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Abstract. We draw a new connection between Coppersmith’s method
for finding small solutions to polynomial congruences modulo inte-
gers and the capacity theory of adelic subsets of algebraic curves.
Coppersmith’s method uses lattice basis reduction to construct an aux-
iliary polynomial that vanishes at the desired solutions. Capacity theory
provides a toolkit for proving when polynomials with certain bound-
edness properties do or do not exist. Using capacity theory, we prove
that Coppersmith’s bound for univariate polynomials is optimal in the
sense that there are no auxiliary polynomials of the type he used that
would allow finding roots of size N1/d+ε for any monic degree-d poly-
nomial modulo N . Our results rule out the existence of polynomials of
any degree and do not rely on lattice algorithms, thus eliminating the
possibility of improvements for special cases or even superpolynomial-
time improvements to Coppersmith’s bound. We extend this result to
constructions of auxiliary polynomials using binomial polynomials, and
rule out the existence of any auxiliary polynomial of this form that would
find solutions of size N1/d+ε unless N has a very small prime factor.

Keywords: Coppersmith’s method · Lattices · Polynomial
congruences · Capacity theory · RSA

1 Introduction

Coppersmith’s method [Cop97,Cop01] is a celebrated technique in public-key
cryptanalysis for finding small roots of polynomial equations modulo integers.
In the simplest case, one is given a degree-d monic polynomial f(x) with integer
coefficients, and one wishes to find the integers r modulo a given integer N for
which f(r) ≡ 0 mod N . When N is prime, this problem can be efficiently solved
in polynomial time, but for composite N of unknown factorization, no efficient
method is known in general. In fact, such an algorithm would immediately break
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the RSA cryptosystem, by allowing one to decrypt ciphertexts c by finding roots
of the polynomial f(x) = xe − c mod N .

While it appears intractable to solve this problem in polynomial time,
Coppersmith showed that one can efficiently find all small integers r such that
f(r) ≡ 0 mod N . More precisely, he proved the following result in [Cop97]:

Theorem 1 (Coppersmith 1996). Suppose one is given a modulus N and a
monic polynomial f(x) = xd + fd−1x

d−1 + · · · + f1x + f0 in Z[x]. One can find
all r ∈ Z such that

|r| ≤ N1/d and f(r) ≡ 0 mod N (1)

in polynomial time in log(N) +
∑

i log |fi|.
The algorithm he developed to prove this result has applications across

public-key cryptography, including cryptanalysis of low public exponent RSA
with fixed-pattern or affine padding [Cop97], the security proof of RSA-OAEP
[Sho01], and showing that the least significant bits of RSA are hardcore [SPW06].
We discuss these applications in more detail in Sect. 2.3. If the exponent 1/d in
the bound in Eq. 1 could be increased, it would have immediate practical impact
on the security of a variety of different cryptosystems.

In followup work, [Cop01, Sect. 4] Coppersmith speculates about possible
improvements of this exponent 1/d. The main conclusion of [Cop01, Sect. 4] is
that “We have tried to abuse this method to obtain information that should
otherwise be hard to get, and we always fail.” We discuss these obstructions in
more detail in Sect. 2.2.

Later, the hardness of finding roots of f(x) of size N1/d+ε for ε > 0 was
formalized as a concrete cryptographic hardness assumption [SPW06].

Coppersmith’s proof of Theorem1 relies on constructing a polynomial h(x)
such that any small integer r satisfying f(r) ≡ 0 mod N is a root of h(x) over
the integers. He finds such an auxiliary polynomial h(x) by constructing a basis
for a lattice of polynomials, and then by using the Lenstra-Lenstra-Lovasz lattice
basis reduction algorithm [LLL82] to find a “small” polynomial in this lattice.
The smallness condition ensures that any small integer r satisfying f(r) ≡ 0
mod N must be a root of h(x). The algorithm then checks which rational roots
r of h(x) have the desired properties.

Our Results. In this paper, our main result is that one cannot increase the expo-
nent 1/d in Coppersmith’s theorem by using auxiliary polynomials of the kind
he considers. We give a formal proof that there do not exist polynomials of the
kind required to extend Coppersmith’s theorem by the same method, regardless
of the polynomial p(x), the modulus N , and the method used to find them. This
is a much more general statement than previous partial results along these lines,
and in particular it applies to the settings of most interest to cryptographers.
This eliminates possible improvements to the method using improvements in
lattice algorithms or shortest vector bounds. We obtain our results by drawing
a new connection between this family of cryptographic techniques and results
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from the capacity theory of adelic subsets of algebraic curves. We will use funda-
mental results of Cantor [Can80] and Rumely [Rum89,Rum13] about capacity
theory to prove several results about such polynomials.

In particular, we will prove in Theorem 6 a stronger form of the following
result. This result shows that there are no polynomials of the type used by
Coppersmith that could lead to an improvement of the bound in (1) from N1/d

to N1/d+ε for any ε > 0.

Theorem 2 (Optimality of Coppersmith’s Theorem). Let f be a monic
polynomial of degree d. Suppose ε > 0. There does not exist a non-zero polynomial
h(x) ∈ Q[x] of the form

h(x) =
∑

i,j≥0

ai,j xi (f(x)/N)j (2)

with ai,j ∈ Z such that |h(z)| < 1 for all z in the complex disk {z ∈ C : |z| ≤
N (1/d)+ε}. Furthermore, if ε > ln(2)/ ln(N) there is no such h(x) such that
|h(z)| < 1 for all z in the real interval [−N1/d+ε, N1/d+ε].

Note that in order for Coppersmith’s method to run in polynomial time, h(x)
should have degree bounded by a polynomial in ln(N). Theorem 2 says that when
ε > 0 there are no polynomials of any degree satisfying the stated bounds. We
can thus eliminate the possibility of an improvement to this method with even
superpolynomial running time.

In [Cop01], Coppersmith already noted that it did not appear possible to
improve the exponent 1/d in his result by searching for roots in the real interval
[−N1/d+ε, N1/d+ε] instead of in the complex disk of radius N1/d+ε. The last
statement in Theorem 2 quantifies this observation, since ln(2)/ ln(N) → 0 as
N → ∞.

Coppersmith also notes that since the binomial polynomials

bi(x) = x · (x − 1) · · · (x − i + 1)/i!

take integral values on integers, one could replace xi in (2) by bi(x) and
(f(x)/N)j by bj(f(x)/N). Coppersmith observed (backed up by experiments)
that this leads to a small improvement on the size of the root that can be found,
and a speedup for practical computations. The improvement is proportional to
the degree of the auxiliary polynomial h(x) that is constructed, and is thus
limited for a polynomial-time algorithm.

We show that the exponent 1/d in Coppersmith’s theorem still cannot be
improved using binomial polynomials, but for a different reason. Our results
come in two parts. First, we show that the exact analogue of Theorem 2 is false in
the case of integral combinations of binomial polynomials. In fact, there are such
combinations that have all the properties required in the proof of Coppersmith’s
theorem. The problem is that these polynomials have very large degree, and in
fact, they vanish at every small integer, not just the solutions of the congruence.
This is formalized in the following theorem, which is a simplified version of
Theorem 9.
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Theorem 3 (Existence of Binomial Auxiliary Polynomials). Suppose δ
is any positive real number. For all sufficiently large integers N there is a non-
zero polynomial of the form h(x) =

∑
i ai bi(x) with ai ∈ Z such that |h(z)| < 1

for all z in the complex disk {z ∈ C : |z| ≤ N δ}.
Second, we show that the existence of these polynomials still does not permit

cryptographically useful improvements to Coppersmith’s bound beyond N1/d.
This is because if one is able to use binomial polynomials of small degree to
obtain such an improvement, then the modulus N must have a small prime
factor. In that case, it would have been more efficient to factor N and use the
factorization to find the roots. More precisely, we will show in Theorem 11 a
stronger form of the following result:

Theorem 4 (Negative Coppersmith Theorem for Binomial Polynomi-
als). Let f be a monic polynomial of degree d. Suppose ε > 0 and that M and N
are integers with 1.48774N ε ≥ M ≥ 319. If there is a non-zero polynomial h(x)
of the form

h(x) =
∑

0≤i,j≤M

ai,j bi(x) bj(f(x)/N) (3)

with ai,j ∈ Z such that |h(z)| < 1 for z in the complex disk {z ∈ C : |z| ≤
N1/d+ε}, then N must have a prime factor less than or equal to M . In particular,
this will be the case for all large N if we let M = ln(N)c for some fixed integer
c > 0.

Note that the integer M quantifies “smallness” in Theorem 4 in two ways.
First, it is a bound on the degree of the binomial polynomials that are allowed to
be used to create auxiliary polynomials. But then if a useful auxiliary polynomial
exists, then N must have a factor of size less than or equal to M . As a special
case of Theorem 4, if N = pq is an RSA modulus with two large equal sized
prime factors, then any auxiliary polynomial of the form in (3) that can find
roots of size N1/d+ε must involve binomial terms with i or j at least 1.48774N ε.

Note that Coppersmith’s theorem in its original form is not sensitive to
whether or not N has small prime factors. Theorem 4 shows that the existence of
useful auxiliary polynomials does depend on whether N has such small factors.

The paper is organized in the following way. In Sect. 2.1 we begin by recalling
Coppersmith’s algorithm for finding small solutions of polynomial congruences.
In Sect. 2.3 we recall some mathematical hardness assumptions and we discuss
their connection to the security of various cryptosystems and Coppersmith’s
algorithm. In Sect. 3 we review some basic notions from algebraic number the-
ory, and we recall some results of Cantor [Can80] and Rumely [Rum89,Rum13]
on which our work is based. At the end of Sect. 3 we prove Theorem 6, which
implies Theorem 2. We state and prove Theorems 9 and 11 in Sect. 4; these imply
Theorems 3 and 4. One of the goals of this paper is to provide a framework for
using capacity theory to show when these auxiliary polynomials do or do not
exist. We give an outline in Sect. 5 of how one proves these types of results. In
the conclusion we summarize the implications of our results and discuss possible
directions for future research.
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2 Background and Related Work

Given a polynomial f(x) = xd + fd−1x
d−1 + · · · + f1x + f0 ∈ Z[x] and a prime

p we can find solutions x ∈ Z to the equation

f(x) ≡ 0 mod p (4)

in randomized polynomial time using e.g. Berlekamp’s algorithm or the Cantor-
Zassenhaus algorithm [Ber67,CZ81]. While it is “easy” to find roots of f(x) in
the finite field Z/pZ and over Z as well, there is no known efficient method to
find roots of f(x) modulo N for large composite integers N unless one knows
the factorization of N .

2.1 Coppersmith’s Method

Although finding roots of a univariate polynomial, f(x), modulo N is difficult in
general, if f(x) has a “small” root, then this root can be found efficiently using
Coppersmith’s method [Cop97].

Coppersmith’s method for proving Theorem1 works as follows. We follow
the exposition in [Cop01], which incorporates simplifications due to Howgrave-
Graham [HG97]. Suppose ε > 0 and that f(x) has a root r ∈ Z with |r| ≤
N1/d−ε and f(r) ≡ 0 mod N . He considers the finite rank lattice L of rational
polynomials in Q[x] of the form

hij(x) =
∑

0≤i+dj<t

ai,j xi (f(x)/N)j

where t ≥ 0 is an integer parameter to be varied and all ai,j ∈ Z. Here L is
a finite rank lattice because the denominators of the coefficients of hij(x) are
bounded and hij(x) has degree bounded by t.

If we evaluate any polynomial hij ∈ L at a root r satisfying f(r) ≡ 0 mod N ,
hij(r) will be an integer.

Concretely, one picks a basis for a sublattice of L ∈ Q
t−1 by taking a suitable

set of polynomials {hij(x)}i,j and representing each polynomial by its coefficient
vector. Coppersmith’s method applies the LLL algorithm to this sublattice basis
to find a short vector representing a specific polynomial, hε(x) in L. He shows
that the fact that the vector of coefficients representing hε(x) is short implies
that |hε(x)| < 1 for all x ∈ C with |x| ≤ N1/d−ε, and that for sufficiently large t,
the LLL algorithm will find a short enough vector. Because hε(x) is an integral
combination of terms of the form xi(f(x)/N)j , this forces h(r) ∈ Z because
f(r)/N ∈ Z. But |r| ≤ N1/d−ε forces |hε(r)| < 1. Because 0 is the only integer
less than 1 in absolute value, we see hε(r) = 0. So r is among the zeros of hε(x),
and as discussed earlier, there is an efficient method to find the integer zeros of
a polynomial in Q[x]. One then lets ε → 0 and does a careful analysis of the
computational complexity of this method.

The bound in Theorem 1 arises from cleverly choosing a subset of the possible
{hij} as a lattice basis so that one can bound the determinant of the lattice as
tightly as possible, then using the LLL algorithm in a black-box way on the
resulting lattice basis.
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2.2 Optimality of Coppersmith’s Theorem

Since Coppersmith’s technique uses the LLL algorithm [LLL82] to find the spe-
cific polynomial h(x) in the lattice L, it is natural to think that improvements
in lattice reduction techniques or improved bounds on the length of the shortest
vector in certain lattices might improve the bound N1/d in Theorem 1.

Such an improvement would be impossible in polynomial time for arbitrary
N , since the polynomial f(x) = xd has exponentially many roots modulo N = pd

of absolute value N1/d+ε, but this does not rule out the possibility of improve-
ments for cases of cryptographic interest, such as polynomial congruences modulo
RSA moduli N = pq.

Coppersmith [Cop01] finds “cause for pessimism” in extending his technique.
This pessimism comes from a specific example where the modulus N is equal to
q3 the cube of a prime q. He observes that there are exponentially many small
solutions to the congruence in question for such moduli, so his method cannot be
expected to work in a black box manner for all moduli. He explains “we expect
trouble whenever q2 divides N and p(x) has repeated roots mod q.” Since RSA
moduli are square-free, Coppersmith’s counterexample does not apply to RSA
moduli. In general, Coppersmith’s pessimism comes from examples where the
discriminant of f(x) and N share a prime factor—in which case we can factor
N using a simple GCD calculation. Thus Coppersmith’s counterexamples will
never apply to any hard-to-factor modulus N . Coppersmith left open the pos-
sibility that his method could be improved for the applications of most interest
to cryptographers. More explicitly, after discussing the above examples, he sup-
poses he is not in the “unfavorable situation” in which the discriminant of p(x)
and N have a common factor, and he discusses a “discriminant attack” which
might work in this case. To say that the discriminant of p(x) and N have no
common factor is the same as saying there are integer polynomials D(x) and
E(x) together with an integer F such that D(x)p(x) + E(x)p′(x) + FN = 1.
Coppersmith wrote “Perhaps D,E, F can be incorporated into the construction
of the lattice L, in such a way that the bound B can be improved to N1/d+ε.
But I don’t see how to do it.” Our results show that such an improvement is
impossible.

Aono, Agrawal, Satoh, and Watanabe [AASW12] showed that Coppersmith’s
lattice basis construction is optimal under the heuristic assumption that the
lattice behaves as a random lattice; however they left open whether improved
lattice bounds or a non-lattice-based approach to solving this problem could
improve the N1/d bound.

2.3 Cryptanalytic Applications of Coppersmith’s Theorem

Theorem 1 has many immediate applications to cryptanalysis, particularly the
cryptanalysis of RSA. May [May07] gives a comprehensive survey of crypt-
analytic applications of Coppersmith’s method. In this paper, we focus on
Coppersmith’s method applied to univariate polynomials modulo integers. We
highlight several applications of the univariate case below.
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The RSA assumption posits that it is computationally infeasible to invert the
map x �→ xd mod N , i.e., it is infeasible to find roots of f(x) = xd − c mod N .
Because of their similar structure, almost all of the cryptographically hard prob-
lems (some of which are outlined below) based on factoring can be approached
using Coppersmith’s method (Theorem1).

Low public exponent RSA with stereotyped messages: A classic example listed
in Coppersmith’s original paper [Cop97] is decrypting “stereotyped” messages
encrypted under low public exponent RSA, where an approximation to the solu-
tion is known in advance. The general RSA map is x �→ xe mod N . For effi-
ciency purposes, e can be chosen to be as small as 3, so that a “ciphertext” is
c0 = x3

0 mod N . Suppose we know some approximation to the message x̃0 to the
message x0. Then we can set

f(x) = (x̃0 + x)3 − c.

Thus f(x) has a root (modulo N) at x = x0 − x̃0. If |x0 − x̃0| < N1/3 then this
root can be found using Coppersmith’s method.

Security of RSA-OAEP: The RSA function x �→ xe mod N is assumed to be
a one-way trapdoor permutation. Optimal Asymmetric Encryption Padding
(OAEP) is a general method for taking a one-way trapdoor permutation and
a random oracle [BR93], and creating a cryptosystem that achieves security
against adaptive chosen ciphertext attacks (IND-CCA security).

Instantiating the OAEP protocol with the RSA one-way function yields RSA-
OAEP, a standard cryptosystem. When the public exponent is e = 3, Shoup used
Coppersmith’s method to show that RSA-OAEP is secure against an adaptive
chosen-ciphertext attack (in the random oracle model) [Sho01].

Hard-core bits of the RSA Function: Repeated iteration of the RSA function
has been proposed as candidate for a pseudo random generator. In particular,
we can create a stream of pseudo random bits by picking an initial “seed”, x0

and calculating the series
xi �→ xi+1

xi �→ xe
i mod N

At each iteration, the generator will output the r least significant bits of xi. For
efficiency reasons, we would like r to be as large as possible while still maintaining
the provable security of the generator.

When we output only 1 bit per iteration, this was shown to be
secure [ACGS88,FS00], and later this was increased to allow the generator to
output any log log(N) consecutive bits [HN04]. The maximum number of bits
that can be safely outputted by such a generator is tightly tied to the approxi-
mation x̃ necessary for recovering x from xe mod N . Thus a bound on our ability
to find small roots of f(x) = (x − x̃)e − c mod N immediately translates into
bounds on the maximum number of bits that can be safely outputted at each
step of the RSA pseudo random generator.
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In order to construct a provably secure pseudo random generator that outputs
Ω(n) pseudo random bits for each multiplication modulo N , [SPW06] assume
there is no probabilistic polynomial time algorithm for solving the

(
1
d + ε, d

)
-

SSRSA problem.

Definition 1 (The (δ, d)-SSRSA Problem [SPW06]). Given a random n bit
RSA modulus, N and a polynomial f(x) ∈ Z[x] with deg(f) = d, find a root x0

such that |x0| < N δ.

Coppersmith’s method solves the
(
1
d , d

)
-SSRSA Problem. Our results show

that Coppersmith’s method cannot be used to solve the
(
1
d + ε, d

)
-SSRSA prob-

lem. Note that our results do not prove that the
(
1
d + ε, d

)
-SSRSA problem

is intractable—doing so would imply there is no polynomial-time algorithm for
factoring—but instead we show that the best available class of techniques cannot
be extended.

Extensions to Coppersmith’s Method. Coppersmith’s original work also
considered the problem of finding small solutions to polynomial equations in
two variables over the integers and applied his results to the problem of factor-
ing RSA moduli N = pq when half of the most or least significant bits of one of
the factors p is known [Cop97]. Howgrave-Graham gave an alternate formulation
of this problem by finding approximate common divisors of integers using sim-
ilar lattice-based techniques, and obtained the same bounds for factoring with
partial information [HG01]. May [May10] gives a unified formulation of Cop-
persmith and Howgrave-Graham’s results to find small solutions to polynomial
equations modulo unknown divisors of integers. Later work by Jutla [Jut98] and
Jochemsz and May [JM06] has generalized Coppersmith’s method to multivari-
ate equations, and Herrmann and May [HM08] obtained results for multivariate
equations modulo divisors.

As we will show in the next section, existing results in capacity theory can
be used to directly address the case of auxiliary polynomials for Coppersmith’s
method for univariate polynomials modulo integers. Adapting these results to
the other settings of Coppersmith’s method listed above is a direction for future
research.

3 Capacity Theory for Cryptographers

In this section, we begin by recalling from [Can80,Rum89,Rum13] some back-
ground about arithmetic capacity theory, which is the tool we will use to prove
our main results.

Classically, capacity theory arose from the following problem in electrostatics.
How will a unit charge distribute itself so as to minimize potential energy if it
is constrained to lie within a compact subset E∞ of C which is stable under
complex conjugation? Define the capacity γ(E∞) to be e−V (E∞), where V (E∞)
is the so-called Robbin’s constant giving the minimal potential energy of a unit
charge distribution on E∞.
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It was discovered by Fekete and Szegő [Fek23,FS55] that the distribution
of small charges on such an E is related to the possible locations of zeros of
monic integral polynomials. Heuristically, these zeros behave in the same way as
charges that repel one another according to an inverse power law.

The nth transfinite diameter of a set E∞ is

dn(E∞) = sup
z1...zn∈E

∏

i<j

|zi − zj |1/(n
2).

Then we can give a second definition of the capacity of E∞ as follows. It can be
shown that this definition of capacity is equivalent to the definition via electro-
statics.

Definition 2 (Capacity of a Set via the Transfinite Diameter).

γ(E∞) = lim
n→∞ dn(E∞)

Let z1, . . . , zn be the conjugates of a degree-n algebraic integer. Then they
are the roots of the monic irreducible polynomial f(x) =

∏n
i=1(x − zi) ∈ Z[x].

The discriminant of f(x) is the non-zero rational integer Δf(x) =
∏

i<j(zi−zj)2.
Therefore the nth transfinite diameter of a set E∞ that contains the zi satisfies

dn(E∞) ≥
∏

i<j

|zi − zj |
2

n(n−1) = |Δf(x)| 1
n(n−1) ≥ 1

Thus dn(E∞) ≥ 1 if E contains all conjugates of a degree-n algebraic integer.
Since E∞ is bounded, only finitely many algebraic integers of degree n have all
their conjugates in E. Thus if there are infinitely many algebraic integers with
all conjugates in E∞ then γ(E∞) ≥ 1. The restriction that the discriminant of
a monic integral polynomial without multiple zeros must be a non-zero integer
prevents all the zeros from being too close to one another. Since the discriminant
of the polynomial has absolute value at least 1, the potential energy is not
positive.

The capacity can also be defined using the Chebyshev constant. Consider the
set of degree-n polynomials bounded on E∞:

bn = sup
{

|r| | ∃p(x) = rxn + · · · + p0 ∈ R[x] s.t. sup
z∈E∞

|p(z)| ≤ 1
}

.

Definition 3 (Capacity of a set via the Chebyshev Constant).

γ(E∞) = lim
n→∞ b−1/n

n

A final equivalent definition of the capacity is the sectional capacity (see
[Chi91,RLV00]). Consider the set of polynomials with real coefficients whose
evaluations are bounded on E∞:

Fn = {p(x) ∈ R[x] | deg p(x) ≤ n, sup
z∈E

|p(z)| < 1}

Fn is a convex symmetric subset of Rn+1.
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Definition 4 (Sectional Capacity).

log γ(E) = lim
n→∞

−2 log Vol(Fn)
n2

If γ(E) < 1 then for large n, we have log Vol(Fn) ≈ (−n2/2) log γ(E) >
(n+1) log 2. If Vol(Fn) > 2n+1 then by Minkowski’s theorem there must be a non-
zero polynomial p(x) ∈ Fn ∩ Z[x]. Consider again z1, . . . , zn that are conjugates
of some degree-n algebraic integer in E∞. We have |p(z1)|, . . . , |p(zn)| < 1, so
Norm(p(z1)) =

∏
i |p(zi)| < 1, where Norm is the norm from Q(z1) to Q. But

Norm(p(z1)) is a rational integer, so Norm(p(z1)) = 0 and p(z1) = 0. Therefore
the zeros of p(x) include all algebraic integers with conjugates in this set, and
thus p(x) must vanish at all such elements in E.

These intuitions are behind the following striking result of Fekete and Szegő
from [Fek23,FS55].

Theorem 5 (Fekete and Szegő). Let E∞ be a compact subset of C closed
under complex conjugation.

– If γ(E∞) < 1, then there are only finitely many irreducible monic polynomials
with integer coefficients which have all of their roots in E∞.

– Conversely, if γ(E∞) > 1, then for every open neighborhood U of E∞ in
C, there are infinitely many irreducible monic polynomials with integer coeffi-
cients having all their roots in U .

The first case corresponds to the case in which the minimal potential energy
V (E∞) is positive, consistent with the physical intuition.

The work of Fekete and Szegő was vastly generalized by Cantor [Can80] to
adelic subsets of the projective line, and by Rumely [Rum89,Rum13] to adelic
subsets of arbitrary smooth projective curves over global fields. Their methods
are based on potential theory, as in electrostatics. In [Chi91], Chinburg suggested
sectional capacity theory, which applies to arbitrary regular projective varieties
of any dimension and not just to curves. Sectional capacity theory was based
on ideas from Arakelov theory, with the geometry of numbers and Minkowski’s
theorem being the primary tools. In [RLV00], Rumely, Lau and Varley showed
that the limits hypothesized in [Chi91] do exist under reasonable hypotheses;
this is a deep result.

This paper is the first application of capacity theory that we are aware of
to cryptography. We will show that capacity theory is very suited to studying
the kind of auxiliary polynomials used in the proof of Coppersmith’s theorem.
Before we begin, however, we review some number theory.

3.1 p-adic Numbers

For any prime p, and any n ∈ Z, we define the p-adic valuation of n, to be the
supremum of the integers e such that pe|n, i.e.,

vp(n) =
{

max {e ∈ Z : pe | n} if n �= 0
∞ if n = 0
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This is then extended to rational numbers in the natural way. If a, b ∈ Z and
a, b �= 0, then

vp

(a

b

)
= vp(a) − vp(b).

The p-adic valuation gives rise to a p-adic absolute value | |p : Q → R given by

|x|p =
{

p−vp(x) if x �= 0 ,
0 if x = 0 .

(5)

It is straightforward to check that the p-adic absolute value is multiplicative and
satisfies a stronger form of the triangle inequality:

|xy|p = |x|p · |y|p and |x + y|p ≤ max
(
|x|p , |y|p

)
for x, y ∈ Q. (6)

The p-adic absolute value defines a metric on Q. The p-adic numbers, Qp, are
defined to be the completion of Q with respect to this metric. This is similar
to the construction of R as the completion of Q with respect to the Euclidean
absolute value | | : Q → R.

Elements of Qp are either 0 or expressed in a unique way as a formal infi-
nite sum ∞∑

i=k

aip
i

in which k ∈ Z, each ai lies in {0, 1, . . . , p−1} and ak �= 0. Such a sum converges
to an element of Qp because the sequence of integers {sj}∞

j=k defined by sj =
∑j

i=k aip
i forms a Cauchy sequence with respect to the metric | |p. One can add,

subtract and multiply such sums by treating p as a formal variable, performing
operations in the resulting formal power series ring in one variable over Z, and
by then carrying appropriately. In fact, Qp is a field, since multiplication is
commutative and it is possible to divide elements by non-zero elements of Qp.

A field L is algebraically closed if every non-constant polynomial g(x) ∈ L[x]
has a root in L. This implies that g(x) factors into a product of linear polynomials
in L[x], since one can find in L roots of quotients of g(x) by products of previously
found linear factors. For example, C is algebraically closed, but Q is certainly not.

In general, given a field F there are many algebraically closed fields L con-
taining F . For example, given one such L, one could simply label the elements
of L by the elements of some other set, or one could put L inside a larger alge-
braically closed field. Given one L, the set F of elements α ∈ L which are roots
in L of some polynomial in F [x] is called the algebraic closure of F in L. The
set F is in fact an algebraically closed field. For a given F , the algebraic clo-
sure F will depend on the algebraically closed field L which one chooses in this
construction. But if one were to use a different field L̃, say, then the algebraic
closure of F in L̃ is isomorphic to F by a (non-unique) isomorphism which is
the identity on F . So we often just fix one algebraic closure F of F .

For instance, if F = Q, then L = C is algebraically closed, so we can take Q to
be the algebraic closure of Q in C. The possible field embeddings τ : Q → L = C

come from pre-composing with a field automorphism of Q.
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However, for each prime p, there is another alternative. The field Qp is not
algebraically closed, but as noted above, we can find an algebraically closed field
containing it and then construct the algebraic closure Qp of Qp inside this field.
Now we have Q ⊂ Qp ⊂ Qp, and Qp is algebraically closed. So we could take
L = Qp and consider the algebraic closure Q

′
of Q inside Qp. We noted above

that all algebraic closures of Q are isomorphic over Q in many ways. The possible
isomorphisms of Q (as a subfield of C, for example) with Q

′
(as a subfield of

Qp) correspond to the field embeddings σ : Q → Qp. Each such σ gives an
isomorphism of Q with Q

′
which is the identity map on Q. Note here that Qp is

much larger than Q, since Qp (and in fact Qp as well) is uncountable while Q is
countable.

Each α ∈ Q is a root of a unique monic polynomial mα(x) ∈ Q[x] of minimal
degree, and mα(x) is irreducible. We will later need to discuss the image of such
an α under all the field embeddings τ : Q → C and under all field embeddings
σ : Q → Qp as p varies. The possible values for τ(α) and σ(α) are simply the
different roots of mα(x) in C and Qp, respectively.

Example 1. If α =
√

7 then mα(x) = x2 − 7. The possibilities for τ(α) are the
positive real square root 2.64575... and the negative real square root −2.64575...
of 7. When p = 3, it turns out that x2 − 7 already has two roots α1 and α2 in
the 3-adic numbers Q3 ⊂ Q3. These roots are

α1 = 1 + 1 · 3 + 1 · 32 + 0 · 33 + · · · and α2 = 2 + 1 · 3 + 1 · 32 + 2 · 33 + · · · .

These expansions result from choosing 3-adic digits so that the square of the
right hand side of each equality is congruent to 1 modulo an increasing power
of 3. This is the 3-adic counterpart of finding the decimal digits of the two real
square roots of 7. So the possibilities for σ(α) under all embeddings σ : Q → Q3

are α1 and α2.

Basic facts about integrality and divisibility are naturally encoded using p-
adic absolute values:

Fact 1. As above, let Qp denote an algebraic closure of Qp. There is a unique
extension of | |p : Qp → R to an absolute value | |p : Qp → R for which (6) holds
for all x, y ∈ Qp.

Fact 2. The set Z of algebraic integers is the set of all α ∈ Q for which mα(x) ∈
Z[x]. In fact, Z is a ring, so that adding, subtracting and multiplying algebraic
integers produces algebraic integers. One can speak of congruences in Z by saying
α ≡ β mod γZ if α − β = γ · δ for some δ ∈ Z.

Fact 3. If r ∈ Q then |r|p ≤ 1 for all primes p if and only if r ∈ Z. More
generally, an element α ∈ Q is in Z if and only if for all primes p and all field
embeddings σ : Q → Qp one has |σ(α)|p ≤ 1.
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Fact 4. Suppose α ∈ Z and |τ(α)| < 1 for all embeddings τ : Q → C. Then in
fact, α = 0. To see why, note that mα(0) ∈ Z is ±1 times the product of the
complex roots of mα(x). These roots all have the form τ(α), so |mα(0)| < 1.
Then mα(0) ∈ Z forces mα(0) = 0. Because mα(x) is monic and irreducible this
means mα(x) = x, so α = 0.

Fact 5. If N = pq for distinct primes p and q, then |N |p = 1
p , |N |q = 1

q , and
|N |p′ = 1 for all other primes p′.

Fact 6. If a, b ∈ Z, then

a|b ⇔ |b|p ≤ |a|p ∀p

Thus a|b is the statement that b is in the p-adic disc of radius |a|p centered at 0
for all p. More generally, if α, β ∈ Z then α divides β in Z if β = δ · α for some
δ ∈ Z. This is so if and only if |σ(β)|p ≤ |σ(α)|p for all primes p and all field
embeddings σ : Q → Qp.

3.2 Auxiliary Functions

The original question Coppersmith considered was this: Given an integer N ≥ 1,
a polynomial f(x), and a bound X, can we find all integers z ∈ Z such that
|z| ≤ X and f(z) ≡ 0 mod N?

When X is sufficiently small in comparison to N , Coppersmith constructed
a non-zero auxiliary polynomial of the form

h(x) =
∑

i,j

ai,jx
i(f(x)/N)j , ai,j ∈ Z (7)

satisfying |h(z)| < 1 for every z ∈ C with |z| ≤ X. As noted in Sect. 2.1, this
boundedness property forces the set of z ∈ Z satisfying |z| ≤ X and f(z) ≡
0 mod N to be among the roots of h(x). In fact, the roots of the h(x) include
all algebraic integers z ∈ Z satisfying

f(z) ≡ 0 mod N · Z and |σ(z)| ≤ X for all embeddings σ : Q → C. (8)

The reason is as follows. For z ∈ Z, the condition that f(z) ≡ 0 mod NZ is
equivalent to the condition that f(z)/N ∈ Z. Therefore, for any h(x) in the form
of Eq. 7, we have h(z) ∈ Z whenever f(z) ≡ 0 mod NZ. If h(x) further satisfies
|h(z)| < 1 for all z ∈ C with |z| ≤ X, then the property that |σ(z)| ≤ X for all
embeddings σ : Q → C, means that |h(σ(z))| < 1 as well. Fact 4 therefore tells
us that h(z) = 0.

Capacity theory can be used for solving the problem of deciding whether
there exist non-zero auxiliary polynomials h(x) which include among its roots
the set of z ∈ Z satisfying Eq. 8. The basic idea, which will be given in detail in
Sect. 3.3, is that capacity theory gives one a way of deciding whether the set of
algebraic integers satisfying Eq. 8 is finite or infinite.
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When this set is infinite then there cannot exist any rational function h(x)
of any kind vanishing on the z ∈ Z satisfying (8), and in particular no h(x) of
the form in (7) will exist satisfying the desired properties. If, on the other hand,
this set is finite then there will exist an auxiliary polynomial h(x) vanishing on
the z ∈ Z satisfying (8), and in fact Coppersmith explicitly constructed such
a polynomial using the LLL algorithm. As we will see, the boundary for finite
versus infinite occurs when X = N1/d where d is the degree of f(x).

3.3 When Do Useful Auxiliary Polynomials Exist?

In this section, we use capacity theory to give a characterization of when auxiliary
polynomials h(x) of the kind discussed in Sect. 3.2 exist. We will use the work
of Cantor in [Can80] to show the following result.

Theorem 6 (Existence of an Auxiliary Polynomial). Let d be the degree
of f(x). Define S(X) to be the set of all algebraic integers z ∈ Z such that

f(z) = 0 mod NZ and |σ(z)| ≤ X for all embeddings σ : Q → C.

There exists a polynomial h(x) ∈ Q[x] whose roots include every element of S(X)
if X < N1/d. If X > N1/d there is no rational function h(x) ∈ Q(x) whose zero
set contains S(X) because S(X) is infinite.

We break the proof into a sequence of steps.

1. Since f(x) ∈ Z[x], and embeddings fix integers, then if z ∈ Z we have f(z) ∈
Z, and σ(f(x)) = f(σ(x)) for all embeddings σ : Q → Qp.

2. Suppose N = pe1
1 · · · pek

k and x ∈ Z, then by Fact 6

f(z) ≡ 0 mod N ⇔ |f(z)|pi
≤

(
1
pi

)ei

∀i ∈ [k]

⇔ |f(z)|pi
≤ |N |pi

∀i ∈ [k]

Similarly, if z ∈ Z then

f(z) = 0 mod NZ ⇔ |σ(f(z))|pi
= |f(σ(z))|pi

≤ |N |pi

for all i ∈ [k] and for all embeddings σ : Q → Qp.
3. For all primes, p, define the set of elements in Qp that solve the congruence

in Eq. 8 p-adically:

Ep
def=

{
z ∈ Qp

∣
∣
∣ |f(z)|p ≤ |N |p

}
= f−1

({
z ∈ Qp

∣
∣
∣ |z|p ≤ |N |p

})
,

and similarly define the set of elements with bounded complex absolute value

E∞
def= {z ∈ C | |z| ≤ X}
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Let
E

def= E∞ ×
∏

p∈primes

Ep

This specifies the set of p-adic and complex constraints on our solutions.
Furthermore, E satisfies all of the conditions in [Rum89] for E to have a well-
defined capacity γ(E) = γ(E, {∞}) relative to the point ∞ on P

1, and for the
computations below to be valid. Note, one requirement in this case is that for
all but finitely many primes p, Ep is the integral closure Zp of Zp in Qp. We
will compute the capacity of E, a measurement of the size of E.

4. We now define the local capacities γp(Ep) and γ∞(E∞) as well as the global
capacity γ(E). Suppose 0 ≤ r ∈ R. We have p-adic and complex discs of
radius r defined by

Dp(a, r) =
{

z ∈ Qp

∣
∣
∣ |z − a|p ≤ r

}
for a ∈ Qp

and
D∞(a, r) = {z ∈ C | |z − a| ≤ r} for a ∈ C.

Fact 7 (Capacity of a Disc). For v = p and v = ∞, one has local capacity

γv(Dv(a, r)) = r

If v = p, a = 0 and r = |N |p is the p-adic absolute value of an integer N ≥ 1,
then Dv(0, |N |p) ∩ Zp is just NZp. We will need later the fact that the p-adic
capacity of NZp is

γp(NZp) = p−1/(p−1)|N |p
In a similar way, suppose v = ∞. The capacity of the real interval [−r, r] is

γ∞([−r, r]) = r/2

Fact 8 (Capacity of Polynomial Preimage). If f(x) ∈ Z[x] is a monic
degree d polynomial, and S is a subset of Qp if v = p or of C if v = ∞ for which
the capacity γv(S) is well defined, then γv(f−1(S)) is well defined and

γv

(
f−1(S)

)
= γv(S)1/d

Facts 7 and 8 show that

γp(Ep) = γp(Dp(0, |N |p))1/d = |N |1/d
p and γ∞(E∞) = γp(D∞(0,X)) = X.

Fact 9 (Capacity of a Product).

γ(E) = γ∞(E∞) ·
∏

p∈primes

γp(Ep)

So

γ(E) = X ·
∏

p∈primes

|N |1/d
p = X ·

k∏

i=1

p
−ei/d
i = X · N−1/d.
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5. Computing the capacity of our sets of interest tells us whether there exists a
polynomial mapping the components of E into discs of radius 1. This allows
us to apply the following theorem, due to Cantor [Can80], which tells us when
an auxiliary polynomial exists.

Theorem 7 (Existence of an Auxiliary Polynomial). If

E = E∞ ×
∏

p∈primes

Ep

then there exists a non-zero auxiliary polynomial h(x) ∈ Q[x] satisfying

h(Ep) ⊂ Dp(0, 1) ∀p

and
h(E∞) ⊂ {z ∈ C | |z| < 1}

if γ(E) < 1, and no such polynomial exists if γ(E) > 1.

Once we have set up this framework, we are now ready to prove Theorem 6.

Proof (Proof of Theorem6). Suppose first that X < N1/d. Then by Fact 9,
γ(E) < 1. By Fact 7, there exists a polynomial h(x) ∈ Q[x] with |h(z)|p ≤ 1
for all p and z ∈ Ep, and |h(z)| < 1 for all z ∈ E∞. Suppose z ∈ S(X). Then
f(z)/N ∈ Z, so Fact 3 says that for all primes p and embeddings σ : Q → Qp

one has
|σ(f(z)/N)|p ≤ 1

Since f(x) ∈ Z[x] and N ∈ Z, we have σ(f(z)) = f(σ(z)) and σ(N) = N . So

|f(σ(z))|p = |σ(f(z))|p =
∣
∣
∣
∣
σ(f(z))
σ(N)

∣
∣
∣
∣
p

· |σ(N)|p = |σ(f(z)/N)|p · |N |p ≤ |N |p .

Therefore σ(z) ∈ Ep. Hence |h(σ(z))|p ≤ 1, where σ(h(z)) = h(σ(z)) since
h(x) ∈ Q[x]. Because p was an arbitrary prime, this means h(z) is an algebraic
integer, i.e. h(z) ∈ Z by Fact 3. On the other hand, z ∈ S(X) implies |σ(z)| ≤ X
so |σ(h(z))| = |h(σ(z))| < 1 for all σ : Q → C. Thus h(z) is an algebraic integer
such that |σ(h(z))| < 1 for all σ : Q → C, so by Fact 4, h(z) = 0 as claimed.
When X > N1/d, S(X) is infinite by [Can80, Theorem 5.1.1].

To try to prove stronger results about small solutions of congruences, Copper-
smith also considered auxiliary polynomials with absolute value less than 1 on a
real interval which is symmetric about 0. We can quantify his observation that
this does not lead to an improvement of the exponent 1/d in Theorem 1 by the
following result.

Theorem 8. Let S′(X) be the subset of all z ∈ S(X) such that σ(z) lies in R

for every embedding σ : Q → C. There exists a polynomial h(x) ∈ Q[x] whose
roots include every element of S′(X) if X < 2N1/d. If X > 2N1/d there is no
non-zero rational function h(x) ∈ Q(x) whose zero set contains S′(X) because
S′(X) is infinite.
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Proof (Proof of Theorem 8). To prove the Theorem 8, one just replaces the com-
plex disc E∞ = {z ∈ C : |z| ≤ X} by the real interval E′

∞ = {z ∈ R : |z| ≤ X}.
Letting E

′ =
∏

p Ep × E′
∞, we find γ(E′) = 2 · γ(E) because γ(E′

∞) = 2γ(E∞).
So γ(E′) < 1 if X < 2N1/d and we find as above that there is a polynomial
h(x) ∈ Q[x] whose roots contain every element of S(X)′. If X > 2N1/d then
γ(E′) > 1 and S(X)′ is infinite by the main result of [Rum13], so h(x) cannot
exist.

4 Lattices of Binomial Polynomials

In this section, we will answer the question of whether Coppersmith’s theorem can
be improved using auxiliary polynomials that are combinations of binomial poly-
nomials. The results we proved in Sect. 3 showed that it is impossible to improve
the bounds for auxiliary polynomials of the form h(x) =

∑
i,j≥0 ai,jx

i(f(x)/N)j .
Recall that if i ≥ 0 is an integer, the binomial polynomial bi(x) is

bi(x) = x · (x − 1) · · · (x − i + 1)/i!.

Based on a suggestion by Howgrave-Graham and Lenstra, Coppersmith con-
sidered in [Cop01] auxiliary polynomials constructed from binomial polynomials;
that is, of the form

h(x) =
∑

i,j≥0

ai,jbi(x)bj(f(x)/N). (9)

He found that he was unable to improve the bound of N1/d using this alternate
lattice. In this section we will prove some sharper forms of Theorems 3 and 4
that explain why this is the case.

Following the method laid out in Sect. 3, we find that capacity theory cannot
rule out the existence of such polynomials. One of the key differences is that
monomials send algebraic integers to algebraic integers, while binomial polyno-
mials do not because of the denominators. Therefore, we are no longer able to
use the same sets Ep as in the previous section.

In fact, if one uses the lattice of binomial polynomials of the form (9), then
for any disk in C there do exist auxiliary polynomials that have the required
boundedness properties. This is in contrast to the situation for polynomials
constructed from the monomial lattice. In Theorem 9, we exhibit, for any disk,
an explicit construction of such a polynomial. However, since this polynomial is
constructed with j = 0 in (9), it tells us nothing about the solution to the inputs
to Coppersmith’s theorem.

Theorem 11 shows that even if one manages to find an auxiliary polynomial in
the lattice given by (9) that does give nontrivial information about the solutions
to the inputs to Coppersmith’s theorem, this polynomial will still not be useful.
Either this polynomial must have degree so large that the root-finding step does
not run in polynomial time, or N must have a small prime factor. For this reason,
for N that has only large prime factors, using auxiliary polynomials constructed
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using binomial polynomials will not lead to an improvement in the N1/d bound
in Coppersmith’s method.

Theorem 9 (Existence of Bounded Binomial Polynomials). Suppose δ
is any positive real number. Suppose c > 1. For all sufficiently large integers N ,
there is a non-zero polynomial of the form

h(x) =
∑

0≤i≤cNδ

ai bi(x) (10)

with ai ∈ Z such that |h(z)| < 1 for all z in the complex disk {z ∈ C : |z| ≤ N δ}.
Theorem 10 (Explicit Construction for Theorem 9). Let q0 be the unique
positive real number such that

4arctan(q0/2) = q0

(

2 ln(2) − ln
(

4
q20

+ 1
))

(11)

Suppose c > q0 = 3.80572..., then one can exhibit an explicit h(x) of the kind
in (9) in the following way. Choose any constant c′ with q0 < c′ < c. Then for
sufficiently large N and all integers t in the range c′N δ/2 < t ≤ cN δ/2 − 1/2,
the function

h(x) = b2t+1(x + t)

will have the properties in (i).

Theorem 11 (Negative Coppersmith Theorem for Binomial Polyno-
mials). Suppose ε > 0 and that M and N are positive integers. Suppose further
that

N ε >
∏

p≤M

p1/(p−1) (12)

where the product is over the primes p less than or equal to M . This condition
holds, for example, if 1.48774N ε ≥ M ≥ 319. If there is a non-zero polynomial
h(x) of the form

h(x) =
∑

0≤i,j≤M

ai,j bi(x) bj(f(x)/N) (13)

with ai,j ∈ Z such that |h(z)| < 1 for z in the complex disk {z ∈ C : |z| ≤
N (1/d)+ε}, then N must have a prime factor less than M .

4.1 Proof of Theorems 9 and 10

The proof of Theorem9 comes in several parts. We first use capacity theory to
show that non-zero polynomials of the desired kind exist. This argument does
not give any information about the degree of the polynomials, however. So we
then use an explicit geometry of numbers argument to show the existence of a
non-zero polynomial of a certain bounded degree which is of the desired type.
Finally, we give an explicit construction of an h(x). This h(x) has a somewhat
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larger degree than the degree which the geometry of numbers argument shows
can be achieved. It would be interesting to see if the LLL algorithm would lead
to a polynomial time method for constructing a lower degree polynomial than
the explicit construction.

In this section we assume the notations of Theorem 9. The criterion that h(x)
be a polynomial of the form

h(x) =
∑

i

aibi(x)

with ai ∈ Z is an extrinsic property, which will be discussed in more detail in
Step 1 of Sect. 5.1. In short, this extrinsic property arises because h(x) must
have a particular form. We need to convert this to an intrinsic criterion, in this
case observing that these polynomials take Zp to Zp. The key to doing so is the
following result of Polya:

Theorem 12 (Polya). The set of polynomials h(x) ∈ Q[x] which have integral
values on every rational integer r ∈ Z is exactly the set of integral combinations∑

i aibi(x) of binomial polynomials bi(x).

Corollary 1. The set of polynomials h(x) ∈ Q[x] which are integral combina-
tions

∑
i aibi(x) of binomial polynomials bi(x) is exactly the set of h(x) such

that |h(z)|p ≤ 1 for all z ∈ Zp and all primes p.

The corollary follows because Z is dense in Zp.
Our main goal in the proof of Theorem9 is to show there are h(x) �= 0 as in

Corollary 1 such that |h(z)| < 1 for z in the complex disk E∞ = {z ∈ C : |z| ≤
N δ}. We break reaching this goal into steps.

Applying Capacity Theory Directly. In view of Corollary 1, the natural
adelic set to consider would be

E =
∏

p

Ep × E∞ with Ep = Zp for all p (14)

However, this choice does not meet the criteria for γ(E) to be well defined,
because it is not true that Ep = Zp for all but finitely many p. However, for all
Y ≥ 2, the adelic set

E
′ =

∏

p≤Y

Zp ×
∏

p>Y

Zp × E∞ (15)

does satisfy the criteria for γ(E) to be well defined. One has

γp(Zp) = p−1/(p−1), γp(Zp) = 1 and γ∞(E∞) = N δ.

So

ln γ(E′) = ln

⎛

⎝
∏

p≤Y

γp(Zp) × γ∞(E∞)

⎞

⎠ = −
∑

p≤Y

ln(p)
p − 1

+ ln(N δ) (16)
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Here as Y → ∞, the quantity −∑
p≤Y

ln(p)
p−1 diverges to −∞. So for all sufficiently

large Y we have γ(E′) < 1. We then find as before that Cantor’s work produces
a non-zero polynomial h(x) ∈ Q[x] such that for all v and all elements z of the
v-component of E′ one has |h(z)|v ≤ 1, with |h(z)| < 1 if v = ∞. In particular,
|h(z)|p ≤ 1 for all primes p and all z ∈ Zp ⊂ Zp. So Corollary 1 shows h(x) is an
integral combination of binomial polynomials such that |h(z)| < 1 if z ∈ C and
|z| ≤ N δ.

Using the Geometry of Numbers to Control the Degree of Auxiliary
Polynomials. Minkowski’s theorem says that if L is a lattice in a Euclidean
space R

n and C is a convex symmetric subset of R
n of volume at least equal

to 2n times the generalized index [L : Zn], there must be a non-zero element
of L ∩ C. To apply this to construct auxiliary polynomials, one takes C to
correspond to a suitably bounded set of polynomials with real coefficients, and
L to correspond to those polynomials with rational coefficients of the kind one
is trying to construct.

In the case at hand, suppose 1 ≤ r ∈ R. Let Z[x]≤r be the set of integral
polynomials of degree ≤ r, and let L≤r be the Z-span of {bi(x) : 0 ≤ i ≤ r, i ∈ Z}.
To show the first statement of Theorem 9, it will suffice to show that if c > 1,
then for sufficiently large r = Nδ > 0, there is a non-zero f(x) ∈ L≤cr such that
|f(z)| < 1 for z ∈ C such that |z| ≤ r.

Let m = �cr� be the largest integer less than or equal to cr. By considering
leading coefficients, we have

ln[L≤m : Z[x]≤m] = ln
m∏

i=0

i! = m2 ln(m)/2 · (1 + o(1))

where o(1) → 0 as m → ∞. Let C be the set of polynomials with real coefficients
of the form

m∑

i=0

qi(x/r)i with |qi| ≤ 1/(m + 2).

We consider C as a convex symmetric subset of Rm+1 by mapping a polynomial
to its vector of coefficients. Then

ln vol(C) = (m + 1) · (ln(2) − ln(m + 2)) −
m∑

i=0

i ln(r) = − ln(r)m2/2 · (1 + o(1)).

Since Z[x]≤m maps to a lattice in R
m+1 with covolume 1, we find

ln vol(C) − ln vol(Rm+1/L≤m) ≥ (ln(m) − ln(r))m2/2 · (1 + o(1)) = ln(c) · m2/2 · (1 + o(1)).

Since ln(c) > 0, for sufficiently large m, the right hand side is greater than
2 ln(m+1). Hence Minkowski’s Theorem produces a non-zero f(x) ∈ L≤m in C.
One has

|f(z)| ≤
m∑

i=0

|z/r|i/(m + 2) < 1

if z ∈ C and |z| < r, so we have proved Theorem 9.
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An Explicit Construction. Theorem 10 concerns the polynomials b2t+1(x+ t)
when t > 0 is an integer. This polynomial takes integral values at integral x, so
it is an integral combination of the polynomials bi(x) with 0 ≤ i ≤ 2t + 1 by
Polya’s Theorem 12. To finish the proof of Theorem10, it will suffice to show the
following. Let q0 be the unique positive solution of the Eq. (11), and suppose
q > q0. Let D(r) be the closed disk D(r) = {z ∈ C : |z| ≤ r}. We will show that
if r is sufficiently large, then

|b2t+1(z + t)| < 1 if 2t ≥ qr and z ∈ D(r). (17)

We have

b2t+1(z + t) =

∏2t
j=0(z + t − j)

(2t + 1)!
=

∏t
j=−t(z − j)
(2t + 1)!

= ±z · ∏t
j=1(z

2 − j2)
(2t + 1)!

For j ≥ 0 and z ∈ D(r) we have

| − r2 − j2| = r2 + j2 ≥ |z2 − j2|.
So

sup({b2t+t(z + t) : z ∈ D(r)}) =
r · ∏t

j=1(r
2 + j2)

(2t + 1)!
.

Taking logarithms gives

ln sup({b2t+t(z + t) : z ∈ D(r)}) = ln(r) +
t∑

j=1

ln(r2 + j2) − ln((2t + 1)!). (18)

We now suppose t ≥ r, so ξ = r/t ≤ 1. Then

t∑

j=1

ln(r2 + j2) = t ln(t2) + t · 1
t

t∑

j=1

ln(ξ2 + (j/t)2)

= 2t ln(t) + t ·
∫ 1

0

ln(ξ2 + s2)ds + o(t) (19)

as t → ∞. By integration by parts,
∫

ln(ξ2 + s2)ds = s ln(ξ2 + s2) − 2s + 2ξarctan(s/ξ). (20)

By Stirling’s formula,

ln((2t+1)!) = (2t+1) ln(2t+1) − (2t+1) + o(t) = 2t ln(t) + 2t ln(2) − 2t + o(t).
(21)

Since ln(r) = o(t), we get from (18), (20) and (21) that

ln(sup{b2t+t(z+t) : z ∈ D(r)}) = t·(ln(ξ2+1) + 2ξarctan(ξ−1) − 2 ln(2)) + o(t).
(22)
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Writing q = 2t/r = 2/ξ ≥ 2 and multiplying both sides of (22) by q > 0, we see
that if

f(q) = q ln
(

4
q2

+ 1
)

+ 4arctan(q/2) − 2 ln(2)q < 0

then for sufficiently large t the supremum on the left in (18) is negative and we
have the desired bound. Here from q ≥ 2 we have

f ′(q) = ln(1/q2 + 1/4) ≤ ln(1/2) < 0 < f(2) and lim
q→+∞ f(q) = −∞.

So there is a unique positive real number q0 with f(q0) = 0, and f(q) < 0 for
q > q0. This establishes (17) and finishes the proof of part (ii) of Theorem9.

4.2 Proof of Theorem 11

The proof of Theorem 11 uses a feedback procedure. The feedback in this case is
that if N has no small prime factor p, then for all small primes p we can increase
the set Ep. This is described in more detail in Sect. 5.2.

Let M be a positive integer and suppose ε > 0. Suppose that there is a
polynomial of the form

h(x) =
∑

0≤i,j≤M

ai,jbi(x)bj(f(x)/N) (23)

such that ai,j ∈ Z and |h(z)| < 1 for all z ∈ C such that |z| ≤ N1/d+ε. We
show that if M satisfies one of the inequalities involving N in the statement
of Theorem 11, then N must have a prime divisor bounded above by M . We
will argue by contradiction. Thus we need to show that the following hypothesis
cannot hold:

Hypothesis 1. No prime p ≤ M divides N , and either (12) holds or
1.48774N ε ≥ M ≥ 319.

The point of the proof is to show that Hypothesis 1 leads to h(x) having small
sup norms on all components of an adelic set E which has capacity larger than 1.
The reason that the hypothesis that no prime p ≤ M divides N enters into the
argument is that this guarantees that f(z)/N will lie in the p-adic integers Zp

for all z ∈ Zp when p ≤ M . This will lead to being able to take the component
of E at such p to be Zp. The p-adic capacity of Zp is p−1/(p−1), as noted in
Fact 7. This turns out to be relatively large when one applies various results
from analytic number theory to get lower bounds on capacities.

To start a more detailed proof, let p be a prime and suppose 0 ≤ i, j ≤ M .

Lemma 1. If p ≤ M set Ep = Zp. Then |h(z)|p ≤ 1 if z ∈ Ep and the capacity
γp(Ep) equals p−1/(p−1)|N |p.
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Proof. If p ≤ M and x ∈ Zp, then bi(x) ∈ Zp since Z is dense in Zp and bi(x) ∈ Z

for all x ∈ Z. Furthermore, f(x)/N ∈ Zp for x ∈ Zp since we have assumed N
is prime to p and f(x) ∈ Z[x]. Therefore bj(f(x)/N) ∈ Zp for all j. Since the
coefficients ai,j in (23) are integers, we conclude |h(z)|p ≤ 1. We remarked earlier
in Fact 7 that γp(Zp) = p−1/(p−1). Since p ≤ M , we have supposed that p does
not divide N . So |N |p = 1, and we get γp(Ep) = γ(Zp) = p−1/(p−1)|N |p.
Lemma 2. If p > M set Ep = f−1(NZp). Then |h(z)|p ≤ 1 if z ∈ Ep and
γp(Ep) = |N |−1/p

p .

Proof. We first note that 0 ≤ i, j ≤ M < p implies that |i!|p = |j!|p = 1. Recall
that Zp = {x ∈ Qp : |x|p ≤ 1}. If x ∈ f−1(NZp) then x ∈ Zp since f(x) is monic
with integral coefficients. So

|bi(x)|p =
|x · (x − 1) · · · (x − i + 1)|p

|i!|p ≤ 1

and

|bj(f(x)/N)|p =
|f(x)/N · (f(x)/N − 1) · · · (f(x)/N − j + 1)|p

|j!|p ≤ 1

since x−k and f(x)/N−k lie in Zp for all integers k and |i!|p = |j!|p = 1. Because
the ai,j in (2) are integral, we conclude |h(z)|p ≤ 1 if z ∈ Ep = f−1(NZp). The
capacity γp(Ep) is |N |−1/p

p by Fact 8.

Lemma 3. Set E∞ = {z ∈ C : |z| ≤ N1/d+ε}. Then |h(z)|∞ < 1 if z ∈ E∞ and
γ∞(E∞) = N1/d+ε.

Proof. This first statement was one of our hypotheses on h(x), while γ∞(E∞) =
N1/d+ε by Fact 7.

We conclude from these Lemmas and Fact 9 that when

E =
∏

p

Ep × E∞

we have

γ(E) =

⎛

⎝
∏

p≤M

p−1/(p−1)

⎞

⎠ ×
⎛

⎝
∏

all p

|N |1/d
p

⎞

⎠ × N1/d+ε =

⎛

⎝
∏

p≤M

p−1/(p−1)

⎞

⎠ N ε.

(24)
Here

ln

⎛

⎝
∏

p≤M

p−1/(p−1)

⎞

⎠ = −
∑

p≤M

ln(p)
p − 1
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and it follows from [RS62, Theorem 6, p. 70] that if M ≥ 319 then

−
∑

p≤M

ln(p)
p − 1

= −
∑

p≤M

ln(p)
p

−
∑

p≤M

ln(p)
p(p − 1)

≥ −
∑

p≤M

ln(p)
p

−
∑

p

∞∑

n=2

ln(p)
pn

≥ − ln(M) + γ − 1
ln(M)

(25)

where γ = 0.57721... is Euler’s constant.
Hence (24) gives

ln(γ(E)) = −
∑

p≤M

ln(p)
p − 1

+ ε ln(N) ≥ − ln(M) + γ − 1
ln(M)

+ ε ln(N). (26)

The right hand side is positive if

N ε · eγ−1/ ln(M) > M. (27)

Since we assumed M ≥ 319, we have eγ−1/ ln(M) ≥ 1.497445... and so (27) will
hold if

1.48744 · N ε > M (28)

In any case, if the left hand side of (26) is positive then γ(E) > 1. However, we
have shown that h(x) is a non-zero polynomial in Q[x] such that |h(x)|v ≤ 1 for
all v when x ∈ Ev with strict inequality when v = ∞. By Cantor’s Theorem 7,
such an h(x) cannot exist because γ(E) > 1. The contradiction shows that
Hypothesis 1 cannot hold, and this completes the proof of Theorem11.

5 A Field Guide for Capacity-Theoretic Arguments

The proofs in Sects. 3 and 4 illustrate how capacity theory can be used to show
the nonexistence and existence of polynomials with certain properties. This
paper is a first step toward building a more general framework to apply capacity
theory to cryptographic applications. In this section, we step back and summa-
rize how capacity theory can be used in general to show either that auxiliary
polynomials with various desirable properties do or do not exist.

The procedure for applying capacity theory to such problems allows for feed-
back between the type of polynomials one seeks and the computation of the
relevant associated capacities. If it turns out that the capacity theoretic compu-
tations are not sufficient for a definite conclusion, they may suggest additional
hypotheses either on the polynomials or on auxiliary parameters which would
be useful to add in order to arrive at a definitive answer. They may also suggest
some alternative proof methods which will succeed even when capacity theory
used as a black box does not.
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5.1 Showing Auxiliary Polynomials Exist

To use capacity theory to show that polynomials h(x) ∈ Q[x] with certain prop-
erties exist, one can follow these steps:

Step 1. State the conditions on h(x) which one would like to achieve. These can
be of an intrinsic or an extrinsic nature.
(a) Intrinsic conditions have the following form:

(i) For each prime p, one should give a subset Ep of Qp. For all but
finitely many p, Ep must be the set Zp.

(ii) One should give a subset E∞ of C.
(iii) The set of polynomials h(x) ∈ Q[x] one seeks are all polynomials

such that |h(z)|p ≤ 1 for all primes p and all z ∈ Ep and |h(w)| < 1
if w ∈ E∞.

(b) To state conditions on h(x) extrinsically, one writes down the type of
polynomial expressions one allows. For example, one might require h(x)
to be an integral combination of integer multiples of specified polyno-
mials, e.g. monomials in x as in Theorem 6. Suppose one uses such an
extrinsic description, and one is trying to show the existence of h(x) of
this form using capacity theory. It is then necessary to come up with an
intrinsic description of the above kind with the property that any h(x)
meeting the intrinsic conditions must have the required extrinsic descrip-
tion. We saw another example of this in Sect. 4 on binomial polynomials;
see also Step 5 below.

Step 2. Suppose we have stated an intrinsic condition on h(x) as in parts (i),
(ii) and (iii) of Step 1(a). One then needs to check that the adelic set E =∏

p Ep×E∞ satisfies certain standard hypotheses specified in [Can80,Rum89,
Rum13]. These ensure that the capacity

γ(E) =
∏

p

γp(Ep) · γ∞(E∞) (29)

is well defined. One then needs to employ [Can80,Rum89,Rum13] to find
an upper bounds the γp(Ep), on γ∞(E∞) and then on γ(E). This may also
require results from analytic number theory concerning the distribution of
primes. When using this method theoretically, there may be an issue concern-
ing the computational complexity of finding such upper bounds. However, if
Ep and E∞ have a simple form (e.g. if they are disks), explicit formulas are
available. Notice that the requirement in part (i) of Step 1 that Ep = Zp

for all but finitely many p forces γp(Ep) = 1 for all but finitely many p. So
the product on the right side of (29) is well defined as long as γ∞(E∞) and
γp(Ep) are for all p.

Step 3. If the computation in Step 2 shows γ(E) < 1, capacity theory guarantees
that there is some non-zero polynomial h(x) ∈ Q[x] which satisfies the bounds
in part (iii) of Step 1. However, one has no information at this point about
the degree of h(x).
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Step 4. Suppose that Step 2 shows γ(E) < 1 and that we want to show there is
an h(x) as in Step 3 satisfying a certain bound on its degree. There are three
levels of looking for such degree bounds.
a. The most constructive method is to present an explicit construction of

an h(x) which one can show works. We did this in the previous section in
the case of integral combinations of binomial polynomials.

b. The second most constructive method is to convert the existence of h(x)
into the problem of finding a short vector in a suitable lattice of polyno-
mials and to apply the LLL algorithm. One needs to show that the LLL
criteria are met once one considers polynomials of a sufficiently large
degree, and that a short vector will meet the intrinsic criteria on h(x).
We will return in later papers to the general question of when γ(E) < 1
implies that there is a short vector problem whose solution via LLL will
meet the intrinsic criteria. This need not always be the case. The reason
is that in the geometry of numbers, one can find large complicated con-
vex symmetric sets which are very far from being generalized ellipsoids.
However, in practice, the statement that γ(E) < 1 makes it highly likely
that the above LLL approach will succeed.

c. Because of the definition of sectional capacity in [Chi91,RLV00], the fol-
lowing approach is guaranteed to succeed by γ(E) < 1. Minkowski’s The-
orem in the geometry of numbers will produce (in a non-explicit manner)
a polynomial h(x) of large degree m which meets the intrinsic criteria.
One can estimate how large m must be by computing certain volumes
and generalized indices. We illustrate such computations in Sect. 4 in the
case of intrinsic conditions satisfied by integral combination of binomial
polynomials.

Step 5. It can happen that the most natural choices for Ep and E∞ in step 1
above do not satisfy all the criteria for the capacity of E =

∏
p Ep ×E∞ to be

well defined. One can then adjust these choices slightly. To obtain more con-
trol on the degrees of auxiliary functions, one can try an explicit Minkowski
argument of the kind use in the proof of the positive result concerning integral
combinations of binomial polynomials in Theorem9 above.

5.2 Showing Auxiliary Polynomials Do Not Exist

To use capacity theory to show that polynomials h(x) ∈ Q[x] with certain prop-
erties do not exist, one can follow these steps:

Step 1. Specify the set of properties you want h(x) to have. Then show that
the following is true for every h(x) with these properties:
(i) For each prime p, exhibit a set Ep of Qp such that |h(z)|p ≤ 1 if z ∈ Ep.

For all but finitely many p, Ep must be the set Zp.
(ii) Exhibit a closed subset E∞ of C such that |h(z)| < 1 if z ∈ E∞.

It is important that h(x) ∈ Q[x] with the desired properties meet the
criteria in (i) and (ii).
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Step 2. As before, one needs to check that the adelic set E =
∏

p Ep ×E∞ satis-
fies certain standard hypotheses specified in [Can80,Rum89,Rum13]. These
ensure that the capacity

γ(E) =
∏

p

γp(Ep) · γ∞(E∞) (30)

is well defined. One then needs to find a lower bound on γ(E) using lower
bounds on the γp(Ep) and on γ∞(E∞). One may also require information
from analytic number theory, e.g. on the distributions of prime numbers less
than a given bound.

Step 3. If the computation in Step 2 shows γ(E) > 1, capacity theory guarantees
that there is no non-zero polynomial h(x) ∈ Q[x] which satisfies the intrinsic
conditions (i) and (ii) of Step 1. This means there do not exist of polynomials
h(x) having the original list of properties.

Step 4. Suppose that in Step 3, we cannot show γ(E) > 1 due to the fact that
the sets Ep and E∞ in Step 1 are not sufficient large. One can now change the
original criteria on h(x), or take into account some additional information,
to try to enlarge the sets Ep and E∞ for which Step 1 applies. We saw in the
previous section how this procedure works in the case of integral combinations
of certain products of binomial polynomials. For example, if one assumes that
certain other parameters (e.g. the modulus of a congruence) have no small
prime factors, one can enlarge the sets Ep in Step 1 which are associated to
small primes.

6 Conclusion

In this work, we drew a new connection between two disparate research areas:
lattice-based techniques for cryptanalysis and capacity theory. This connection
has benefits for researchers in both areas.

– Capacity Theory for cryptographers: We have shown that techniques
from capacity theory can be used to show that the bound obtained by Cop-
persmith’s method in the case of univariate polynomials is optimal and the
best available class of techniques for solving these types of problems cannot be
extended. This has implications for cryptanalysis, and the tightness of cryp-
tographic security reductions.

– Cryptography for capacity theorists: Capacity theory provides a method
for calculating the conditions under which certain auxiliary polynomials exist.
Coppersmith’s method provides an efficient algorithm for finding these aux-
iliary polynomials. Until this time, capacity theory has not addressed the
computational complexity actually producing auxiliary functions.

We used capacity theory to answer three questions of Coppersmith in [Cop01]

1. Can the exponent 1/d be improved (possibly through improved lattice reduc-
tion techniques)? No, the desired auxiliary polynomial simply does not exist.
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2. Does restricting attention to the real line [−N−1/d, N1/d] instead of the com-
plex disk |z| ≤ N1/d improve the situation? No.

3. Does considering lattices based on binomial polynomials improve the situa-
tion? No, these lattices have the desired auxiliary polynomials, but for RSA
moduli, their degree is too large to be useful.

Since Coppersmith’s method is one of the primary tools in asymmetric crypt-
analysis, these results give an indication of the security of many factoring-based
cryptosystems.

This paper lays a foundation for several directions of future work.
Coppersmith’s study of small integral solutions of equations in two variables and
bivariate equations modulo N [Cop97] is related to capacity theory on curves,
as developed by Rumely in [Rum89,Rum13]. The extension of Coppersmith’s
method to multivariate equations [JM06,Jut98] is connected to capacity the-
ory on higher dimensional varieties, as developed in [Chi91,RLV00,CMBPT15].
Multivariate problems raise deep problems in arithmetic geometry about the
existence of finite morphisms to projective spaces which are bounded on speci-
fied archimedean and non-archimedean sets. Interestingly, Howgrave-Graham’s
extension of Coppersmith’s method to find small roots of modular equations
modulo unknown moduli [HG01,May10] appears to pertain to joint capacities of
many adelic sets, a topic which has not been developed to our knowledge in the
capacity theory literature. It is an intriguing question whether capacity theory
can be extended to help us understand the limitations of these more general
variants of Coppersmith’s method.
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