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Abstract. We propose an improvement of Barker and Shan’s [4] NLCL

for which derivability is decidable, which has a normal-form for proof
search, can analyse scope islands, and distinguish between strong and
weak quantifiers.
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1 Introduction

In 2014, Kiselyov and Shan [11] published a paper in which they presented an
elegant approach to the anaysis of various scope-related phenomena using, what
they call, the continuation hierarchy. The phenomena they cover are scope ambi-
guity, scope islands and strong and weak quantifiers. They cover these phenom-
ena using a mechanism which works on the sentence’s semantics, independent
of whatever form of grammar is used.

At around the same time, Barker and Shan [4] published a book containing
their findings on NLλ and NLCL, a pair of grammar logics, both with the ability
to analyse scope ambiguity using a strictly syntactic mechanism. In addition,
these logics can analyse “parastic scope” [3,4] and a quantifier which change the
result type of the expressions they take scope over. However, neither of these
logics is capable of analysing scope islands or strong and weak quantifiers.

In this paper, we rework NLCL to a calculus which can analyse both scope
islands and strong and weak quantifiers, without losing the ability to analyse
parasitic scope or changing result types. For this, we base ourselves on work
by Moortgat [13] and Moortgat and Moot [14]. This approach requires a strict
focusing regime. Therefore, as an added bonus, adopting it results in the elimi-
nation of spurious ambiguity, and greatly enhances the efficiency of proof search
when compared to Barker and Shan’s [4] NLCL.

We will start our discussion by giving several examples of each of the afore-
mentioned phenomena. The following sentences are examples of scope ambigu-
ity, scope islands and weak quantifiers, respectively. They are given together
with their expected semantics, and are based on examples by Szabolcsi [16, p.
608,622].
c© Springer-Verlag GmbH Germany 2016
M. Amblard et al. (Eds.): LACL 2016, LNCS 10054, pp. 134–148, 2016.
https://doi.org/10.1007/978-3-662-53826-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-53826-5_9&domain=pdf
https://doi.org/10.1007/978-3-662-53826-5_9


Strong and Weak Quantifiers in Focused NLCL 135

(1) “Someone read every book.”
a. ∃x.person(x) ∧ ∀y.book(y) ⊃ read(x, y)
b. ∀y.book(y) ⊃ ∃x.person(x) ∧ read(x, y)

(2) “Someone said Kurt wrote every book.”
a. ∃x.person(x) ∧ say(x,∀y.book(y) ⊃ wrote(kurt, y))

(3) “Everyone said [Kurt dedicated a book to Mary].”
a. ∀x.person(x) ⊃ say(x,∃y.book(y) ∧ dedicate(kurt,mary, y))
b. ∀x.person(x) ⊃ ∃y.book(y) ∧ say(x,dedicate(kurt,mary, y))
c. ∃y.book(y) ∧ ∀x.person(x) ⊃ say(x,dedicate(kurt,mary, y))

The first of these examples is a canonical example of scope ambiguity.
Example (2) demonstrates a scope island: there is no reading in which “every
book” scopes out of the embedded clause, as this reading would imply that
there was potentially a different speaker for each book—“Alex said Kurt wrote
Slaughterhouse-Five”, “Jules said Kurt wrote Cat’s Cradle”, “Sam said Kurt
wrote. . . ” Example (3) shows that indefinites can scope out of scope islands.

We add two more sentences, which are examples of a quantifier which changes
the result type, and of parasitic scope, respectively. These examples based on
those given by Barker and Shan’s [4, p. 208] and Kiselyov [10].

(4) “John read a book [the author of which] feared the ocean.”
a. ∃x.book(x) ∧ fear(ι(λy.of(y,author, x)), ι(ocean)) ∧ read(john, x)

(5) “Everyone feared the same ocean.”
a. ∃z.∀y.fear(y, ι(λx.ocean(x) ∧ x = z))

These last two examples will play a less important role, as NLCL is already
capable of analysing both. However, in order to demonstrate that we have not
lost that capability, we will provide analyses of both near the end of this paper.

2 Background

In this section, we will briefly discuss NLCL and its sibling, NLλ. NLCL is an
extension to the non-associative Lambek calculus [12, NL;]. The history behind
NLCL is somewhat intricate, but helpful to understanding, so we will briefly go
over it. The initial idea comes from the practice of encoding quantifier movement
as a tree transformation which introduces a binder [9]:

everyonelikes

john ←→

xlikes

john

λx.

everyone
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To implement this idea in type-logical grammar, Barker and Shan add a struc-
tural λ-construct to NL, and added the following structural postulate:1

Σ[Γ ] ←→ Γ ◦ λx.Σ[x] (λ)

As can be seen, the (λ) postulate uses a new connective: the ◦ (hollow product).
This connective is part of a new residuated family {�, ◦,� }, which starts out
as a copy of {\, •, /}. However, the addition of the (λ) postulate allows you to
raise any constituent to the top-left2 position in the structure, where—if it has
the right type—it can be “resolved” against the top-level type as follows:

Σ[A] 	 B
(λ)

A ◦ λx.Σ[x] 	 B
R�

λx.Σ[x] 	 A � B C 	 D
L�

C� (A � B) ◦ λx.Σ[x] 	 D
(λ)

Σ[C� (A � B)] 	 D

Barker and Shan call resulting system NLλ. While NLλ fulfils the promise of
allowing a syntactic analysis of quantifier raising, scope ambiguity and parasitic
scope, it has some problems. Most notably, the system is hard to formalise and
to reason about, largely due to the presence of a binding construct in the syntax
of structures. While it is not impossible to formalise, the (λ) postulate greatly
complicates meta-logical proofs.

To address this issue, and to ease their own investigation of the formal prop-
erties of NLλ, Barker and Shan [4, ch. 17] introduce NLCL. This system uses
the fact that λ-terms can be represented as combinators in combinatory logic,
which removes the need for a binding construct. Barker and Shan use a variant
of Schönfinkel’s mapping to encode the linear λ-construct as applications of the
combinators I, B and C:3,4

Ix = x, Bxyz = x(yz), Cxyz = xzy

The resulting system is presented in Fig. 1.5

Using the system in Fig. 1, we can do quantifier raising in much the same
way as we did with the (λ) postulate—although, as we now have to raise the
quantifier one step at a time, the proofs are much longer:

1 It is important to note that this construct is purely structural, and that it is not
accompanied by some implicit form of computation (e.g. β, η-conversions).

2 It should be noted that the decision to raise quantifiers to the top-left position, as
opposed to the top-right, is a stylistic choice made by Barker and Shan [4]. It is
entirely possible to use the mirrored versions of the IBC-rules together with the
(B� A) � C type for quantifiers.

3 One can easily verify that the λ-construct introduced by (λ) is linear.
4 When comparing these equations to the IBC-rules in Fig. 1, note that • encodes

function application, but ◦ encodes flipped function application.
5 In Fig. 1, and for the remainder of this paper, the letters Γ and Δ are reserved for

structures, whereas the Σ is used for contexts.
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Fig. 1. NLCL as presented by Barker and Shan [4]. (When reading this figure, be wary
of the difference between the combinators B,C and the formulas B, C.)

...
john • likes • np 	 s

I
john • likes • np ◦ I 	 s

B
john • np ◦ (B • likes) • I 	 s

B
np ◦ (B • john) • (B • likes) • I 	 s

�R
(B • john) • (B • likes) • I 	 np � s s 	 s

� L
everyone ◦ (B • john) • (B • likes) • I 	 s

B
john • everyone ◦ (B • likes) • I 	 s

B
john • likes • everyone ◦ I 	 s I
john • likes • everyone 	 s

The labels john, likes and everyone abbreviate the types np, (np\s)/np and
s� (np � s), respectively. For a more detailed account of the relation between
NLλ and NLCL, see Barker and Shan [4]. For a more detailed account of various
encodings of combinatorial logic in structural rules, amongst which the encoding
of the linear lambda construct used by Barker and Shan, see Finger [8].

3 Scope Islands for NLCL

Our aim for this section is to present an extension to NLCL which will allow us
to analyse scope islands, and therefore example (2).

To analyse scope islands, we need some way to block quantifier movement. If
you look at the IBC-rules in Fig. 1, you will notice that they allow constituents
attached to (the left of) a hollow product to move past solid products. This leads
us to suggest a fairly simple solution: insert anything that is not solid product.
For this, we use a residuated pair of unary connectives, ♦ and � [13,15]. The
relevant rules are presented in Fig. 2.

Fig. 2. Scope Islands for NLCL.
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Using these connectives, we can assign ‘said’ the type (np\s)/♦s. Instead of tak-
ing a sentence-argument from the right, ‘said’ now takes a closed-off sentence—a
scope island. Have a look at the derivation for example (2) given below:

...
Kurt • wrote • every • book 	 s ♦R〈Kurt • wrote • every • book〉 	 ♦s

...
someone • (np \ s) 	 s

/L
someone • said • 〈Kurt • wrote • every • book〉 	 s

As long as the scope island (written 〈·〉) is in place, ‘every•book’ cannot be
raised past it, for there is no rule which allows anything to move past a diamond.
But in order to remove the scope island, it has to be eliminated against the ♦s
argument of ‘said’, and doing so isolates the embedded clause in its own branch
of the proof.6

4 Strong and Weak Quantifiers

In the previous section, we presented an extension to NLCL which enabled us
to analyse scope islands. This extension blocks all quantifier movement out of
scope islands. Example (3) demonstrates that this is too coarse an approach.
Specifically, we would like to allow weak quantifiers, such as indefinites, to scope
out of scope islands.

We could approach this issue as a syntactic problem, and encode it using
structural rules, as we did with quantifier movement and scope islands.7 However,
Szabolcsi [16] writes that “indefinites acquire their existential scope in a manner
that does not involve movement and is essentially syntactically unconstrained.”
Therefore, we feel that a syntactic approach would be out of place.

How do we approach the problem of weak quantifiers as a semantic prob-
lem? The solution is to use continuation-passing style (CPS). But how? Early
attempts, such as the work by [2], often works by applying a CPS translation
directly to the semantic terms. Such approaches, however, face a fundamental
dilemma. Because the CPS translation is applied to a solitary semantic term, a
deterministic translation cannot introduce scope ambiguity—or any ambiguity,
for that matter. However, making the CPS translation sufficiently nondetermin-
istic without causing spurious ambiguity is an arduous task. When Barker makes
the translation ambiguous, in order to capture scope ambiguity, this leads to the
number of introduced ambigous interpretations growing exponentially with the
sentence length. More recent approaches, such as the work by Kiselyov and Shan
[11], are much more sophisticated. Their approach allows for the creation of quan-
tifiers of different strengths (e.g. everyone1, everyone2, . . . ) essentially reducing
6 The presence of the structural diamond in the endsequent may seem problematic, but

recall that from the perspective of backward-chaining search we assign semantics to
a known sentence structure. If we switch to forward-chaining search, i.e. to parsing,
the need for a scope island will be inferred from the type of ‘said’.

7 For instance, we could split the family �, ◦,� into two separate families, �w, ◦w,� w

and �s, ◦s,� s, each with their own copies of the IBC-rules, and add a structural
rule which selectively allows weak quantifiers to move past scope islands.
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scope ambiguity to lexical ambiguity. As a linguistic standpoint, this feels wrong.
Furthermore, their framework was engineered to be able to analyse phenomena
such as scope islands and weak quantifiers. This makes it too expressive (and
intricate) for the task at hand.

Instead, we base our CPS semantics on the approach of Moortgat and Moot
[14] and Bastenhof [6], who manage to elegantly integrate CPS semantics into
their grammar logic. Moortgat and Moot set up a calculus which enforces one
crucial property: every proof in the grammar logic is associated with unique,
normal-form semantics. In the context of scope ambiguity, this means that each
way to interpret a sentence with ambiguous scope corresponds to exactly one
proof in the grammar logic.

Focused NLCL. Moortgat and Moot [14, Sect. 3.1] define a normal-form calcu-
lus for the Lambek-Grishin calculus (LG). They refer to this calculus as fLG—for
focused LG, after the technique, pioneered by Andreoli [1], which they use in
their calculus. Their version of focusing, however, is more general than that
of Andreoli, as they allow for the arbitrary assignment of polarities to atoms.
Andreoli’s [1] schema can be recovered by assigning all atomic formulas negative
polarity.

As NL is a fragment of LG, we can trivially extract a normal-form calculus
for NL from their work. We will, in their style, refer to this calculus as fNL.

It is important to note that they develop their calculus within the framework
of display calculus [7]. One advantage of this framework is that we can freely
add structural rules, without fear that we will lose the cut-elimination property.
Barker and Shan’s [4] extension of NL, NLCL, consists solely of a copy of an exist-
ing modality (�, ◦,� ) and a number of structural rules. Therefore, by applying
these same changes, we can extend fNL to focsed NLCL—or fNLCL. The result is
presented in Fig. 3, together with the focused version of the extension for scope
islands from Sect. 3.

Equivalence between fNLCL and NLCL can likely be proven using an inter-
mediate system: display NLCL. One can trivially obtain this system from the
focused system in Fig. 3 by dropping the focus marker “ ” and the focusing
and unfocusing rules. Equivalence between the display and focused variants of
a system was proven for classical NL by Bastenhof [5]. This proof can likely be
adapted for NLCL.

However, it is important to realise that, even in the absence of a formal proof
of equivalence between NLCL and fNLCL, the second remains a logical system
which can analyse all phenomena which Barker and Shan [4] show NLCL can
analyse.8

Decidable Proof Search. At this point, fNLCL still has a problem, which
it shares with NLCL: we do not have a decidable procedure for proof search.
Since it is a grammar logic, this means that we do not have a procedure for

8 Throughout the remainder of the paper, whenever we discuss one of the phenomena
discussed in Sect. 1, we will give an example proof in fNLCL. In this way, by the end
of this paper, this claim will be backed up by evidence.



140 W. Kokke

Fig. 3. NLCL reworked as a focused display calculus.

parsing. An easy way to obtain such a procedure is to change the system in such
a way that backward-chaining search becomes decidable. The reason this is not
decidable in NLCL is because of the I-rule, which does not obey the substructure
property.9

Admittedly, there are other rules which do not obey the substructure prop-
erty: the residuation rules and the B and C rules do not enjoy it. However, the
residuation rules still enjoy a weak form this property: they do not increase the
size of the structure. This means that we can use loop checking to filter out
problematic branches of the search. More interestingly, the B and C rules have
the property that “whatever goes up, must come down.” At some point, the
quantifier will reach the top of the expression, and at that point, there are only
two things to do: (1) resolve the quantifier against the top-level type, thereby
eliminating a connective and breaking out of any loop; or (2) go back down along
9 In the case of NLCL, this is the subformula property.
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the same path. Yet when searching for a proof with the I-rule, we can always
introduce another I.

We will address this issue by restricting access to the I-rule using a license.
This license will be a new unary connective, written QA. Semantically, this
logical connective corresponds to a hollow product with a right-hand I (i.e.
A ◦ I). However, as we want neither hollow products, nor the unit I, on the
logical level, we capture these in a single connective. We remove the I-rule, and
add the following three rules to the calculus in Fig. 3:

·A · ◦ I 	 Δ IL·QA · 	Δ

Γ 	 B
IR

Γ ◦ I 	 QB

Γ 	 Δ
I−

Γ ◦ I 	 Δ

The first two of these rules are the display calculus rules for right-hand products.
The third is the remaining direction of the original I-rule. With this change,
quantifier raising is restricted to expressions of the form Q(C� (A � B)), and
proof search becomes decidable.

One problem which remains is that the B and C rules cause a huge amount
of spurious ambiguity. To see why, note that when raising multiple quantifiers, it
is possible to intersperse the various applications of the B and C rules in many
different ways. To solve this, we will take some inspiration from Barker and
Shan [4, ch. 17.6], who solve this issue, albeit in a convoluted way. They show
that NLλ can be embedded in NLCL, using a variant of Schönfinkel’s mapping
from λ-terms to combinatory logic. Later, they show that a pair of derived
rules, � Lλ and �Rλ, can serve as a normal-form for the structural rules of
NLCL. However, these derived rules employ the structural λ which, in the context
of NLCL, is presumably immediately translated using Schönfinkel’s mapping.
Instead of employing this two-step process, we exploit the similarities between
single-hole contexts and linear λ-terms to derive a variant of the λ-rule which
directly uses Schönfinkel’s mapping (written ·) [cf. [4], ch. 17.5]:

� = I

Σ • Γ = ((C • Σ) • Γ )

Γ • Σ = ((B • Γ ) • Σ)

·A · ◦ Σ 	 Δ ↑↓
Σ[·QA·] 	 Δ

We can use this mapping in the definition of a derived rule: the ↑↓-rule, written
as ↑ or ↓, depending on the direction in which it is applied.10 We can derive the
this rule using three lemmas:

Q/I:
Σ[·A · ◦ I ] 	 Δ

Q/I
Σ[·QA·] 	 Δ

I−′:
Σ[Γ ] 	 Δ

I−′
Σ[Γ ◦ I ] 	 Δ

↑↓′:
Γ ◦ Σ[Γ ′] 	 Δ ↑↓′
Σ[Γ ◦ Γ ′] 	 Δ

Using these lemmas, we can derive the two directions of ↑↓ as follows:

↑:
·A · ◦ Σ 	 Δ ↑↓′

Σ[·A · ◦ I ] 	 Δ
Q/I

Σ[·QA·] 	 Δ

↓:

Σ[·A·] 	 Δ
I−′

Σ[·A · ◦ I ] 	 Δ ↑↓′
·A · ◦ Σ 	 Δ

10 These correspond to Barker and Shan’s [4, p. 201] expansion and reduction rules,
respectively.
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The lemmas themselves can be derived by induction on the structure of the
context Σ. The derivation of Q/I and I−′ is done as follows:

�: ·A · ◦ I 	 Δ IL·QA · 	Δ
Σ • Γ :

Σ[·A · ◦ I ] • Γ 	 Δ
Res/•

Σ[·A · ◦ I ] 	 Δ / Γ
Q/I

Σ[·QA·] 	 Δ / Γ
Res/•

Σ[·QA·] • Γ 	 Δ

Γ • Σ:

Γ • Σ[·A · ◦ I ] 	 Δ
Res\•

Σ[·A · ◦ I ] 	 Γ \ Δ
Q/I

Σ[·QA·] 	 Γ \ Δ
Res\•

Γ • Σ[·QA·] 	 Δ

�: ·A · 	Δ
I−

·A · ◦ I 	 Δ
Σ • Γ :

Σ[·A·] • Γ 	 Δ
Res/•

Σ[·A·] 	 Δ / Γ
I−′

Σ[·A · ◦ I ] 	 Δ / Γ
Res/•

Σ[·A · ◦ I ] • Γ 	 Δ

Γ • Σ:

Γ • Σ[·A·] 	 Δ
Res\•

Σ[·A·] 	 Γ \ Δ
I−′

Σ[·A · ◦ I ] 	 Γ \ Δ
Res\•

Γ • Σ[·A · ◦ I ] 	 Δ

These rules simply introduce or eliminate the unit I under some context Σ.
The actual movement takes place in the definition of ↑↓′. In this proof, the base
case is simply the identity, as no movement is required to move out of the empty
context:

Σ • Γ :

Γ ◦ ((C • Σ[Γ ′]) • Γ ′′) 	 Δ
C

(Γ ◦ Σ[Γ ′] • Γ ′′ 	 Δ
Res/•

Γ ◦ Σ[Γ ′] 	 Δ / Γ ′′
↑↓′

Σ[Γ ◦ Γ ′] 	 Δ / Γ ′′
Res/•

Σ[Γ ◦ Γ ′] • Γ ′′ 	 Δ

Γ • Σ:

Γ ◦ ((B • Γ ′′) • Σ[Γ ′]) 	 Δ
B

Γ ′′ • (Γ ◦ Σ[Γ ′]) 	 Δ
Res\•

Γ ◦ Σ 	 Γ ′′ \ Δ ↑↓′
Σ[Γ ◦ Γ ′] 	 Γ ′′ \ Δ

Res\•
Γ ′′ • Σ[Γ ◦ Γ ′] 	 Δ

Note that the ↑-rule eliminates a logical connective—the Q—and therefore
has the subformula property. In addition, the ↓-rule, on the other hand, elimi-
nates the trail of Bs and Cs, and thus has the substructure property. Because
of this, proof search with these rules is decidable.

Furthermore, proof search with the ↑↓-rule is complete. Briefly, this is true
because the IBC-rules can do nothing but move a constituent up, or down
along an existing path—the ↑↓-rule mere captures this more succintly. A formal
proof of this can be given by implementing a normalisation function using the
commutative conversions for the B and C rules: one can move the applications of
the B and C rules around until they form a continuous sequence (interspersed
with residuation rules) starting (or ending) with an application of the I-rule.
This sequence of applications can then be replaced by a single application of the
↑↓-rule. Therefore, proof search using the ↑↓-rule is complete with repsect to the
IBC-rules.

We follow Barker and Shan [4], and derive rules corresponding to the �Lλ-
and �Rλ-rules. These rules combine an application of ↑↓-rule with an application
of� L or �R. We name them qL and qR, to signify that they no longer employ
a structural λ, and because they can be composed to implement Moortgat’s [13]
q-connective:
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qL:

Σ 	 A � B C 	 Δ
� L

C� (A � B) 	 Δ� Σ
FocL

·C� (A � B) · 	Δ� Σ
Res� ◦

·C� (A � B) · ◦ Σ 	 Δ ↑
Σ[·Q(C� (A � B))·] 	 Δ

qR:

Σ[·A·] 	 ·B· ↓
·A · ◦ Σ 	 ·B· Res◦�
Σ 	 ·A · � · B·

�R
Σ 	 ·A � B·

As these rules eliminate at least one logical connective each, they still enjoy the
subformula property, so proof search with these rules is decidable. In fact, it is
slightly more efficient than with the ↑↓-rule. The reason for this is that after
raising a quantifier, the only course of action is applying the� L-rule anyway—
and likewise for qR.11

Henceforth, if we refer to proof search for fNLCL, we are referring to search
using the logical and residuation rules for \, •, /, �, ◦,� and ♦,�, and the qL
and qR rules.12

Continuation Semantics for NLCL. A normal-form calculus for proof search
is a great improvement, but we were really after Moortgat and Moot’s [14, Sect.
3.1] CPS semantics. As with the calculus itself, we can trivially restrict their
translation function to fNL, and then extend it to cover fNLCL. In Fig. 4, we
present the translation on types and sequents.

We extend the translation on types to a translation on structures as follows:
we translate all structural constants (I,B,C) as units, forget all unary structural
connectives (♦,�), and translate all binary structural connectives as products.
Atomic structures ·A· are translated as �A�− or �A�+, depending on the polarity
of the structure ·A·.

Fig. 4. CPS semantics for focused NLCL.

11 This can be proven using a variant of Barker and Shan’s [4, ch. 17.6 and 17.7] proof
of equivalence between NLλ and NLCL.

12 In fact, no proof will ever explicitly use the logical or residuation rules for �, ◦,� ,
leading to a question of whether it is really necessary for � and � to be fully resid-
uated logical implications. But this is a matter for another paper.
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In this particular CPS translation, all function applications and abstractions
are contained within the focusing and unfocusing rules, which are translated as
follows:

x : �Δ� 	 M : �A�−
FocL

k : �A�+ 	 (λx.k M) : �Δ�R

x : �A�+ 	 M : �Δ�R

UnfL
y : �Δ� 	 (λx.M y) : �A�−

x : �Γ � 	 M : �A�+

FocR

x : �Γ � 	 (λk.k M) : �A�−R

x : �Γ � 	 M : �A�−R

UnfR
x : �Γ � 	 (λy.M y) : �A�+

The other rules are translated either as axioms (AxL, AxR), identities (\R, /R,
�R,� R and all rules for ♦, �) or permutations (the rest). For instance,

x : �Γ � 	 M : �A�+ y : �Δ� 	 N : �B�−
\L

z : �Γ � × �Δ� 	 (M [π1z/x], N [π2z/y]) : �A�+ × �B�−

An exception to this are the I-rules. Because we would like to be able to
simply forget the Q-connective upon translation, so that we do not have to store
unnecessary units in our lexicon, we have to insert or remove the units upon
using these rules.

Using these semantics, we can assign the indefinite article the type np / n.13

This will result in two interpretations for (2), and three interpretations for (3),
as required. Let us consider the important steps in the derivation of (3):

1. the quantifier movement and scope taking of “everyone”;
2. the collapsing of the scope island, isolating the clause “[S Kurt .. Mary]” in

its own branch of the derivation;
3. the collapsing of “a book”, with the indefinite taking scope at the top-level.

If these steps are taken [1,2,3], we obtain interpretation (3a); if they are taken
[1,3,2], we obtain (3b); and if they are taken [3,1,2], we obtain (3c).14

5 Examples

In this section, we will present a number of analyses of the examples presented
in Sect. 1. In the interest of brevity, we will summarise numerous applications of
the residuation rules, beginning or ending with focusing or unfocusing rules with
‘dp’, for display postulate. In addition, we will leave out uninteresting subproofs.

First off, we present an analysis of (1), resulting in interpretation (1b).
The quantifier every is assigned the type Q(s� (np � s)) / n, and someone
is assigned the type of a “strong” quantifier—that is to say, Q(s� (np � s)).

13 Quantifiers such as “someone” should be assigned the type np / n ⊗ n, which means
we must also extend NLCL with logical products.

14 The normal-form requires that 1 occurs before 2, so this list is exhaustive.
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AxR

book 	 n

...
·np · •read • ·np · 	 · s·

qR
� • read • ·np· 	 ·np � s·

UnfR

� • read • ·np· 	 np � s
AxL

s 	 ·s·
qL

someone • read • ·np · 	 · s·
qR

someone • read • � 	 ·np � s·
UnfR

someone • read • � 	 np � s
AxL

s 	 ·s·
someone • read • ·Q(s� (np � s)) · 	 · s·

qL
someone • read • ·Q(s� (np � s)) · 	 · s·

dp
Q(s� (np � s)) 	 read \ (someone \ ·s·)

/L
every 	 (read \ (someone \ ·s·)) / book

dp
someone • read • every • book 	 ·s·

Secondly, we present an analysis of (2), resulting in interpretation (2a)—the only
interpretation.

...
Kurt • wrote • every • book 	 s

♦L
〈Kurt • wrote • every • book〉 	 ♦s

...

np \ s 	 ·np · \ · s·
/L

said 	 (·np · \ · s·) / 〈Kurt • wrote • every • book〉
dp

·np · • said • 〈Kurt • wrote • every • book〉 	 ·s·
qR

� • said • 〈Kurt • wrote • every • book〉 	 ·np � s·
UnfR

� • said • 〈Kurt • wrote • every • book〉 	 np � s
AxL

s 	 ·s·
qL

someone • said • 〈Kurt • wrote • every • book〉 	 ·s·
As a third example, we show that we can analyse ‘a’ as a weak quantifier, using
the type np / n. We give an analysis of (3), resulting in the interpretation where
the indefinite takes wide scope—(3b). The quantifier ‘a’ takes scope when it is
combined with book.

AxR
book 	 ·n·

...
everyone • said • 〈Kurt • dedicated • ·np · • to • mary〉 	 ·s·

dp
np 	 (dedicated \ (Kurt \ [(said \ (everyone \ ·s·))])) / (to • mary)

/L
a 	 ((dedicated \ (Kurt \ [(said \ (everyone \ ·s·))])) / (to • mary)) / book

dp
everyone • said • 〈Kurt • dedicated • a • book • to • mary〉 	 ·s·

Lastly, we present analyses of examples (4) and (5). We demonstrate changing
result types using the word ‘which’, which we assign the type

Q(((n \ n) / (np \ s)� (np � np))).

In the second, for parasitic scope, we deviate slightly from Barker’s [3] treatment
of parasitic scope. We assign ‘same’ (and ‘different’) the type

Q(s� (Q(np � s� ((n� n) � np � s)) � s)).
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What this type does is quantify over an expression twice—once normally, to plant
its top-level quantifier, and once parasitically. Using this type, we can obtain the
semantics advocated by Kiselyov [10]. The proofs for these two examples can be
found in Fig. 5.

6 Conclusion

We presented an improvement over Barker and Shan’s [4] NLCL for which deriv-
ability is decidable, and which has a normal-form for proof search. In addition, it
can analyse scope islands, and distinguish between strong and weak quantifiers,
shown by the ability to analyse examples (1–5). Of these examples, (1–3) are
representative examples of scope islands and strong and weak quantifiers, for
which Kiselyov and Shan [11] provides a purely semantic analysis. The remain-
ing examples, (4) and (5), are examples from the work by Barker and Shan [4]
which motivated us to start from their syntactic approach.
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