
Towards Practical Whitebox Cryptography:
Optimizing Efficiency and Space Hardness

Andrey Bogdanov1(B), Takanori Isobe2, and Elmar Tischhauser1

1 Technical University of Denmark, Kongens Lyngby, Denmark
{anbog,ewti}@dtu.dk

2 Sony Global Manufacturing & Operations Corporation, Tokyo , Japan
Takanori.Isobe@jp.sony.com

Abstract. Whitebox cryptography aims to provide security for crypto-
graphic algorithms in an untrusted environment where the adversary has
full access to their implementation. Typical security goals for whitebox
cryptography include key extraction security and decomposition security :
Indeed, it should be infeasible to recover the secret key from the imple-
mentation and it should be hard to decompose the implementation by
finding a more compact representation without recovering the secret key,
which mitigates code lifting.

Whereas all published whitebox implementations for standard cryp-
tographic algorithms such as DES or AES are prone to practical key
extraction attacks, there have been two dedicated design approaches for
whitebox block ciphers: ASASA by Birykov et al. at ASIACRYPT’14 and
SPACE by Bogdanov and Isobe at CCS’15. While ASASA suffers from
decomposition attacks, SPACE reduces the security against key extrac-
tion and decomposition attacks in the white box to the security of a
standard block cipher such as AES in the standard blackbox setting.
However, due to the security-prioritized design strategy, SPACE imposes
a sometimes prohibitive performance overhead in the real world as it
needs many AES calls to encrypt a single block.

In this paper, we address the issue by designing a family of dedicated
whitebox block ciphers SPNbox and a family of underlying small block
ciphers with software efficiency and constant-time execution in mind.
While still relying on the standard blackbox block cipher security for
the resistance against key extraction and decomposition, SPNbox attains
speed-ups of up to 6.5 times in the black box and up to 18 times in
the white box on Intel Skylake and ARMv8 CPUs, compared to SPACE.
The designs allow for constant-time implementations in the blackbox set-
ting and meet the practical requirements to whitebox cryptography in
real-world applications such as DRM or mobile payments. Moreover, we
formalize resistance towards decomposition in form of weak and strong
space hardness at various security levels. We obtain bounds on space
hardness in all those adversarial models.

Thus, for the first time, SPNbox provides a practical whitebox block
cipher that features well-understood key extraction security, rigorous

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 126–158, 2016.
DOI: 10.1007/978-3-662-53887-6 5

Towards Practical Whitebox Cryptography: Optimizing Efficiency 127

analysis towards decomposition security, demonstrated real-world effi-
ciency on various platforms and constant-time implementations. This
paves the way to enhancing susceptible real-world applications with
whitebox cryptography.

Keywords: White-box cryptography · Space hardness · Code lifting ·
Decomposition · Key extraction · Mass surveillance · Trojans · Malware

1 Introduction

1.1 Black Box vs White Box

Whitebox cryptography was introduced by Chow et al. in 2002 [14] as a technique
to secure software implementations of block ciphers when the adversary has full
access to the execution environment. This setup is called the whitebox setting,
which is opposed to the standard blackbox setting where the attacker can neither
observe nor influence the internals of the block cipher. The functionality of the
cipher shall be the same when implemented in the black-box and white-boxe
settings. However, the whitebox implementation in the untrusted environment
(as e.g. in the mobile client software) and blackbox implementation in the secure
environment (as e.g. on the backend server) can vary significantly to meet distinct
security demands arising from two different threat models:

– In the black box: The adversary is able to access inputs and outputs of
the cipher with known, chosen or adaptively chosen plaintexts/ciphertexts.
Given the blackbox implementation, the attacker aims to recover the secret
key (key recovery) or to distinguish the block cipher from a randomly drawn
permutation (distinguishing).

– In the white box: The attacker has full access to the execution environment
of the cipher. Given the whitebox implementation of the cipher, the adver-
sary’s goal is then to extract the secret key (key extraction) or to decompose
the implementation to find a more compact representation that can be used as
an effective key to replicate the functionality (decomposition, or code lifting).

1.2 Whitebox Cryptography in the Wild

The seminal papers [14,15] in whitebox cryptography had the goal to provide
security in digital rights management (DRM) applications where encrypted con-
tents (e.g. a music or movie file) are decrypted on the user’s device. A malicious
end user may attempt to extract the key from its software and then illegally
distribute it outside the DRM system.

15 years have passed since those papers were published, and the context
of whitebox cryptography has drastically changed. With the rapidly increasing
demand for software-only security solutions in embedded devices, laptop PCs,
mobile and server systems as well as the ever growing field of cloud-based ser-
vices, the target for whitebox cryptography is no longer limited to the software

128 A. Bogdanov et al.

Fig. 1. Cloud-based content distribution: Cloud server encrypts contents in the black
box and distributes them to user devices. User devices decrypt the contents in the
white box.

Fig. 2. Cloud-based mobile payments with HCE: Cloud server sends tokenized payment
credentials provided by the issuer, to the mobile. Mobile phone transfers payment
data with tokenized payment credentials to the payment processor via HCE. Payment
processor sends it to the issuer for authorization.

implementation in the user-controlled device only. Such a device is now merely
a part of a larger system, as e.g. in cloud computing or cloud-based payment. In
addition, as whitebox cryptography inherently addresses resistance to malware,
Trojans and zero-day vulnerabilities, it will find more and more applications in
banking and other security-critical settings as well.

For illustrative purposes, we mention three application scenarios for whitebox
cryptography, see also Figs. 1 and 2.

DRM in the Cloud. DRM-based services have moved to cloud-based contents
distribution systems such as Adobe Primetime Cloud DRM [1] and Akamai’s
Secure Cloud-Based Workflows for Premium Content [2]. State-of-the-art con-
tents distribution services often utilize IaaS (Infrastructure as a Service), for
instance, Google cloud platform, IBM, Amazon AWS and Microsoft Azure, in
order to optimize costs and to scale infrastructure. This application is illustrated
in Fig. 1.

On the user device that plays the contents, whitebox implementation shall
protect the contents key against key extraction and decomposition attacks [6,
28,39] and recent side-channel attacks [11,35]. A useful security property in this

Towards Practical Whitebox Cryptography: Optimizing Efficiency 129

context is space hardness, which aims to mitigate code lifting, and discourages
the adversary from illegally distributing the code due to its large size [9].

On the cloud server that distributes the contents, a blackbox implementation
is used to deal with a large number of user keys simultaneously, since running
whitebox implementations for all users would require a huge amount of memory.
Though usually much better protected than the player devices, cloud comput-
ing infrastructures do pose additional threats to the application. Namely, they
are based on co-residency and multi-tenancy, i.e. the user runs multiple virtual
machines (VMs) in the hardware resources of the same physical machine. There-
fore, VM isolation raises a new security concern: cache timing attacks which
exploit the fact that cache memory access times are data dependent. This may
allow one to extract the secret key, given shared cache across co-located VMs.
With the rapidly increasing deployment of cloud services, cache timing attacks
have lately received a lot of attention [18,22,23,34]. Thus, cloud service providers
have to deal with countermeasures. Indeed, having seen the novel cache timing
attacks of [23,41], VMware made memory deduplication an opt-in feature, and
Amazon disabled deduplication on its EC2 cloud servers. However, Irazouqui et
al. show that attacks exploiting the L3 shared cache are still applicable even if
such system-level countermeasures are deployed [22]. Thus, this threat has to be
addressed at the cipher implementation level as well.

All in all, for DRM applications in the cloud, the blackbox cipher implemen-
tation should be secure against cache timing attacks on the cloud server, whereas
the whitebox implementation should provide key extraction security and space
hardness on the consumer device.

Host Card Emulation in Cloud-based Mobile Payments. NFC (Near
Field Communication) is extensively used in applications such as payment sys-
tems. A standard NFC payment implementation employs a mobile phone with
credentials stored inside a hardware-based secure element. HCE (Host Card
Emulation) is a technology that enables NFC transactions in a pure software
environment without secure elements — here anyone can create a mobile appli-
cation without depending on the secure element. This allows one to launch new
payment services in a more flexible way with a much less complex ecosystem.
Thus, HCE is expected to become a game changer for mobile payments. Google
provides the HCE architecture from Android 4.4 Kitkat on, by which anyone
can emulate an NFC smart card for a payment service. Moreover, Visa and
MasterCard also support the cloud-based HCE payments. In the HCE, instead
of expensive secure hardware, credentials are stored in alternative media such as
cloud. Figure 2 provides an overview of cloud-based payment systems with HCE.

In cloud-based payments, resilient whitebox cryptography on the mobile
phone is central to the overall security. More precisely [29,37], a whitebox imple-
mentation shall replace the secure element in two ways. First, it should protect
sensitive data such as tokens, payment information and card data from malware
and spyware possibly running on the same CPU. Second, it should ensure that
legitimate devices and users are accessing their payment credentials in the cloud
by means of secure authentication between the cloud and the device.

130 A. Bogdanov et al.

From the implementation viewpoint, a mobile phone may not have rich
resources, and available memory can be restrictive. Thus, the deployed white-
box cipher shall support variable sizes of its whitebox tables to meet a vari-
ety of implementation demands. In the cloud, which manages credentials, the
corresponding blackbox implementation should prevent cross-VM cache timing
attacks [18,22,23,34] similar to the previous application.

Memory-Leakage Resilient Software. Leakage of memory by vulnerabilities
such as buffer overflows, cold boot attacks [20], bus monitoring attacks, Trojans
and malware, or heartbleed-type vulnerabilities is a major problem in today’s
software. The notion of space hardness has been used to restrict the effect of
memory leakage in applications where the leakage channel from the implemen-
tation environment to the adversary’s backend is of limited capacity [9]. In par-
ticular, the use of space-hard whitebox cryptography can mitigate the damage
of a memory-leakage vulnerability in security-critical systems. Indeed, those are
typically insulated from the Internet, making it infeasible for Trojans to use low-
capacity covert and side channels for the transmission of necessary key material
if space-hard ciphers are employed.

Thus, for a memory-leakage resilient software implementation, the space
hardness is necessary. It can be considered as a class of leakage resilient cryp-
tography in bounded retrieval model where malware has complete control over
the computer but can only send out a bounded amount of information.

1.3 Existing Whitebox Constructions

In order to meet some of the demands arising from applications, several whitebox
constructions have been proposed.

Whitebox Implementations of DES and AES. Whitebox implementations
of DES and AES were first proposed by Chow et al. in [14,15]. Their approach is
to find a representation of the algorithm as a network of look-ups in randomized
and key-dependent tables. In the wake of these seminal papers, several further
variants of whitebox implementations for DES and AES were proposed [12,24,
27,40]. However, all published whitebox solutions for DES and AES to date have
been practically broken by key extraction and table-decomposition attacks [6,26,
30,31,39].

ASASA. Dedicated whitebox block ciphers were proposed by Biryukov et
al. in [7] at ASIACRYPT’14. They are based on the ASASA structure that
consists of two secret nonlinear layers (S) and three secret affine layers (A), with
affine and nonlinear layers interleaved. The security of ASASA against the key
extraction in the whitebox setting relies on the hardness of the decomposition
problem for ASASA. Unfortunately, efficient decomposition attacks on ASASA
have been proposed [28]. The security of constructions based on multiple secret
nonlinear and linear layers is still to be explored and seems hard to evaluate,
despite several cryptanalytic efforts [8,10,38]. Moreover, generic ASASA-type
constructions are difficult to implement in the constant-time fashion in the black
box, which makes them potentially susceptible to side channel leakage.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 131

SPACE. At CCS ’15, Bogdanov and Isobe proposed a family of whitebox-secure
block ciphers SPACE [9]. The design of SPACE is such that the security against
key extraction and decomposition attacks in the whitebox setting reduces to the
well-studied problem of key recovery for block ciphers in the standard blackbox
setting. Their approach is to construct the whitebox table from a well-understood
standard block cipher (AES in their example) by constraining the plaintext and
truncating the ciphertext. Furthermore, to mitigate code lifting, they proposed
the new security notion of space hardness which is a generalization of the weak
whitebox security notion of [7]. Space hardness quantifies security against code
lifting by the amount of code that needs to be extracted from an implementation
by a whitebox adversary to maintain its functionality with a certain probability.

However, in order to strongly guarantee security against key extraction and
space hardness in the whitebox setting, SPACE employs a very conservative
design strategy. Namely, a target-heavy Feistel construction is deployed that does
not allow for parallel or even pipelined implementations. Moreover, the internal
F-function of SPACE requires one full 10-round AES-128 call. As estimated
in [9], at least 128 full-round AES-128 calls are necessary to perform a single
block encryption. That appears rather unacceptable in real-world applications.
However, it’s possible to derive a constant-time implementation of SPACE in
the black box.

Thus, all existing designs have important practical limitations. This paper
aims to bridge this gap by a novel design that addresses the key extraction
security, the decomposition security (space hardness), constant-time blackbox
implementation requirement as well as efficiency issues simultaneously.

1.4 Our Contributions

The contributions of this paper are as follows.

Design of SPNbox: New Efficient Whitebox Block Cipher. We propose
SPNbox, a new family of space-hard block ciphers, which significantly improves
upon the SPACE ciphers proposed at CCS 2015 [9]. While SPACE is based on
a target-heavy Feistel construction, SPNbox is an SPN-type design with small
block ciphers as the key-dependent S-boxes. In order to efficiently utilize the
parallelism offered by both standard SIMD and the AES-NI instructions on con-
temporary microprocessors, the small block ciphers are based on the AES round
transformation. The resulting parallelization opportunities allow for significantly
faster implementations both in the black box and in the white box. At the same
time, similarly to SPACE, SPNbox still offers all important whitebox security
properties of quantifiable space hardness as well as reduction of key extraction
security to the blackbox key-recovery security of the underlying block cipher.
See Sect. 2.

Security Analysis of SPNbox in the Black Box. Our constructions come
with security analysis as block ciphers. As the overall design as well as the
design of underlying small block cipher follows the principles of substitution-
permutation networks, we use the well-established tools of symmetric-key

132 A. Bogdanov et al.

cryptanalysis. See Sect. 3. In addition, we stress that our ciphers are secure
against new types of attacks such as differential computational and differential
fault attacks [11,35] in the white box as well as cross-VM cache timing attacks
for cloud in the black box [18,22,23,34].

Refined Compression Attack Settings. Resistance to decomposition attacks
is formalized by the notions of weak whitebox security and incompressibility [7],
(M,Z)-space hardness and strong (M,Z)-space hardness [9] as well as by a
related notion of (λ, δ) compressibility [16]. As opposed to previous studies of
space hardness [9] that did not go beyond a weak whitebox adversary, this paper
considers various levels of space hardness for table-based whitebox implementa-
tions, which are classified with respect to the adversary’s abilities such as types of
table accesses, knowledge about the execution environment or reverse engineer-
ing capabilities. This covers a very wide class of real-world adversaries that are
thinkable in applications. In particular, we introduce known-space, chosen-space
and adaptively-chosen-space attacks on space hardness. See Sect. 4.

Provable Bounds on Space Hardness. Moreover, we obtain bounds on space
hardness in all those adversarial models under the assumption that the under-
lying tables are secure against decomposition, which is in turn guaranteed by
the security of the underlying small block ciphers in the standard blackbox set-
ting. This enables us to obtain rigorous upper bounds on the success probability,
given a space of size M , in each adversarial model. These are the first security
bounds on space hardness for table-based whitebox implementations, while pre-
vious results only roughly evaluate the security by an attack-based approach [9].
Furthermore, we apply our bounds to SPNbox and SPACE ciphers. As a result,
we update the evaluations of space hardnesses of SPACE ciphers, and show that
SPNbox offers a conservative level of space hardness in each adversary model.

Efficient Optimized Software Implementations of SPNbox and SPACE.
We implement both SPNbox and SPACE families of whitebox block ciphers on
Intel Skylake and ARMv8. Our implementations use SIMD/AVX, AES-NI and
NEON extensions whenever possible to optimize performance. As a result, we
report that instances of SPNbox achieve speed-ups of up to 6.5 times in the black
box and up to 18 times compared to SPACE in the whitebox setting. See Sect. 5.

2 SPNbox: Efficient Space-Hard Block Ciphers

2.1 Design Choices

From Feistel to nested SPN. The SPACE family of space-hard block ciphers
employs a very conservative design strategy which involves using the full 10-
round AES-128 transformation, even for 8-bit inputs. Furthermore, its Feistel
structure prevents the exploitation of any parallel execution or pipelining pos-
sibilities. At the same time, it seems likely that the security margin offered by
the proposed SPACE instances can be reduced without ill effects.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 133

The requirement of parallelism immediately points to an SPN-type design.
For the desired level of space hardness, key-dependent S-boxes of varying size can
be employed. This can then be combined with a public linear MDS diffusion layer
operating on the entire state, allowing rigorous security arguments for standard
blackbox security.

Within this design framework, it remains to construct key-dependent S-boxes
of different sizes (for instance 8, 16, 24 and 32 bits as in SPACE). This is accom-
plished by using smaller internal block ciphers, which are themselves SPNs,
yielding a nested SPN structure [3]. For the reasons of efficiency, security and
side-channel protection, it is desirable to base these internal SPNs on the AES
round transformation, especially given the availability of the AES-NI instruc-
tions [19]. The efficiency requirements also dictate that little or no truncation
should take place, and ideally, the AES round transformation should be used to
compute some of the larger S-boxes in parallel.

In order to also have an efficient implementation for the inverse cipher,
the design should employ involutory MDS matrices wherever possible. Since
we mainly target high-performance software implementations, our selection
criteria for efficient MDS matrices differs somewhat from the widely studied
area of lightweight hardware implementations as in [36]: In software, arbitrary
bit permutations are costly, which means that a matrix with smaller coeffi-
cients but higher theoretical XOR count can result in a more efficient SIMD
implementation.

Efficient Constant-Time Small Block Ciphers. We note that these small SPN-
type block ciphers used to construct the key-dependent S-boxes are of poten-
tial independent interest: Block ciphers of sizes smaller than 32 bit are virtu-
ally unstudied, and an AES-NI based implementation further allows an efficient
constant-time implementation, which avoids the pitfalls of key-dependent table
lookups (which is the usual way of implementing small nonlinear functions due
to efficiency reasons though bit-sliced implementations may be possible as well).
In addition, in order to prevent the differential computational attacks [11], this
small SPN-type block cipher depends on 128 bits of key information.

2.2 Specification

We now define the SPNbox family of block ciphers and their concrete instan-
tiations SPNbox-8, SPNbox-16, SPNbox-24, and SPNbox-32. SPNbox-nin is a
substitution-permutation network (SPN) with a block length of n bits, a k-bit
secret key, and based on nin-bit substitution boxes. For SPNbox-8, SPNbox-
16 and SPNbox-32, the block length is n = 128 bits, whereas SPNbox-24 has
n = 120. While SPNbox can support a wide range of key sizes, we use k = 128
for concreteness in the following.

Representation of Finite Fields. We will in the sequel sometimes view the set
{0, 1}m of bit strings as the finite field GF(2m). For this, we identify GF(2m)
with the quotient ring GF(2)[x]/(p) for a suitable irreducible polynomial p ∈

134 A. Bogdanov et al.

GF(2)[x]. An m-bit string am−1am−2 · · · a1a0 ∈ {0, 1}m then corresponds to the
polynomial am−1xm−1 + am−2xm−2 + · · · + a1x + a0 ∈ GF(2m). We write such
an element in a hexadecimal representation of its bit string, e.g. 4x for 100.

For GF(28), we use the same irreducible polynomial as the AES, namely
p(x) = x8 + x4 + x3 + x + 1. Similarly, we use p(x) = x16 + x5 + x3 + x + 1 for
GF(216), p(x) = x24+x4+x3+x+1 for GF(224) and p(x) = x32+x7+x3+x2+1
for GF(232), respectively.

State. The state of SPNbox-nin is organised as a vector of t
def= n/nin elements

of nin bits each:
X = {X0, . . . , Xt−1}.

Each of the nin-bit elements Xi can in turn be represented by a vector of �
def=

nin/8 bytes: Xi = {Xi,�−1, . . . , Xi,0}.

Key Schedule. The k-bit master key is expanded to (Rnin
+ 1) round keys

k0, . . . , kRnin
of nin bits using any generic key derivation function (KDF) [32]:

(k0, . . . , kRnin
) = KDF(k, nin · (Rnin

+ 1)).

For example, one can use the SHAKE extendable output function which is based
on the SHA-3 hash [33].

Round Transformation. The encryption of a plaintext X0 to a ciphertext XR

is accomplished by applying R rounds of the following round transformation to
the plaintext:

XR =
(©R

r=1 (σr ◦ θ ◦ γ)
)
(X0).

For all concrete proposals SPNbox-8, SPNbox-16, SPNbox-24 and SPNbox-32,
we set the number of rounds to R = 10. We now define in turn each of the
components γ, θ and σr. An overview of the round transformation is given in
Fig. 3

Fig. 3. Round transformation of SPNbox.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 135

The Nonlinear Layer γ. γ is a nonlinear substitution layer, in which t key-
dependent identical bijective nin-bit S-boxes are applied to the state:

γ : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) �→ (Snin
(X0), . . . , Snin

(Xt−1)) .

In SPNbox-nin, the substitution Snin
is realised by an internal small block cipher

of block length nin, which will be defined in the next subsection.

The Linear Layer θ. θ is a linear diffusion layer that applies a t× t MDS matrix
to the state:

θ : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) �→ (X0, . . . , Xt−1) · Mnin
.

We denote by cir (a0, . . . , at−1) the t × t circulant matrix A with the coefficients
a0, . . . , at−1 in the first row; and by had (a0, . . . , at−1) the t×t Hadamard matrix
A with coefficients Ai,j = ai⊕j , with t a power of two.

For the concrete proposals SPNbox-ninwith nin = 32, 24, 16, 8, the matrix
Mnin

is then respectively defined as follows:

M32 = cir (1x, 2x, 4x, 6x) for nin = 32,

M24 = cir (1x, 2x, 5x, 3x, 4x) for nin = 24,

M16 = had (1x, 3x, 4x, 5x, 6x, 8x, bx, 7x) for nin = 16,

and

M8 = had (08x, 16x, 8ax, 01x, 70x, 8dx, 24x, 76x,

a8x, 91x, adx, 48x, 05x, b5x, afx, f8x)
for nin = 8.

Note that M32,M16 and M8 are involutions. M32 and M16 are the matrices used
in the block ciphers Anubis [4] and Khazad [5], respectively. M8 is an optimised
involutory Hadamard-Cauchy matrix proposed at FSE 2015 [36].

The Affine Layer σr. σr is an affine layer that adds round-dependent constants
to the state:

σr : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) �→ (
X0 ⊕ Cr

0 , . . . , Xt−1 ⊕ Cr
t−1

)
,

with Cr
i

def= (r − 1) · t + i + 1 for 0 ≤ i ≤ t − 1.

136 A. Bogdanov et al.

The Underlying Small Block Ciphers. The key-dependent nin-bit bijective
S-boxes Snin

in the nonlinear layer γ are small SPN-type block ciphers them-
selves. They are based on the round transformation of the AES and consist of
Rnin

rounds operating on a state x = {x0, . . . , x�−1} of �
def= nin/8 bytes:

Snin
: GF(28)� → GF(28)�

x �→
(
©Rnin

i=1

(
AKi ◦ MCnin

◦ SB
))

(AK0(x)).

Here, SB denotes the application of the AES S-box to each byte of the state. For
0 ≤ i ≤ Rnin

, AKi is defined as the addition of the round key ki (as expanded
by the key schedule) by XOR. MCnin

implements an MDS diffusion layer on
all � bytes of the state. It is based on the AES MixColumns operation. For the
concrete proposals of nin = 32, 24, 16, it is defined as the multiplication of x
with the matrices

A32 = cir (2x, 1x, 1x, 3x) for nin = 32,

A24 =

⎛

⎝
2x 1x 1x

3x 2x 1x

1x 3x 2x

⎞

⎠ for nin = 24,

A16 =
(
2x 1x

3x 2x

)
for nin = 16,

respectively. For nin = 8, MCnin
is the identity mapping. Note that A32 is the

AES MixColumns matrix (adjusted for Intel’s byte order), while A24 and A16

are obtained from A32 as (x, y, z, 0) × A32 and (x, y, 0, 0) × A32, respectively. As
square submatrices of A32, all derived matrices are also �× � MDS matrices over
GF(28). An overview of the round transformation is given in Fig. 4.

Fig. 4. Round transformation of the underlying block ciphers Snin .

The number of rounds for each concrete proposal is defined as R32 = 16,
R24 = 20, R16 = 32 and R8 = 64.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 137

2.3 SPNbox vs ASASA

Both SPNbox and the ASASA construction are based on the classical
substitution-permutation network structure, consisting however of secret key-
dependent S-box and public linear layers. The main constructive difference is how
to construct the secret key-dependent S-box. However, this is the discrepancy
having far-reaching practical consequences both in terms of security arguments
and implementation.

In the ASASA construction, as its name suggests, tables are based on the
ASASA structure that consists of two secret nonlinear layers (S) and three secret
affine layers (A), with affine and nonlinear layers interleaved. On the other hand,
SPNbox is based on the SPN-type small block cipher that consists of the public
nonlinear and linear layer, and secret key XOR layers.

Regarding the security of the whitebox implementation, the difficulty of the
key extraction and the decomposition problem for ASASA relies on the hardness
of the decomposition problem for ASASA, which is still to be explored and seems
hard to evaluate, despite several cryptanalytic efforts [8,10,38]. Actually, efficient
decomposition attacks on ASASA have been proposed [28]. On the other hand,
SPNbox relies on well analyzed problem of the key recovery attack of the block
cipher in the standard blackbox setting.

In the blackbox implementation, assuming the random choice of secret S-
boxes, the substitution layer of ASASA is realized by the table based implemen-
tation due to the secrecy of underlying component, and is impossible to optimize
the performance by AES-NI. The table-based blackbox implementation of the
ASASA is not secure against cache timing attacks similar to the table-based
blackbox AES implementation [18,22,23,34].

3 Security in the Black Box: Analysis as a Block Cipher

We evaluate the general construction of SPNbox-8, -16, -24 and -32, modeling
the underlying small block cipher as pseudorandom permutation. We further-
more analyze the security of the underlying small block ciphers Snin

against
cryptanalytic attacks. Finally, we evaluate the security against cross-VM cache
timing attacks for cloud application.

3.1 General Construction

First, we evaluate the security of the general construction of SPNbox-8, -16, -
24 and -32, assuming an underlying small block cipher, i.e. the key-dependent
nin-bit bijective S-boxes Snin

, is a pseudo random permutation. The generic
construction of all variants is a 10-round SPN-type construction.

Differential Cryptanalysis. Here we analyze the differential properties of an
nin-bit permutation Snin

: {0, 1}nin → {0, 1}nin . Given input difference a and
output difference b, the differential probability of function f is defined as

DP (a, b) = #{(v, u)|u ⊕ v = a and f(v) ⊕ f(u) = b}

138 A. Bogdanov et al.

for u, v ∈ {0, 1}nin . The bound of the maximum differential probability MDP
is proved as follows [21].

Pr
(n ln 2

2n−1 ln n
≤ MDP <

n

2n−1

)
≈ 1

Suppose that the maximum differential probability of Snin
of SPNbox-8, -16,

-24 and -32 to be 2−4 (= 8/27), 2−11 (= 16/215), 2−18.42 (= 24/223) and 2−26

(= 32/231), respectively. Due to properties of MDS diffusion matrices. SPNbox-
8, -16, -24 and -32 have at least 34, 18, 12 and 5 active Snin

after 4, 4, 4 and 2
rounds.

Linear Cryptanalysis. Now we analyze the linear properties of an nin-bit
permutation Snin

: {0, 1}nin → {0, 1}nin .
Given an input mask α and an output mask β, α, β ∈ {0, 1}nin , the correla-

tion of a linear approximation (α, β) for a function f : {0, 1}nin → {0, 1}nin is
defined as

Cor = 2−nin [#{x ∈ {0, 1}nin |α · x ⊕ β · f(x) = 0} −
#{x ∈ {0, 1}nin |α · x ⊕ β · f(x) = 1}.

The linear probability LP of (α, β) is defined as Cor2. For a fixed-key block
cipher, the maximum linear probability MLP is normally distributed in mean
≈ (1.38 · 2n − ln(1.38 · 2n) + 1) · 2−n and standard deviation ≈ 2.6 × 2−n [21].

Suppose that the maximum linear probability of Snin
of SPNbox-8, -16, -24

and -32 to be 2−3.67 (= 19.99 ·2−8), 2−10.62 (= 41.37 ·2−16), 2−18.02 (= 63 ·2−24)
and 2−25.61 (= 84 · 2−32), respectively. SPNbox-8, -16, -24 and -32 have at least
51, 18, 12 and 5 active F

(j)
i (x) after 6, 4, 4 and 2 rounds.

Other Cryptanalysis. Any input difference nonlinearly affects all states after
one round due to the MDS matrix. Following the miss-in-the-middle approach,
after 3 rounds, we have not found any useful impossible differentials for the
respective variants. Also, a 2.5-round generic integral distinguisher against the
SPN-type construction is proposed [8]. We also consider other-types of attacks
including a higher order differential, a truncated differential, a slide, and an
algebraic attack. Consequently, we expect that none of them work better than
brute force attacks.

3.2 The Underlying Small Block Ciphers

We evaluate the security of underlying small block ciphers Snin
. These are based

on well-analyzed AES components such as the inversion base 8-bit S-box and
the MDS circulant matrix on GF(28).

Towards Practical Whitebox Cryptography: Optimizing Efficiency 139

Differential/Linear Cryptanalysis. The differential/linear probability of 8-
bit S-box is 2−6. S8, S16, S24, and S32 have at least 2, 3, 4 and 10 differen-
tially/linearly active S-boxes after 2, 2, 2 and 4 rounds, respectively. We there-
fore expect all Snin

, for nin = 8, 16, 24, 32, to not have any differential or linear
trails with probabilities exceeding the bound 2−nin after 2, 2, 2 and 4 rounds,
respectively. Since they are proposed with much higher numbers of rounds, they
offer ample security margin.

Meet-in-the-Middle and Other Cryptanalysis. In each cipher, four times
128-bit key information is involved, and one round already achieves full diffusion.
Thus, we believe that the small block ciphers are secure against MitM attacks.
We developed MitM attacks on each variant using splice and cut, biclique and
partial matching techniques. However, we did not find full round attacks.

Considering further attacks, the byte-oriented structure combined with full
diffusion after 1 round means that for impossible (truncated) differential attacks,
and integral and higher order differential attacks, we can at most construct
cryptanalytic properties spanning 3 and 4 rounds, respectively. All small block
ciphers are proposed with much significantly higher numbers of rounds. Finally,
the use of distinct round constants in the key schedule precludes slide attacks.

3.3 Cache Timing Attack

There are several techniques exploiting cache information over VM isolations
in the cloud: the Prime+Probe attack [22] and Flush+Reload attacks [18,23,
41]. All attacks make use of timing differences between cache hits and misses.
Our key-dependent small block ciphers are designed to be executed in constant
time by using AES-NI, and there are no cache accesses during key-dependent
operations. Thus, it is impossible to mount cache timing attacks against the
blackbox implementation of SPNbox.

4 Security in the White Box: Analysis of Space Hardness

In this section, we first evaluate the security against key-extraction and decom-
position attacks in the whitebox model. Second, we evaluate the difficulty of
code lifting attacks by notions of weak and strong space hardness [9]. We gener-
alize the adversarial models of space hardness to capture a wide class of adver-
saries: from adversaries with limited control (greybox) to stronger ones with
more knowledge of the computational platform and reverse engineering abili-
ties (whitebox). Then, we show bounds for weak and strong space hardness for
table-based whitebox cryptography under the assumption that tables are secure
against key extraction and table decomposition attacks, i.e. it is computation-
ally infeasible to compress the tables in the whitebox models1. By contrast, the

1 Whitebox AES implementations [12,14,24,40] and the ASASA construction [7] do
not satisfy the assumption due to practical decomposition attacks [6,26,28,30,31].

140 A. Bogdanov et al.

authors of [9] evaluate the space hardness of their proposals only by attack-based
approaches, called compression attack. Finally, we evaluate the security against
recent advanced side-channel attacks [11,35].

4.1 Key Extraction and Table Decomposition Attacks

As the tables are constructed from small block ciphers, the security of key-
extraction and decomposition attacks in the whitebox model reduces to the key
recovery problem for these small block ciphers in the blackbox model (which is
evaluated in Sect. 3). The advantage of key extraction in the whitebox model
for SPNbox, AdvKE-WB, is upper-bounded by the advantage of the key recovery
for the underlying block cipher in the blackbox model, AdvKR-BB: AdvKE-WB ≤
AdvKR-BB.

4.2 Existing Notions of Space Hardness

The difficulty of a decomposition attack is measured by space hardness that
is summarized here. The whitebox implementation of a cipher should resists
decomposition: Instead of a secret key, the adversary can directly use the imple-
mentation itself as a larger effective key. In particular, he can isolate the program
code where the key is embedded in order to copy the functionality of encryp-
tion/decryption routines and to utilize it in a stand-alone manner. We refer to
decomposition attacks as code lifting attack. If a code lifting attack succeeds, the
adversary gets the advantage which is almost the same as key extraction, i.e. he
can encrypt/decrypt any plaintext/ciphertext.

To formalize the difficulty of code lifting, the notions of weak white-box secu-
rity and incompressibility have been introduced in [7]. To capture the resistance
towards compression attacks in a more fine-grained fashion, two further security
notions were introduced in [9]: (M,Z)-space hardness and strong (M,Z)-space
hardness. Space hardness measures the difficulty of compressing the whitebox
implementation of a cipher, and quantifies security against code lifting by the
amount of code that needs to be extracted from the implementation by a white-
box adversary to maintain its functionality. Moreover, Delerablee et al. propose a
related notion of (λ, δ) compressibility [16]. However, the latter aims to evaluate
the difficulty of code compression, given the full code. Space hardness [9] assesses
the difficulty of isolating code from execution environments, namely, code lift-
ing, by the amount of the data. Thus, it covers a wide class of adversaries: from
the one with limited control all the way to the stronger ones with full code and
complete access to the environments. For the sake of clarity, the paper at hand
refers to (M,Z)-space hardness of [9] as weak (M,Z)-space hardness:

Definition 1 (Weak (M,Z)-space hardness [9]). An implementation of a
block cipher EK is weakly (M,Z)-space hard if it is infeasible to encrypt (decrypt)
any randomly drawn plaintext (ciphertext) with probability of more than 2−Z

given any code (table) of size less than M bits.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 141

Fig. 5. Target block cipher construction for the white box and its adversarial models

Weak (M,Z)-space hardness estimates the code (table) size M that needs to
be isolated from the whitebox environment to be able to encrypt (decrypt) any
plaintext (ciphertext) with a success probability larger than 2−Z .

Definition 2 (Strong (M,Z)-space hardness [9]). An implementation of a
block cipher EK is strongly (M,Z)-space hard if it is infeasible to obtain a valid
plaintext and ciphertext pair with probability higher than 2−Z given the code
(table) of size less than M bits.

Strong (M,Z)-space hardness assumes an adversary who tries to find any valid
input/output pair. It is relevant to message authentication codes in the context
of forgeries.

4.3 Target Construction

To simplify our evaluation of space hardness in the sequel, we define a target
construction: an n-bit block cipher that is encrypted/decrypted by key dependent
table-based implementations in the whitebox environment as shown in Fig. 5. Let
the input and output sizes of each table be nin and nout, respectively, and the
number of rounds be R, where the each round consists of t tables. We denote j-th
table in round r as a function F

(r)
j : {0, 1}nin → {0, 1}nout for j ∈ {0, 1, . . . , t−1}

and r ∈ {1, 2, . . . , R}. In the cases of SPNbox and SPACE [9], all tables are
identical, and the total table sizes T is estimated as T = (2nin × nout).

4.4 Adversary Models of Space Hardness

We consider three adversary models that are classified with respect to the adver-
sary’s ability, while previous works [9] do not specify the adversary model. In
particular, we simulate the action of the adversary against the execution envi-
ronments by access to the table (space) functions F

(r)
j (see Fig. 5).

142 A. Bogdanov et al.

Fig. 6. Weak (M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24
and 32 in known- and chosen-space attack

Definition 3 (Known-Space (KS) Attack). The adversary obtains q pairs of
inputs and the corresponding outputs of tables (xi, F

(r)
j (xi)), i ∈ {0, 1, . . . , q−1},

j ∈ {0, 1, . . . , t − 1} and r ∈ {1, 2, . . . , R}.
Definition 4 (Chosen-Space (CS) Attack). The adversary obtains q pairs
of inputs and the corresponding outputs of tables (xi, F

(r)
j (xi)) for a series of

a priori chosen inputs xi, i ∈ {0, 1, . . . , q − 1}, j ∈ {0, 1, . . . , t − 1} and r ∈
{1, 2, . . . , R}.
Definition 5 (Adaptively-Chosen-Space (ACS) Attack). The adversary
obtains q pairs of inputs and the corresponding outputs of tables (xi, F

(r)
j (xi))

for a series of adaptively chosen inputs xi, i ∈ {0, 1, . . . , q − 1}, j ∈
{0, 1, . . . , t − 1} and r ∈ {1, 2, . . . , R}, namely he can choose xa after obtain-
ing (xa−1, F

(r)
j (xa−1)).

The known-space attack models the limited control of the adversary over
the platform, where the adversary passively gets a part of space from the envi-
ronments, e.g. with the aid of a trojan, malware, or a memory-leakage software
vulnerability. The model is applicable to memory-leakage resilient cryptography
where malware has complete control over the computer but can only send out a
bounded amount of information [17].

The chosen-space attack captures the stronger adversary who has the ability
to isolate any part of tables (space) with the knowledge of the memory layout,
but the amount of data and the timing of access to the implementation are
restricted due to the limited capacity of the communication channel and access
controlled environments.

Finally, the adaptively-chosen-space attack assumes an adversary who has
full access to the execution environment at any time by decompiler and
debugger tools, e.g. IDA Pro and IL DASM, which is corresponding to the

Towards Practical Whitebox Cryptography: Optimizing Efficiency 143

original whitebox adversary defined in [14] and the assumption of (λ, δ)
compressibility [16].

Previous weak and strong (M,Z)-space hardness are evaluated by compres-
sion attacks [9]. The assumption of these attacks is classified as the known-
table attack, i.e. weak KS-(M,Z)-space hardness and KS-(M,Z)-space hardness,
respectively. Thus, previous evaluation of space hardness in [9] can capture only
the weaker adversary than the standard whitebox adversary who has full access
to the execution environment.

4.5 Weak Space Hardness

We show bounds for the weak (M,Z)-space hardness of the target construc-
tion in known-, chosen- and adaptively-chosen space attacks. Our evaluation
assumes that the table decomposition is computationally infeasible as evaluated
in Sect. 4.1, and input values of each table in the cipher are uniformly distrib-
uted, which is a reasonable assumption for block ciphers. The evaluation of the
weak space hardness in the case where the adversary has a partial knowledge of
a plaintext is provided in SubSect. 4.6.

Known-Space Attack. First, we introduce the following lemma.

Lemma 1 (Inequality of Arithmetic and Geometric Means). For
arbitary n positive positive numbers x0, x1, . . . , xn−1, the inequality

n
√

x0 · x1 · · · xn−1 ≤ x0 + x1 + . . . , xn−1

n

holds, with equality if and only if x0 = x1, . . . ,= xn−1.

There are various proofs in the literature, and for example we refer to [13].
For known-space attacks, we have the following theorem:

Theorem 1. Given known space of size M , the probability that a randomly-
drawn plaintext can be computed is upper bounded by (M/T)tR.

Proof. Let the number of known entries of each table F
(r)
j be #F

(r)
j for j ∈

{0, 1, . . . , t − 1} and r ∈ {1, 2, . . . , r}. The probability that an input of a tables
F

(r)
j matches with known ones is estimated as (#F

(r)
j /2nin). Hence, a randomly-

drawn plaintext can be computed with the probability of

t−1∏

j=0

R∏

r=1

#F
(r)
j

2nin
=

(1
2nin

)tR t−1∏

j=0

R∏

r=1

#F
(r)
j .

Here the sum of the numbers of known inputs is expressed as∑t−1
j=0

∑R
r=1 #F

(r)
j . According to Lemma 1, we have

t−1∏

j=0

R∏

r=1

(#F
(r)
j) ≤

(∑t−1
j=0

∑Rt
r=1 #F

(r)
j

tR

)tR

.

144 A. Bogdanov et al.

Fig. 7. Weak (M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24
and 32 in adaptively-chosen attack.

Only if #F
(1)
0 = #F

(1)
1 = . . . = #F

(R)
t−1 , the equation holds. Here, M is estimated

as M = (
∑t−1

j=0

∑R
r=1 #F

(r)
j · nout)/tR bits.

Thus, we have

(1
2nin

)tR t−1∏

j=0

R∏

r=1

#F
(r)
j ≤

(1
2nin

)tR(∑t−1
j=0

∑Rt
r=1 #F

(r)
j

tR

)tR

≤
(1

2nin

)tR(M · 2nin

T

)tR

��

From Theorem 1, we obtain weak KS-(M,− log2((M/T)tR))-space hardness,
i.e. given any known space of size M , it is infeasible to encrypt a randomly-drawn
plaintext with the probability larger than (M/T)tR. Figure 6 shows the relation
between M and Z in terms of weak KS-(M,Z) space hardness of SPACE-8, 16, 24
and 32 and SPNbox-8, 16, 24 and 32. For example, in SPNbox-16, given space of
size M = T/4, the success probability is upper bounded by 2−160 (= (2−2)8·10)
(Fig. 6).

Chosen-Space Attack. Due to the randomly-drawn plaintext, inputs of tables
are unpredictable in advance even in the chosen-table attack. Thus, the chosen-
space attack has no advantage over the known-space attack. We obtain weak
CS-(M,− log2((M/T)tR))-space hardness from Theorem 1.

Adaptive-Space Attack. The adversary is able to encrypt any plaintext by
adaptively accessing the tables and computing round functions one by one. Thus
he can prepare a set of pairs of plaintexts and the corresponding ciphertexts
before a target plaintext is given. If the target plaintext is included in the set of
prepared pairs, the corresponding ciphertext is obtained with the probability one.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 145

Let us estimate how large space is necessary to compute N plaintexts in
advance. In the encryptions of N plaintexts, it requires N · t · R table accesses,
and each table function F

(r)
j has N accesses. We provide the following Lemma.

Lemma 2. For q table accesses, the expected value of the number of used entries
in the table is estimated as (1 − ((2nin − 1)/2nin)q) · 2nin .

Proof. An i-th entry of the table is used during q table accesses with the proba-
bility of (1 − ((2nin − 1)/2nin)q). There are 2nin entries in the table. ��

Here, we define (2nin −1)/2nin as ein. Using Lemma 2, we obtain Theorem 2.

Theorem 2. Given adaptively-chosen space of size M , the probability that a
randomly-drawn plaintext can be computed is upper bounded by N · 2−128 + (1 −
N · 2−128)(M/T)tR, where N =
logein

(1 − M/T)/tR�.
Proof. According to Lemma 2, in order to compute N pairs of plaintexts and
the corresponding ciphertexts, it requires (1 − (ein)N ·tR) · 2nin · nout = (1 −
(ein)N ·tR) · T -bit space. In the other words, adaptively-chosen space of size M
enables to compute N(=
logein

(1 − M/T)/tR�) pairs of plaintexts and the
corresponding ciphertexts. Then, the randomly-drawn plaintext is included in a
set of the prepared pairs with probability of 2−128+N . Otherwise, given space of
size M , the probability that the randomly-drawn plaintext can be computed is
upper-bounded by (M/T)tR from Theorem 1. ��

From Theorem 2, we obtain weak ACS-(M , − log2(N · 2−128 + (1 − N ·
2−128)(M/T)tR)-space hardness. For example, in SPNbox-16, given M = 0.46 ·T
space, the success probability is upper bounded by 2−88.4 (= 9 · 2−128 + (1 − 9 ·
2−128) · (0.465)8·10) (Fig. 8).

Fig. 8. Strong KS-(M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16,
24 and 32 in known/chosen space attacks

146 A. Bogdanov et al.

4.6 On (Partial) Target Plaintext for Weak Space Hardness

So far we assume that a plaintext is randomly drawn. However, the adversary
might have the (partial) knowledge of a plaintext, e.g. the header of a file and
the format-fixed encryption cases.

Let us estimate the security when the adversary has z-bit (z ≤ n) informa-
tion about the given plaintext in advance. In the known-space attack, since the
adversary is not able to choose the entries of tables, the advantage in this setting
is same as that in the randomly-drawn plaintext setting. In the chosen-space set-
ting, the adversary is able to know inputs of some tables in advance. If the inputs
of tables in first y rounds is known, it is weak CS-(X,− log2((M/T)t(R−y)))-space
hardness, where y depends on the z and constructions. In the adaptively-chosen
space setting, since the plaintext space is reduced to 2128−z, we have ACS-
(M , − log2(N · 2−128+z + (1 − N · 2−128+z)(M/T)tR)-space hardness.

4.7 Strong Space Hardness

Next, we show bounds for the strong (M,Z)-space hardness in known-, chosen-
and adaptively-chosen space attacks.

Known- and Chosen-Space Attack. To begin with, we give the following
lemma.

Lemma 3. Given any space of size M , the expected number of the computable
pairs is 2n · (M/T)tR.

Proof. According to Theorem 1, given space of size M , a randomly-drawn plain-
text can be computed with the probability (M/T)tR or less. It holds in any set
of known/chosen-space of size M . Here, the entire space of the plaintext is 2n. ��

From Lemma 3, the probability to find a valid pairs with known/chosen space
of size M is information-theoretically upper bounded by 2n · (M/T)tR. We prove
strong KP- and CP- (M , − log2(2n · (M/T)tR))-space hardness. For example, in
SPNbox-16, given M = T/4 space, the success probability is upper bounded by
2−32 (= 2128 · (1/4)8·10).

Adaptively-Chosen Space Attack. In this setting, the adversary has full
access to execution environment at any time. Thus, he easily obtain a valid
pair of plaintext and ciphertext by adaptively accessing inputs and outputs of
each table tR times. Therefore, we can not ensure strong space hardness in this
setting.

4.8 Tradeoffs Between Strong Space Hardness and Time
Complexity

In the previous subsection, we have obtained the upper bound of the probability
to find a valid pair of plaintexts and ciphertexts given known- and chosen-space

Towards Practical Whitebox Cryptography: Optimizing Efficiency 147

Fig. 9. Three types of attacks for strong space hardness

of size M . Here, we try to figure out how much time complexity is necessary to
find the pair and reveal the tradeoff between the success probability and time
complexity. In the multi-table setting, we assume #F

(1)
0 = #F

(1)
1 = . . . = #F

(R)
t−1

which is the optimal case with respect to the success probability. We consider
following three types of attacks as shown in Fig. 9.

Brute Force Attack. The adversary simply tries to encrypt 2b plaintexts with
the given space of size M . The time complexity is estimated as 2b for b ≤ n and
the success probability is 2b · (M/T)tR. If b = n, the probability becomes the
upper bounded value of Lemma 3.

Start-from-the-Middle Attack. Assume that if input values of all tables in
consecutive h rounds are chosen, then the n-bit internal state are determined.
We call such states in r rounds start states. We prepare a start state, and then
check whether a pair of the plaintext and the ciphertext is computed from the
start state through the remaining (R−h) rounds with the given space of size M .
The number of possible state states is estimated (#F)th = 2n · (#F/2nin)th =
2n · (M/T)th. The time complexity is estimated as 2b (≤ 2n · (M/T)th) and the
success probability is 2b · (M/T)t(R−h).

Meet-in-the-Middle Attack. We start with two start states in the different
locations, and mount the meet-in-the-middle approach. In particular, we check
whether two states match in the middle rounds, and a pair of the plaintext and
the ciphertext is computed from the start states through the (R−2h) rounds. The
number of possible start states is estimated 2 · (#F)th = 2(n+1) · (#F/2nin)th =
2n+1 · (M/T)th. The time complexity is estimated as 2b (≤ 2n · (M/T)th) and
the success probability is 22b−n · (M/T)t(R−2h).

148 A. Bogdanov et al.

Fig. 10. Tradeoffs between time complexity and strong (T/4, Z)-space hardness of
SPNbox-16 in known/chosen space attacks

Table 1. Summary of bounds for weak/strong space hardness against known-, chosen-
and adaptively-chosen space attacks

Known/Chosen-space attack

Weak space hardness (M,− log2((M/T)tR))

Strong space hardness (M , − log2(2
n · (M/T)tR))

Adaptively-chosen space attack

Weak space hardness (M , − log2(2
−128+N + (M/T)tR)

N = �logein(1 − M/T)/tR�, where ein = (2nin − 1)/2nin

Evaluation. Fig. 10 shows the trade off between time complexity and strong
KS-(T/4, Z)-space hardness of SPNbox-16. As mentioned in Sect. 4.7, given T/4
space, the success probability is upper bounded by 2−32 (= 2128 · (1/4)8·10). In
our evaluations, in order to achieve it, it requires at most time complexity of
2112(= 2128 · (1/4)8·1) by the meet-in-the-middle approach and the start-from-
the-middle approach. If adversary’s time complexity is restricted, the success
probability decreases depending on the time complexity. If time complexity is
280 or 264, the probability is estimated as 2−64 (=280·2−144) or 2−80 (=264·2−144)
by the start-from-the-middle attack.

4.9 Summary of Space Hardness

Table 1 provides a summary of weak and strong space hardness of the target
construction in known-, chosen- and adaptively-chosen space attacks. It shows
the upper bounds of the success probability against each attack, given space of
size M ; or, in other words, lower bounds for the required space with respect to
the success probability of 2−Z .

Towards Practical Whitebox Cryptography: Optimizing Efficiency 149

Table 2 shows the lower bounds of the required space with respect to success
probabilities of 2−64 and 2−128 of SPACE-8,-16,-24 and -32 and SPNbox-8,-16,-
24 and -32. These results update the evaluations of SPACE-8,-16,-24 and -32 as
weak KP-(T/20.44, 128), (T/2, 128), (T/2, 128) and (T/2, 128)-space hardness,
while previous results claim weak KP-(T/4, 128)-space hardness [9]. All variants
SPNbox-8,-16,-24 and -32 achieve weak (T/4, 64)-space hardness in known, cho-
sen and adaptively-chosen space attacks, which is a reasonable security level for
practical applications. Also, all variants achieve strong (T/2.3, 64) to (T/32, 64)-
space hardness in known/chosen space attacks.

4.10 Advanced Side Channel Attacks

Differential Computation Analysis. Bos et al. proposed a new class of side
channel attacks called differential computation analysis [11]. This attack exploits
memory access patterns during the software execution of whitebox AES [15,
24,40] with the aid of a binary instrumentation framework such as PIN and
Valgrind. Since the software execution traces contain time demarcated physical
addresses of memory locations being read/written into, they essentially leak the
values of the inputs to the various tables accessed, and can be used as side-
channel information to extract the key.

This attack basically utilizes the fact that each table depends on only a frac-
tion of the key, e.g. 8 and 16 bits of key [15,24,40]. A small part of the key is
efficiently extracted using side-channel leakages. On the other hand, any table
of SPNbox contains full 128-bit key information. Thus, even if the adversary can
fully monitor the memory access patterns for the target key-dependent table,
there are 2128 possible candidates of corresponding memory access patterns for

Table 2. Comparison of SPACE, SPNbox: Lower bounds of the required space with
respected to the success probability 2−64 and 2−128

cipher T Weak Space hardness Strong Space hardness

Z = 64 Z = 128 Z = 64 Z = 128

KS/CS ACS KS/CS ACS KS/CS KS/CS

SPACE-8 [9] 3.84 KB T/20.22 T/20.22 T/20.44 T/20.44 T/20.64 T/20.86

SPACE-16 [9] 918 KB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPACE-24 [9] 218 MB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPACE-32 [9] 51.5 GB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPNbox-8 256 B T/20.40 T/20.40 T/20.80 T/20.80 T/21.20 T/21.60

SPNbox-16 132 KB T/20.81 T/20.81 T/21.61 - T/22.40 T/23.20

SPNbox-24 50.3 MB T/21.28 T/21.28 T/22.57 - T/23.68 T/24.96

SPNbox-32 17.2 GB T/21.60 T/21.60 T/23.20 - T/24.80 T/26.40

KS: Known-space attack
CP : Chosen-space attack
ACS: Adaptive-chosen-space Attack

150 A. Bogdanov et al.

each key value. Therefore, a differential computational attack on SPNbox is com-
putationally infeasible.

Differential Fault Attacks. Sanfelix et al. propose a differential fault attack
on whitebox AES and DES [35]. This attack modifies the specific byte position
of internal states by injecting a fault. In the case of the AES, the fault injection
targets the MixColumn operation in the 9-th round.

The tables of SPNbox compose of small block ciphers, and the internals of the
small block ciphers are inaccessible in whitebox setting. Thus, any fault injection
attack reduces to a differential attack on a small block cipher in the blackbox
setting. Since the underlying cipher is secure against a differential attack in the
blackbox setting as estimated in Sect. 3.2, SPNbox is secure against differential
fault attacks.

5 Efficient Software Implementations

5.1 Setting

In this section, we discuss implementation characteristics of the SPNbox family
of block ciphers. We also present experimental measurements based on our opti-
mised high-performance software implementations and compare them to equiva-
lent instances of the SPACE family of whitebox ciphers proposed at CCS 2015 [9].
Altogether, this provides a comprehensive implementation study of all proposed
variants both in the blackbox and the whitebox setting. As target platforms
for the server-side, we chose the recent Skylake generation of Intel microproces-
sors which support the AES-NI instruction set [19] and SSE instructions up to
AVX2. As a mobile platform, we use the ARMv8 (AArch64) microarchitecture
with NEON instructions.

For the blackbox implementations, we specifically focus on constant-time
implementations without key-dependent table lookups on recent Intel platforms.
Whenever possible, we realise the small block ciphers with AES-NI instructions.

For the whitebox implementations, both on Intel and ARM, the small block
ciphers are implemented as table lookups, while the linear mixing of the table
lookups is implemented using AVX2 (Intel) and NEON (ARMv8) instructions.

5.2 Implementation Characteristics of SPNbox

The SPNbox ciphers can efficiently utilize the parallelism offered by both stan-
dard SIMD and the AES instructions on contemporary microprocessors. With
block sizes of n = 128 or n = 120 bit, one block fits naturally in the 128/256-bit
SSE/AVX registers on Intel, or the 128-bit NEON registers on ARMv8. Addi-
tionally, the parallel and independent application of the S-boxes Snin

, realised by
the small internal block ciphers, offers opportunities for exploiting parallelism,
both inside one block and across blocks of a longer message.

Towards Practical Whitebox Cryptography: Optimizing Efficiency 151

In the Black Box. In the blackbox setting on Intel platforms, the small block
ciphers are implemented in a round-based fashion using the AES-NI instructions
for the individual transformations. The composition of MCnin

◦SB can be realised
by first using the pshufb instruction reordering the bytes of the state equiva-
lent to inverse ShiftRows, followed by an aesenc instruction for one full AES
round. For nin = 32, this is already sufficient. For nin = 24, 16, we note that by
construction, the matrices A24 and A16 are submatrices of A32 such that their
multiplication with the state corresponds to (x, y, z, 0)×A32 and (x, y, 0, 0)×A32,
respectively (the last 8 resp. 16 bits are ignored). We can therefore realize the
round function of the small block ciphers by XOR-ing the values (0, 0, 0, 52x) or
(0, 0, 52x, 52x) before applying inverse ShiftRows and the AES round, with 52x

being the inverse of 0 through the AES S-box. This allows the efficient re-use of
Intel’s AES-NI instructions also for smaller block sizes. For nin = 8, the linear
mixing step is the identity mapping, so can be omitted.

For the implementation of the linear layer θ in the outer rounds, it is ben-
eficial to re-organise the internal state such that the i-th S-boxes of multiple
message blocks are collected in one 128-bit register. This allows an efficient par-
allel execution of the finite field arithmetic, which vastly outweighs the overhead
imposed by the input and output conversion to and from this format.

Additionally, on the Skylake platform, the AES round function has a latency
of 4 cycles with a throughput of 1. Altogether, this implies that in order to both
fully utilize the AES-NI instruction pipeline and fill the SSE/AVX registers for
SIMD operations, our implementations for nin = 32, 24, 16, 8 process 8/4/8/16
consecutive blocks at a time, respectively (which is possible in any parallelizable
mode, in particular ECB or CTR). By reordering the round keys accordingly,
the implementation of the internal block ciphers can remain unchanged.

Efficient and Constant-Time Parallel Finite Field Arithmetic. Since we explic-
itly aim for constant-time implementations in the black box, the conditional
polynomial reduction has to be carried out without branching. For this, we
employ an optimized variant of the technique introduced in [25], which allows a
simultaneous doubling of 4 elements of GF(232) and GF(224), or 8 elements of
GF(216) or 16 elements of GF(28) with just four instructions with a latency of
3 and a throughput of 1.

The in-place multiplication by two of register %xmm0 can be implemented in
constant-time as follows:

vpcmpgtd MSB4_M, %xmm0, %xmm1
vpslld $1, %xmm0, %xmm0
vpand REDPOLY4_M, %xmm1, %xmm1
vpxor %xmm0, %xmm1, %xmm0

with MSB4 M containing four 32-bit copies of the value 7fffffffx, and
REDPOLY4 M containing four 32-bit copies of the reduction polynomial, i.e. 8dx.

152 A. Bogdanov et al.

In the White Box. In the whitebox setting, the small block ciphers Snin

are implemented as lookup tables of size nin · 2nin bytes. The linear layer θ of
SPNbox is then implemented on top of these table lookups using AVX (Intel) or
NEON instructions (ARMv8).

Again, we found it beneficial to re-organize the state to collect the i-th S-
boxes of consecutive blocks in one SSE/NEON register for a SIMD execution
of the finite field arithmetic. Compared to SPACE, we have 4,5,8 and 16 par-
allel independent table lookups in SPNbox-32,24,16 and 8, respectively. Since
memory-XMM register transfers have a throughput of 0.5 on Skylake, two of
these independent table lookups can be scheduled per cycle on Intel platforms.
This has to be contrasted to the situation in the serial round function of SPACE,
where no simultaneous table lookups were possible.

On ARM, the smaller caches and slower memory interface imply that lookups
in larger tables tend to be relatively more expensive than on Intel platforms.

5.3 Performance Measurements

We provide performance measurements for SPNbox and SPACE in both the black-
box and the whitebox setting for the encryption of messages of length 2048 bytes.
For the Intel platform, all measurements were taken on a single core of an Intel
Core i7-6700 CPU at 3400 MHz with Turbo Boost and hyperthreading disabled,
and averaged over 100000 repetitions, processing one message at a time. For the
ARMv8 platform, a single Cortex-A57 core at 2100 MHz of a Samsung Exynos
7420 CPU as shipped in a Samsung Galaxy S6 mobile phone was used.

Our findings are summarised in Table 3 and Fig. 11 for the blackbox setting;
and Table 4 for the whitebox setting. The whitebox performance is further illus-
trated in Fig. 12 (grouped by table size) and Fig. 13 (grouped by platform). All
performance figures are given in cycles per byte (cpb).

Fig. 11. Constant-time blackbox performance of SPACE and SPNbox on Intel Skylake
platform for various table sizes in cycles per byte (lower is better).

Towards Practical Whitebox Cryptography: Optimizing Efficiency 153

Fig. 12. Whitebox performance of SPACE and SPNbox on Intel Skylake and ARMv8
platforms for various table sizes in cycles per byte (lower is better).

Fig. 13. Whitebox performance of SPACE and SPNbox on Intel Skylake and ARMv8
platforms for various table sizes in cycles per byte (lower is better).

Discussion. The blackbox constant-time implementation results in Table 3 indi-
cate that for each variant with comparable space hardness, the SPNbox ciphers
offer significantly increased performance compared to SPACE. Somewhat inter-
estingly, the largest improvement (factor 4.5 speed-up) is obtained for the 32-bit
variant offering the highest level of space hardness. This is due to inherent con-
struction differences: While SPACE always uses the full AES transform and its
performance is only affected by the number of Feistel rounds, SPNbox needs more
and more rounds in its internal block ciphers to ensure sufficient key mixing when
the block sizes becomes smaller. Additionally, the use of the AES round trans-
formation implies increasing overhead with smaller block sizes, since increasing
parts of the state are unused. For nin = 8, the decrease in performance is caused
by the heavy 16 × 16 MDS diffusion layer over GF(28).

154 A. Bogdanov et al.

Table 3. Software performance of the SPNbox and SPACE cipher families on the Intel
Skylake platform in the blackbox setting. Numbers are given in cycles per byte (cpb).

Algorithm Rounds (outer) Rounds (inner) Performance [cpb]

SPNbox-32 10 16 15.09

SPNbox-24 10 20 40.48

SPNbox-16 10 32 39.98

SPNbox-8 10 64 46.49

SPACE-32 128 10 101.02

SPACE-24 128 10 107.01

SPACE-16 128 10 101.21

SPACE-8 300 10 248.31

Table 4. Software performance of the SPNbox and SPACE cipher families in the white-
box setting on Intel Skylake and ARMv8 platforms. Numbers are given in cycles per
byte (cpb).

Algorithm Rounds (outer) Table size Performance Intel [cpb] ARM

SPNbox-32 10 17.2 GB 184.56 —

SPNbox-24 10 50.3 MB 33.48 479.38

SPNbox-16 10 132 KB 17.59 27.37

SPNbox-8 10 256 B 22.93 42.66

SPACE-32 128 51.5 GB 5535.01 —

SPACE-24 128 218 MB 354.86 2384.74

SPACE-16 128 918 KB 305.11 377.51

SPACE-8 300 3.84 KB 203.19 409.57

Regarding the performance of SPACE, our results largely confirm the esti-
mation of R cpb for R rounds on an AES-NI platform provided in [9].

Also in the whitebox setting, SPNbox significantly outperforms SPACE for all
variants, on both Intel and ARM platforms. One observes that any increases in
pure lookup performance due to smaller table size is increasingly compensated
for by the heavier linear MDS layers. The surprisingly good performance of
SPNbox-32 can to some extent be attributed to the fact that our test platform
had 16 GB of memory available.

Comparing the blackbox to the whitebox performances of each variant of
SPNbox, it becomes apparent that from nin = 24 and smaller, table-based imple-
mentations outperform round-based implementations. The latter, however, offer
constant timing behaviour. Further optimizations of the constant-time imple-
mentations also remain possible.

Summarising, the constant-time blackbox performance of the proposed SPN-
box ciphers outperforms the SPACE variants by factors of 2.5 to 6.5. In the

Towards Practical Whitebox Cryptography: Optimizing Efficiency 155

whitebox setting, the new SPNbox ciphers offer performance improvements by
factors of 8 to 18 (on Intel) and 5 to 13 (on ARM) over SPACE, as illustrated in
Figs. 12 and 13.

6 Conclusion and Outlook

In this paper, we proposed SPNbox, a new family of space-hard block ciphers,
which significantly improves upon the SPACE ciphers. Employing an SPN-type
design with efficient constant-time small block ciphers, the resulting paralleliza-
tion opportunities allow significantly faster implementations both in the black
box and in the white box. Instances of SPNbox achieve speed-ups of up to 6.5
times in the black box and up to 18 times in the whitebox setting, while offer-
ing comparable space hardness. Moreover, we formalized the security models of
space hardness which are classified with respect to the adversary’s abilities. We
proved security bounds of space hardness in all adversarial models. We then
applied this analysis to SPNbox, showing that SPNbox offers sufficiently high
levels of space hardness in each adversary model.

Our work also raises a couple of open research questions and directions.
Concerning the design of the small internal block ciphers, there seems to be
an efficiency bottleneck regarding the key mixing: The smaller the block size,
the more rounds are needed to avoid meet-in-the-middle attacks, which limits
their efficiency. This raises the question of how to build more efficient block
ciphers with very small block lengths and a relatively large key. Especially, fast
key mixing and efficient key scheduling functions for small block ciphers are
essentially unknown.

A possible solution for this efficiency problem is to use table lookups for
secret S-boxes. This however introduces side-channel issues with key-dependent
lookups, motivating further research into how to construct secret S-boxes of
various sizes with efficient constant-time implementations.

References

1. Adobe Systems Incorporated. Adobe Primetime Technical Primer for Operators
(2014)

2. Akamai Technologies. Securing Cloud-Based Workflows for Premium Content
(2014)

3. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2009)

4. Barreto, P., Rijmen, V.: The Anubis Block Cipher. Submission to the NESSIE
Project (2000)

5. Barreto, P., Rijmen, V.: The Khazad Legacy-level Block Cipher. Submission to the
NESSIE Project (2000)

6. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 16

http://dx.doi.org/10.1007/978-3-540-30564-4_16

156 A. Bogdanov et al.

7. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 4

8. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptology 23(4),
505–518 (2010)

9. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1058–1069. ACM (2015)

10. Borghoff, J., Knudsen, L.R., Leander, G., Thomsen, S.S.: Slender-set differential
cryptanalysis. J. Cryptology 26(1), 11–38 (2013)

11. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2 11

12. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptology ePrint Archive 2006:468 (2006)

13. Chong, K.-M.: The arithmetic mean-geometric mean inequality: a new proof. Math.
Mag. 49(2), 87–88 (1976)

14. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: A white-box DES implementation
for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp.
1–15. Springer, Heidelberg (2003). doi:10.1007/978-3-540-44993-5 1

15. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an
AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595,
pp. 250–270. Springer, Heidelberg (2003). doi:10.1007/3-540-36492-7 17

16. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 13

17. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006). doi:10.1007/11681878 11

18. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: 24th USENIX Security Symposium, USENIX
Security 15, pp. 897–912. USENIX Association (2015)

19. Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel
white paper, September 2012

20. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: Proceedings of the 17th USENIX Security Sympo-
sium, pp. 45–60. USENIX Association (2008)

21. Hawkes, P., O’Connor, L.: XOR and Non-XOR differential probabilities. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 272–285. Springer, Heidelberg
(1999). doi:10.1007/3-540-48910-X 19

22. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$a: A shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: 2015
IEEE Symposium on Security and Privacy, SP 2015, pp. 591–604. IEEE Computer
Society (2015)

http://dx.doi.org/10.1007/978-3-662-45611-8_4
http://dx.doi.org/10.1007/978-3-662-53140-2_11
http://dx.doi.org/10.1007/978-3-540-44993-5_1
http://dx.doi.org/10.1007/3-540-36492-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/11681878_11
http://dx.doi.org/10.1007/3-540-48910-X_19

Towards Practical Whitebox Cryptography: Optimizing Efficiency 157

23. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID
2014. LNCS, vol. 8688, pp. 299–319. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11379-1 15

24. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24209-0 19

25. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04138-9 1

26. Lepoint, T., Rivain, M., Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 14

27. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box DES. In: International Symposium on Information Technology: Cod-
ing and Computing (ITCC 2005), vol. 1, pp. 679–684 (2005)

28. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
3–27. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 1

29. Workgroup Mobey, H.C.E., Forum. The Host Card Emulation in Payments:
Options for Financial Institutions (2014)

30. Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the xiao – lai white-box AES
implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
34–49. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6 3

31. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-
box AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT
2010. LNCS, vol. 6498, pp. 292–310. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17401-8 21

32. National Institute of Standards and Technology. Recommendation for Key Deriva-
tion Using Pseudorandom Functions. NIST Special Publication (SP) 800–108
(2009)

33. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. Federal Information Processing
Standards Publication 202 (2015)

34. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
2009 ACM Conference on Computer and Communications Security, CCS 2009, pp.
199–212. ACM (2009)

35. Sanfelix, E., Mune, C., de Haas, J.: Unboxing the white-box practical attacks
against obfuscated ciphers. In: Black Hat Europe 2015 (2015)

36. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48116-5 23

37. Alliance, S.C., Paper, W.: Host Card Emulation (HCE) 101 (2014)
38. Tiessen, T., Knudsen, L.R., Kölbl, S., Lauridsen, M.M.: Security of the AES with

a secret S-Box. In: Leander, G. (ed.) Fast Software Encryption. LNCS, vol. 9054,
pp. 175–189. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 9

http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1007/978-3-642-24209-0_19
http://dx.doi.org/10.1007/978-3-642-04138-9_1
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-48800-3_1
http://dx.doi.org/10.1007/978-3-642-35999-6_3
http://dx.doi.org/10.1007/978-3-642-17401-8_21
http://dx.doi.org/10.1007/978-3-642-17401-8_21
http://dx.doi.org/10.1007/978-3-662-48116-5_23
http://dx.doi.org/10.1007/978-3-662-48116-5_9

158 A. Bogdanov et al.

39. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-77360-3 17

40. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications (CSA2009) (2009)

41. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Security Symposium, pp.
719–732. USENIX Association (2014)

http://dx.doi.org/10.1007/978-3-540-77360-3_17

	Towards Practical Whitebox Cryptography: Optimizing Efficiency and Space Hardness
	1 Introduction
	1.1 Black Box vs White Box
	1.2 Whitebox Cryptography in the Wild
	1.3 Existing Whitebox Constructions
	1.4 Our Contributions

	2 SPNbox: Efficient Space-Hard Block Ciphers
	2.1 Design Choices
	2.2 Specification
	2.3 SPNbox vs ASASA

	3 Security in the Black Box: Analysis as a Block Cipher
	3.1 General Construction
	3.2 The Underlying Small Block Ciphers
	3.3 Cache Timing Attack

	4 Security in the White Box: Analysis of Space Hardness
	4.1 Key Extraction and Table Decomposition Attacks
	4.2 Existing Notions of Space Hardness
	4.3 Target Construction
	4.4 Adversary Models of Space Hardness
	4.5 Weak Space Hardness
	4.6 On (Partial) Target Plaintext for Weak Space Hardness
	4.7 Strong Space Hardness
	4.8 Tradeoffs Between Strong Space Hardness and Time Complexity
	4.9 Summary of Space Hardness
	4.10 Advanced Side Channel Attacks

	5 Efficient Software Implementations
	5.1 Setting
	5.2 Implementation Characteristics of SPNbox
	5.3 Performance Measurements

	6 Conclusion and Outlook
	References

