak is weak, and col-
lect N corresponding ciphertexts. We repeated our attack 1000 times. Table 2
summarizes the success probability of recovering the correct 32 bits. Moreover,
in the table we compare the experimental success probability to the theoreti-
cally expected probability in the case of a randomly generated system of linear
equations. As can be seen, the deviation of the experimental results to the the-
oretically expected results is very small.

Table 2. The success probability of recovering the correct 32 plaintext bits on
SCREAM.

# nonces 33 34 35 36 37 38 39 40 41 42 43

Experimental 0.289 0.571 0.762 0.885 0.942 0.976 0.991 0.995 0.998 0.999 1

Theoretical 0.289 0.578 0.770 0.880 0.939 0.969 0.984 0.992 0.996 0.998 0.999

4.4 Application to iSCREAM

The authenticated encryption iSCREAM also has the similar structure of
SCREAM. We search for the nonlinear invariant for the underlying tweakable
block cipher iScream. As a result, the following quadratic Boolean function
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gS(x) = (x[4] ∧ x[5]) ⊕ x[0] ⊕ x[6].

is nonlinear invariant for the S-box2, and it holds

gS(x) ⊕ gS(S(x)) = gS(x) ⊕ gS(x) = 0.

Therefore, from Theorem 1, the following Boolean function

g(x) =
15⊕

j=0

gS(x[�, j]) =
15⊕

j=0

(
x[4, j] ∧ x[5, j] ⊕ x[0, j] ⊕ x[6, j]

)
.

is nonlinear invariant for the LS function.

5 Practical Attack on Midori64

5.1 Specification of Midori64

Midori is a light-weight block cipher recently proposed by Banik et al. [3], which
is particularly optimized for low-energy consumption. There are two versions
depending on the block size; Midori64 for 64-bit block and Midori128 for 128-bit
block. Both use 128-bit key. The nonlinear invariant attack can be applied to
Midori64, thus we only explain the specification of Midori64 briefly.

Midori64 adopts an SPN structure with a non-MDS matrix and a very light
key schedule. The state is represented by a 4×4-nibble array. At first the plaintext
is loaded to the state, then the key whitening is performed. The state is updated
with a round function 16 times, and a final key whitening is performed. The
resulting state is the ciphertext. The overall structure is illustrated in Fig. 6.
More details on each operation will be given in the following paragraphs.

Fig. 6. Computation structure of Midori64

2 In the round function of iScream with the constant addition, the equation, gS(x) =
(x[5] ∧ x[6]) ⊕ x[2] ⊕ x[5] ⊕ x[6] ⊕ x[7], is another nonlinear invariant.
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Key Schedule Function. A user-provided 128-bit key is divided into two
64-bit key states K0 and K1. Then, a whitening key WK and 15 round keys
RKi, i = 0.1, . . . , 14 are generated as follows.

WK ← K0 ⊕ K1, RKi ← Ki mod 2 ⊕ αi,

where the αi are fixed 64-bit constants. The round constant αi are binary for
each nibble, i.e. any nibble in αi is either 0000 or 0001. Using such constants
is beneficial to keep the energy consumption low. The exact values of the αi

are given in Table 3 for the first 6 rounds. We refer to [3] for the complete
specification.

Table 3. Examples of round constant αi

α0 α1 α2 α3 α4 α5

0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0
1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

Round Function. The round function consists of four operations: SubCell,
ShuffleCell, MixColumn, and KeyAdd. Each operation is explained in the
following.

SubCell: The 4-bit S-box S defined below is applied to each nibble in the state.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C A D 3 E B F 7 8 9 1 5 0 2 4 6

ShuffleCell: Each cell of the state is permuted as ShiftRows in AES. Let
s0, s1, s2, s3 be four nibbles in the first row. Let s4, . . . , s15 be the other 12
nibbles similarly defined. Then, the cell permutation is specified as follows.

(s0, s1, . . . , s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

Note that our nonlinear invariant attack would actually work in exactly the
same way for any other cell permutation as well.
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MixColumn: The following 4 × 4 orthogonal binary matrix M is applied to
every column of the state.

M =

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠

KeyAdd: The round key RKi is xored to the state in round i.

In the last round, only SubCell (followed by the post-whitening) is performed.

5.2 Nonlinear Invariant for Midori64

The matrix used in MixColumn is a binary and orthogonal matrix. Thus,
Theorem 1 implies that any quadratic Boolean function g : F

4
2 → F2, which

is a nonlinear invariant for the S-box S, allows us to find nonlinear invariant for
the entire round function. Similarly to the previous section, we use the notation
x[j] ∈ F2 and y[j] ∈ F2 to denote the jth bits of 4-bit S-box input x and 4-bit
S-box output y, respectively.

We search for g such that g(x) = g(S(x)). Different from Scream, the S-box
of Midori64 is small, and many of such g usually exist. Actually, we found 15
choices of such g.

We then pick up ones that are also nonlinear invariant for the key addition
RKi, which is computed by RKi ← Ki mod 2 ⊕ αi. Here, αi takes 0 or 1 in each
nibble, i.e. the 2nd, 3rd, and 4th bits are always 0. Thus we need to avoid g in
which the first bit is included in the nonlinear component, i.e. g cannot involve
x[0] and y[0] in their nonlinear component.

Among 15 choices, only one can satisfy this condition. The picked S-box
property of Midori64 is as follows.

(x[3] ∧ x[2]) ⊕ x[2] ⊕ x[1] ⊕ x[0] = (y[3] ∧ y[2]) ⊕ y[2] ⊕ y[1] ⊕ y[0].

Then, the following gS : F4
2 → F is nonlinear invariant for S;

gS(x) = (x[3] ∧ x[2]) ⊕ x[2] ⊕ x[1] ⊕ x[0].

Here, ShuffleCell does not affect the nonlinear invariant. Therefore, from
Theorem 1, the following Boolean function

g(x) =
15⊕

j=0

gS(si)

is a nonlinear invariant for the round function of Midori64. Note, as for SCREAM
the Boolean function g is actually balanced.
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5.3 Distinguishing Attack

As mentioned in Sect. 2, the simple distinguishing attack can be mounted against
a weak key. Let � : F4

2 → F be a linear part of g, namely �(x) = x[2]⊕x[1]⊕x[0].
We have g(p) ⊕ g(c) = const and const is a linear part of the values injected to
round function during the encryption process;

const = �(WK) ⊕ �(RK0) ⊕ �(RK1) ⊕ · · · ⊕ �(RK14) ⊕ �(WK),
= �(RK0) ⊕ �(RK1) ⊕ · · · ⊕ �(RK14).

Given RKi = Ki mod 2 ⊕ αi, the above equation is further converted as

const = �(K1) ⊕ �(α0) ⊕ �(α1) ⊕ · · · ⊕ �(α14).

As αi[2] = αi[1] = 0 for any i, it can be simply written as

const = �(K1) ⊕
14⊕

i=0

15⊕

j=0

αi,j ,

where αi,j is the jth nibble of αi. We confirmed that the total number of 1 in all
αi is even, thus

⊕14
i=0

⊕15
j=0 αi,j = 0. In the end, g(p)⊕g(c) = �(K1) always holds

for Midori64, while this holds with probability 1/2 for a random permutation.

5.4 Experimental Results

As mentioned in Sect. 2, the above property can reveal 32 bits (the two most
significant bits from each nibble) of an unknown plaintext block in the weak-key
setting when Midori64 is used in well-known block cipher modes.

We implemented our ciphertext-only message recovery attack for Midori64
in the CBC mode. In our experiment, the key and IV are chosen uniformly at
random from the weak-key space and the entire IV space. We also choose a
64-bit plaintext block p, uniformly at random, and assume that p is iterated
over b blocks, where 33 ≤ b ≤ 43. We executed our attack of repeating 1000
times, and Table 4 summarizes the success probability of recovering the correct
32 bits.

Table 4. The success probability of recovering the correct 32 bits on Midori64-CBC.

# blocks 33 34 35 36 37 38 39 40 41 42 43

Experimental 0.279 0.574 0.753 0.883 0.931 0.968 0.988 0.991 0.999 0.997 1

Theoretical 0.289 0.578 0.770 0.880 0.939 0.969 0.984 0.992 0.996 0.998 0.999

Similarly to the case of SCREAM the system of equations behaves very much
like a random system of equation in the sense that the probability that it has
full rank is very close to the corresponding probability for a random system with
the same dimensions.
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6 Extensions and Future Work

In this section we outline some extensions to the previously described attacks.
Furthermore, we give some additional insights in the structure of nonlinear
invariants in general. Finally, we explain how invariant subspace attacks can
be seen as a special, chosen plaintext , variant of nonlinear invariant attacks. It
is important to point out that none of the observations in this section lead to
any attacks. But we feel that those explanations provide good starting points
for future investigations.

More General Nonlinear Invariant. We continue to use the notation that
we fixed in Sect. 3. First recall Proposition 1, that allowed to construct nonlinear
invariants for the whole S-box layer by linearly combining nonlinear invariants
for each single S-box. This proposition can actually be easily extended. Instead of
only linearly combining the nonlinear invariants for each S-box, any combination
by using an arbitrary Boolean function results in an invariant for the whole S-box
layer as well. The following proposition summarizes this observation.

Proposition 2. Given any Boolean function f : Ft
2 → F2 and t elements

g1, . . . , gt : Fn
2 → F2

from U(S) it holds that

gS : (Fn
2 )t → F2

gS(x1, . . . , xn) = f(g1(x1), . . . , gt(xt))

is an element of U(S)

Note that the special case of f being linear actually corresponds to the choice
made in Proposition 1.

While this generalization potentially allows a much larger variety of invari-
ants, and therefore potential attacks, we like to mention that the restriction made
in Proposition 1 has two crucial advantages. First, the choice is small enough,
so that it can be handled exhaustively and second, the invariants generated by
Proposition 1 are usually balanced, while this is not necessarily the case for the
generalization.

At first sight, one might be tempted to assume that the above construction
actually covers all invariants for the S-box layer. However, in general, this is not
the case.

One counter-example, that is a nonlinear invariant not covered by this con-
struction, can easily be identified as follows: For simplicity, consider an S-box
layer consisting of two identical n bit S-boxes only. If the two inputs to those
two S-boxes are equal, so are the outputs. Thus, the function

g : Fn
2 × F

n
2 → F2

g(x, y) =
{

1 if x = y
0 else
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is an nonlinear invariant of the S-box layer as

g(x, y) = 1 ⇔ x = y ⇔ S(x) = S(y) ⇔ g(S(x), S(y)) = 1.

Moreover, this nonlinear invariant can certainly not be generated by
Proposition 2.

Cycle Structure. Actually, there is a nice, and potentially applicable way, of
describing all nonlinear invariants for a given permutation F by considering its
cycles. Recall that a cycle of F being a set

Cx := {F i(x) | i ∈ N}
for a value x ∈ F

n
2 . Actually, one can show that a mapping g is contained in

U(F ) if and only if g is either constant on all cycles of F or alternating along
the cycles of F . The later case corresponds to nonlinear invariants such that

g(x) + g(F (x)) = 1.

This is because g(x) = g(F (x)) implies

g(x) = g(F (x)) = g(F (F (x))) = · · · = g(F i(x)).

Thus, looking at the cycle structure of F , we can assign to each cycle one
value the function g should evaluate to on this cycle. That view point also shows
that the number of invariant functions g is equal to

|U(F )| = 2(# cycles of F ),

in the case where there exist at least one cycle of odd length or

|U(F )| = 2(# cycles of F )+1,

in the case where all cycles of F have even length. This perspective allows to
actually compute a basis of U(F ) very efficiently. Consider, for simplicity, the
case were not all cycles are of even length. Then, a basis of U(F ) clearly consists
of the set of all indicator functions of Cx, i.e.

U(F ) = span{δCa
| a ∈ F

n
2}.

Here, for a subset A ⊆ F
n
2 , the function δA denotes the indicator function of the

set A, i.e.

δA(x) =
{

1 if x ∈ A
0 else

Example 2. Consider the function F : F2
2 → F

2
2 with

x 0 1 2 3
F (x) 1 2 0 3
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The cycle composition of F is

(0, 1, 2)(3).

Thus we have two cycles of odd length. Following the above, any nonlinear
invariant of F is constant on those cycles. In this case we have the following
invariants

g1(x) = δ{0,1,2}(x)
g1(x) = δ{3}(x)

or, more explicitly
x 0 1 2 3

g1(x) 1 1 1 0

and
x 0 1 2 3

g2(x) 0 0 0 1

together with the trivial invariants, that is the identical zero or identical one
functions. So in total F has 4 invariants. ��

Relation to Invariant Subspace Attack. Along the same lines, one can also
see the invariant subspace attack as a special case of a nonlinear invariant. Recall
that a subspace V ⊆ F

n
2 is called invariant under (a block cipher) F if

F (V ) = V.

That is, the set V is mapped to itself by the function F . Note that the com-
plement V̄ is also mapped to itself because the function F is permutation. This
means nothing else than that the nonlinear Boolean function δV (x) is a nonlinear
invariant for F as

δV (x) = 1 ⇔ x ∈ V ⇔ F (x) ∈ V ⇔ δV (F (x)) = 1,
δV (x) = 0 ⇔ x ∈ V̄ ⇔ F (x) ∈ V̄ ⇔ δV (F (x)) = 0.

In other words, invariant subspace attacks are nonlinear invariant attacks where
the support of the nonlinear invariant is a subspace of Fn

2 . And as such, nonlinear
invariant attacks could be called invariant set attacks , as the function g splits in
the inputs into two sets, the support of g and its complement, that are invariant
under F .

Further Research. Other interesting directions for further research include the
generalization of the nonlinear invariant to the case where one does not consider
the same function g in every round, but rather a sequence of functions that can be
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chained together. In fact, we also found quadratic Boolean function g′ : F4
2 → F2

such that g(x) = g′(S(x)) for Midori64. Owing to the involution property of
the S-box, g(x) = g′(S(x)) always implies g′(x) = g(S(x)). Combining with the
alternative use of K0 and K1 in the key schedule, such g, g′ may be exploited
in the attack. Unfortunately, since such Boolean functions are not nonlinear
invariant for the constant addition in Midori64, we cannot exploit them in real
cryptanalysis. However, it is clearly worth discussing this extension. And last
but not least, even so it seems notoriously difficult, it would be nice to be able
to use a statistical variant of the attack described here, i.e. consider nonlinear
functions such that g(F (x)) = g(x) for many – but not necessarily for all –
inputs x.

A Algorithm to Solve Basis of U(S)

Let gS ∈ U(S), and the algebraic normal form (ANF) is expressed as

gS(x) =
⊕

u∈F
n
2

λuxu,

where λu ∈ F2 are the coefficients to be determined and xu denotes
∏

xui
i . From

the definition of the nonlinear invariant, for any x ∈ F
n
2 , the following equation

⊕

u∈Fn
2

gS,u(x) =
⊕

u∈Fn
2

λu(xu
⊕

S(x)u)

is constant. The ANF of gS,u is computed for all u ∈ F
n
2 , and the ANF is

expressed as

gS,u(x) =
⊕

v∈F
n
2

λu,vxv.

Then, we prepare a matrix [I‖M ], where I is a (2n × 2n) identical matrix and
coefficients of M is computed as

M [u, v] = λu,v

Then, by Gaussian elimination like computation, we compute matrix M ′ =
[M ′

1‖M ′
2]. If rows of M ′

2 are [0, 0, . . . , 0] or [1, 0, 0, . . . , 0], the corresponding row
of M1 is the basis of U(S). In particular, for commonly used Sbox sizes of up to
8 bits, the space U(S) can be computed in less than a second on a standard PC.

From our experiments, 4-bit S-boxes usually have quadratic nonlinear invari-
ant. On the other hand, it is generally rare that 8-bit S-boxes have quadratic
nonlinear invariant. However, as described in this paper, it is not always rare if
low-degree S-boxes are applied like Scream or iScream for the efficiency.
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