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Abstract. CNL, intoduced by de Groote and Lamarche [11], is a conser-
vative extension of Nonassociative Lambek Calculus (NL) by a De Mor-
gan negation ∼, satisfying A∼/B ⇔ A\B∼. [11] provides a fine theory
of proof nets for CNL and shows cut elimination and polynomial decid-
ability. Here the purely proof-theoretic approach of [11] is enriched with
algebras and phase spaces for CNL. We prove that CNL is a strongly
conservative extension of NL, CNL has the strong finite model prop-
erty, the grammars based on CNL (also with assumptions) generate the
context-free languages, and the finitary consequence relation for CNL is
decidable in polynomial time.

Keywords: Lambek calculus · Phase space · Sequent system · Type
grammar

1 Introduction

NL, due to Lambek [13], admits formulas built from variables and the connectives
⊗, \, /. The axioms and the rules are as follows.

(NL-id) A ⇒ A

(⊗ ⇒) Γ [(A,B)]⇒C
Γ [A⊗B]⇒C (⇒ ⊗) Γ⇒A Δ⇒B

(Γ,Δ)⇒A⊗B

(\ ⇒) Γ [B]⇒C Δ⇒A
Γ [(Δ,A\B)]⇒C (⇒ \) (A,Γ )⇒B

Γ⇒A\B

(/ ⇒) Γ [A]⇒C Δ⇒B
Γ [(A/B,Δ)]⇒C (⇒ /) (Γ,B)⇒A

Γ⇒A/B

(NL-cut) Γ [A]⇒B Δ⇒A
Γ [Δ]⇒B

This is a sequent system for NL. Sequents are of the form Γ ⇒ A, where A is a
formula and Γ is a formula structure. Formula structures are defined recursively:
(i) all formulas are formula structures, (ii) if Γ and Δ are formula structures,
then (Γ,Δ) is a formula structure. Formula structures represent the elements of
the free groupoid generated by formulas. A context Γ [ ] is a formula structure
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containing one special formula x. Γ [Δ] denotes the substitution of Δ for x in
Γ [ ]. We reserve A,B,C,D for formulas and Γ,Δ,Θ for formula structures.

NL is strongly complete with respect to residuated groupoids (see Sect. 2 for
the definition). Recall that a logic (in the form of a sequent system) is strongly
complete with respect to a class of (ordered) algebras C, if the following equiva-
lence holds: Γ ⇒ A is provable in this logic from the set of sequents Φ if and only
if, for any algebra from C and any valuation μ, Γ ⇒ A is true for μ whenever all
sequents from Φ are true for μ. The right-hand side of this equivalence expresses
the semantic entailment: Γ ⇒ A follows from Φ in C. For systems considered
here, Γ ⇒ A is true for μ, if μ(Γ ) ≤ μ(A).

NL1 is NL admitting empty antecedents of sequents and containing the con-
stant 1, the axiom (a-1) ⇒ 1 and the rules:

(1 ⇒)
Γ [Δ] ⇒ A

Γ [(1,Δ)] ⇒ A
,

Γ [Δ] ⇒ A

Γ [(Δ, 1)] ⇒ A
.

NL1 is strongly complete with respect to residuated unital groupoids.
Classical Nonassociative Lambek Calculus (CNL) can be presented as an

extension of NL with negation ∼, admitting the axioms A∼∼ ⇔ A, A∼/B ⇔
A\B∼ and the transposition rule:

A ⇒ B

B∼ ⇒ A∼ .

Here A ⇔ B replaces two sequents: A ⇒ B and B ⇒ A. In [11], CNL is
presented as a Schütte style (i.e. one-sided) sequent system in language ⊗,⊕,∼,
where A⊕B is equivalent to (B∼⊗A∼)∼. So ⊕ corresponds to the operation ‘par’
in linear logics. We do not follow the popular notation of Girard [10], but replace
it with a notation used in substructural logics [9]. CNL is a nonassociative variant
of Cyclic Noncommutative MALL [15], but it lacks the multiplicative units.

In Sect. 2 we define CNL-algebras, i.e. the ordered algebras corresponding to
CNL. We also define phase spaces, appropriate for nonassociative logics without
units. We show that CNL-algebras arise from symmetric phase spaces, satisfying
a compatibility condition.

In Sect. 3 we present CNL as a dual Schütte style system, which seems closer
to the syntax of NL and the framework of type grammars. We discuss the strong
completeness of CNL with respect to CNL-algebras and phase spaces. In par-
ticular, we outline a model-theoretic proof of cut elimination, similar to those
for different substructural logics (see [9] for a discussion). Theorem 2 states that
CNL is a strongly conservative extension of NL; we give a model-theoretic proof.
At the end we briefly discuss analogous results for related logics: CNL1, i.e. CNL
with constants 1 and 0, CNL and CNL1 with ∨,∧, and others.

In Sect. 4 we prove an interpolation lemma for CNL (with assumptions),
analogous to the interpolation lemma for NL [4,8]. Using this lemma, we prove
the strong finite model property (SFMP) for CNL (see [9] for the definition), the
context-freeness of the languages generated by CNL-grammars and the polyno-
mial time decidability of the consequence relation for CNL. These results remain
true for CNL1. At the end, we discuss their status for other logics.
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The size limits do not allow us to study CNL−, i.e. the variant of CNL
with two negations ∼,−, satisfying A∼− ⇔ A, A−∼ ⇔ A, A∼/B ⇔ A\B− and
the transposition rules. CNL− is a nonassociative variant of Noncommutative
MALL [1], also called Classical Bilinear Logic in [14]; again it lacks units. The
corresponding algebras are briefly discussed in Sect. 2. We only note here that
CNL− does not have SFMP. A∼ ⇒ A− entails A− ⇒ A∼ in finite CNL−-
algebras, since a∼ < a− enforces the infinite chain a < a∼∼ < a∼∼∼∼ < . . .;
there exist infinite CNL−-algebras such that a∼ < a−, for some element a.

2 Algebras and Phase Spaces

The algebraic models of NL are residuated groupoids M = (M,⊗, \, /,≤) such
that (M,≤) is a nonempty poset and ⊗, \, / are binary operations on M ,
satisfying:

(RES) a ⊗ b ≤ c iff b ≤ a\c iff a ≤ c/b ,

for all a, b, c ∈ M . The models of NL1 are residuated unital groupoids, i.e.
residuated groupoids containing the unit element for ⊗ (denoted by 1). It follows
that 1\a = a, a/1 = a.

A pair ∼,− of unary operations on a poset (P,≤) is called an involutive pair
of negations, if for all a, b ∈ P the following conditions are satisfied:

(TR) if a ≤ b then b∼ ≤ a∼ and b− ≤ a−,
(DN) a−∼ = a, a∼− = a;

if ∼ equals −, then ∼ is called a De Morgan negation (then a∼∼ = a).
The models of CNL are residuated groupoids M with a De Morgan negation

∼ satisfying the compatibility condition:

(COM) for all a, b, c ∈ M , if a ⊗ b ≤ c then c∼ ⊗ a ≤ b∼.

We refer to these algebras as CNL-algebras. Unital CNL-algebras (i.e. with the
unit for ⊗) are called CNL1-algebras.

In any CNL-algebra the following conditions are equivalent: a⊗b ≤ c, c∼⊗a ≤
b∼, b ⊗ c∼ ≤ a∼. On the basis of other axioms, (COM) is equivalent to:

(TR’) a\b∼ = a∼/b for all a, b ∈ M ,

and either of the following transposition laws: a\b = a∼/b∼, a/b = a∼\b∼.
In any CNL-algebra one defines the dual product : a ⊕ b = (b∼ ⊗ a∼)∼. The

following equations hold:

a\b = a∼ ⊕ b, a/b = a ⊕ b∼.

Consequently, ⊕, \, / are definable in terms of ⊗,∼.
In any CNL1-algebra one defines: 0 = 1∼. Then, 1 = 0∼, 0 is the unit for ⊕,

and a∼ = a\0 = 0/a.
CNL−-algebras are residuated groupoids M with an involutive pair of nega-

tions, satisfying:
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(COM−) for all a, b, c ∈ M , if a ⊗ b ≤ c then c− ⊗ a ≤ b− and b ⊗ c∼ ≤ a∼.

Unital CNL−-algebras are referred to as CNL1−-algebras. In any CNL−-algebra
the three conditions in (COM−) are equivalent. (COM−) is equivalent to:

(TR”) a∼/b = a\b−, for all a, b ∈ M .

Hence in any CNL1−-algebra, 1∼ = 1−. One defines 0 = 1∼ and obtains: a∼ =
a\0, a− = 0/a.

CNL−-algebras (resp. CNL-algebras) are term equivalent to (resp. cyclic)
involutive p.o. groupoids [9].

The equation (a− ⊗ b−)∼ = (a∼ ⊗ b∼)− is valid in CNL−-algebras. One
defines a ⊕ b = (b− ⊗ a−)∼ and obtains:

a\b = a∼ ⊕ b, a/b = a ⊕ b−.

Consequently, ⊕, \, / are definable in terms of ⊗,∼ ,−.
These algebras can be constructed from phase spaces, i.e. structures (M, ·, R)

such that (M, ·) is a groupoid and R ⊆ M2. We focus on symmetric phase spaces
(R is symmetric).

A closure operation on a poset (P,≤) is a map C : P �→ P , satisfying:
(C1) x ≤ C(x), (C2) if x ≤ y then C(x) ≤ C(y), (C3) C(C(x)) ≤ C(x), for
all x, y ∈ P . A nucleus on a p.o. groupoid (M, ·,≤) is a closure operation C on
(M,≤), satisfying: (C4) C(x)·C(y) ≤ C(x·y). If M is a residuated groupoid, then
C is a nucleus on (M, ·,≤) iff C is a closure operation on (M,≤) and satisfies:
(C4’) x\y and y/x are C-closed for any x ∈ M and any C-closed y ∈ M . Recall
that x is C-closed, if C(x) = x.

Let R ⊆ M2. For X ⊆ M , one defines:

X∼ = {a ∈ M : ∀b∈XR(b, a)}, X− = {a ∈ M : ∀b∈XR(a, b)}.

The maps ∼,− are a Galois connection on P(M): X ⊆ Y ∼ iff Y ⊆ X−. Con-
sequently, X ⊆ Y entails Y ∼ ⊆ X∼ and Y − ⊆ X−. The maps φR(X) = X−∼

and ψR(X) = X∼− are closure operations on (P(M),⊆). It follows that X is
φR−closed (resp. ψR−closed) iff X = Y ∼ (resp. X = Y −) for some Y .

Proposition 1. The following conditions are equivalent. (i) X∼ = X− for all
X ⊆ M , (ii) R is symmetric: R(a, b) entails R(b, a), for all a, b ∈ M .

Let (M, ·, R) be a symmetric phase space. Then, φR = ψR. By MR we denote
the family of φR-closed subsets of M . Clearly ∼ is a De Morgan negation on
(MR,⊆).

Let (M, ·, R) be a phase space. For X,Y ⊆ M , one defines: X · Y = {a · b :
a ∈ X, b ∈ Y }, X\Y = {y ∈ M : X · {y} ⊆ Y }, X/Y = {x ∈ M : {x} · Y ⊆ X}.
P(M) with ·, \, /,⊆ is a residuated groupoid. Let C be a nucleus on (P(M), ·,⊆).
Then, (MC ,⊗C , \C , /C ,⊆) is a residuated groupoid, where MC is the family of
C−closed subsets of M , X ⊗C Y = C(X ·Y ), and \, / are the operations defined
on P(M), restricted to MC . If · is associative (resp. commutative), then ⊗C is
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associative (resp. commutative). If 1 is the unit for · in M, then C({1}) is the
unit for ⊗C (see e.g. [9]).

By a phase space for CNL we mean a symmetric phase space (M, ·, R), sat-
isfying the compatibility condition:

(COM-R) for all a, b, c ∈ M , R(a · b, c) iff R(a, b · c).

Phase spaces for CNL− are defined in a similar way except that the symmetry
of R is replaced with φR = ψR.

Proposition 2. For any phase space, (COM-R) holds if and only if, for all
X,Y,Z ⊆ M , X · Y ⊆ Z∼ iff Z · X ⊆ Y −.

Proof. We show (⇒). X ·Y ⊆ Z∼ is equivalent to ∀x∈X∀y∈Y ∀z∈ZR(z, x ·y), and
Z · X ⊆ Y − to iff ∀z∈Z∀x∈X∀y∈Y R(z · x, y). Both statements are equivalent, by
(COM-R). For (⇐), take X = {b}, Y = {c}, Z = {a}. Now {b} · {c} ⊆ {a}∼ iff
R(a, b · c), and {a} · {b} ⊆ {c}− iff R(a · b, c). ��
Corollary 1. For any phase space, (COM-R) holds if and only if, for all Y,Z ⊆
M , Z∼/Y = Z\Y −.

Theorem 1. Let (M, ·, R) be a phase space for CNL. Then MR, ordered by ⊆,
with operations ⊗φR and \, /,∼, restricted to MR, is a CNL-algebra.

Proof. First, we show that φR satisfies (C4’). Using (COM-R), we show that
{a}\{b}∼ = {b · a}∼ and {a}∼/{b} = {b · a}∼ for all a, b ∈ M . We have:
c ∈ {a}\{b}∼ iff a · c ∈ {b}∼ iff R(b, a · c) iff R(b ·a, c) iff c ∈ {b ·a}∼. The second
equation is proved similarly (use the symmetry of R). This yields X\Y ∼ =
(Y ·X)∼ and X∼/Y = (Y ·X)∼, for all X,Y ⊆ M , by the well-known distribution
laws: · distributes over infinite joins in both arguments, \ (resp. /) distributes
over infinite meets in the second (resp. first) argument and converts joins into
meets in the first (resp. second) argument, and ∼ converts joins into meets. So
for X = {ai}i∈I , Y = {bj}j∈J we have:

X\Y ∼ =
⋂

i∈I

⋂

j∈J

{ai}\{bj}∼ =
⋂

i∈I

⋂

j∈J

{bj · ai}∼ = (Y · X)∼.

Let X ⊆ M , Z ∈ MR. Then Z = Y ∼ for some Y . Hence X\Z = (Y · X)∼

belongs to MR, and similarly for Z/X.
Since φR is a nucleus on (P(M), ·,⊆), then MR with ⊗φR , \, /,⊆ is a residu-

ated groupoid. Since R is symmetric, ∼ is a De Morgan negation on MR. (TR’)
X\Y ∼ = X∼/Y , for X,Y ∈ MR, has been shown in the preceding paragraph;
(TR’) also follows from Corollary 1. ��

If (M, ·, R) is a phase space for CNL, then the CNL-algebra constructed above
is referred to as the complex algebra of the phase space. Worthy of noting, every
CNL-algebra M is isomorphic to a subalgebra of the complex algebra of the
phase space (M,⊗, R), where R is defined by: R(a, b) iff a ≤ b∼. Let [a]↓ denote
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the principal downset in (M,≤) generated by a, i.e. [a]↓ = {x ∈ M : x ≤ a}.
Then, [a]↓ = {a∼}∼. (Here ∼ is used in two meanings: the inner one as an
operation in M, the outer one as an operation on P(M).) The so-defined R is
symmetric and [a]↓ ∈ MR. The map h(a) = [a]↓ is the required isomorphism.
We omit the proof.

Remark 1. In fact, for any symmetric phase space (M, ·, R), (COM-R) holds
if and only if φR is a nucleus and (TR’) (equivalently (COM)) holds in the
complex algebra.

A unital phase space is a structure (M, ·, 1, R) such that (M, ·, 1) is a uni-
tal groupoid and R ⊆ M2. A phase space for CNL1 is a unital phase space
(M, ·, 1, R) such that (M, ·, R) is a phase space for CNL. The analogue of
Theorem 1 remains true. Now φR({1}) is the unit for ⊗φR in the complex algebra.

For unital phase spaces, (COM-R) implies:

(Eq-R) R(a, b) iff R(1, a · b) iff R(a · b, 1).

R can be represented by a set O ⊆ M , satisfying:

(COM-O) for all a, b, c ∈ M , a · (b · c) ∈ O iff (a · b) · c ∈ O.

For R ⊆ M2, we define OR = {a ∈ M : R(1, a)}, and for O ⊆ M , we define
RO = {(a, b) ∈ M2 : a · b ∈ O}. By (Eq-R), ROR

= R and ORO
= O. Fur-

thermore, R satisfies (COM-R) iff OR satisfies (COM-O). So there is a one-one
correspondence between relations R ⊆ M2 satisfying (COM-R) and sets O ⊆ M
satisfying (COM-O). Therefore, unital phase spaces, satisfying (COM-R), can
also be defined as structures (M, ·, 1, O) such that (M, ·, 1) is a unital groupoid
and O ⊆ M satisfies (COM-O). This resembles the standard definitions of phase
spaces for linear logics [1,10,15].

Remark 2. If 1 is not present, then we can define OR = {a · b : R(a, b)}
and RO as above, but this only yields the inclusions: R ⊆ ROR

and ORO
⊆

O. O satisfies (COM-O) iff RO satisfies (COM-R). On the other hand, if OR

satisfies (COM-O), then R satisfies (COM-R), but the converse implication fails.
If, however, (M, ·) is a free groupoid, then there is a one-one correspondence
between relations R ⊆ M2 and sets O ⊆ M such that each element of O is of
the form x · y, for some x, y ∈ M . Also R satisfies (COM-R) iff OR satisfies
(COM-O).

Let (M, ·, 1, O) be a unital phase space. The symmetry of RO is equivalent
to the cyclic law for O:

(Cy) for all a, b ∈ M , if a · b ∈ O then b · a ∈ O.

Accordingly, a phase space for CNL1 can be defined as a unital phase space
(M, ·, 1, O), satisfying (COM-O) and (Cy). Observe that X∼ = X\O = O/X,
for any X ⊆ M . We denote φO = φRO

, and similarly for ψO, MO. O is φO-closed,
since O = {1}∼. So O ∈ MO; also O∼ is the unit for ⊗φO and O is the unit for
the dual product. If M does not contain 1, then O, even satisfying (COM-O)
and (Cy), need not belong to MO.
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Example 1. Consider the phase space (M, ·, O) such that M = Σ+, · is the
concatenation of strings, and O is the set of all strings of length 1. Clearly O
satisfies (COM-O) and (Cy). So the complex algebra of (M, ·, RO) is a CNL-
algebra. We have ∅∼ = Σ+ and X∼ = ∅ for X �= ∅. Therefore MO = {∅, Σ+}
and O �∈ MO.

Example 2. We construct a phase space (M,+, R) such that (M,+) is a
commutative semigroup, R ⊆ M2 is symmetric and satisfies (COM-R), but
R �= RO, for any O ⊆ M . Let M consist of all pairs of positive integers. For
a, b ∈ M , a = (a1, a2), b = (b1, b2), we set a + b = (a1 + b1, a2 + b2). Let R
consist of all (a, b) ∈ M2 such that neither a, nor b is of the form x + y, for
any x, y ∈ M . Clearly R is symmetric and satisfies (COM-R). Assume R = RO

for some O ⊆ M . Since R((1, 2), (2, 1)), then (3, 3) ∈ O. We have (3, 3) =
(1, 1) + (2, 2), which yields R((1, 1), (2, 2)). This contradicts the definition of R,
since (2, 2) = (1, 1) + (1, 1). ��

This example shows that the notion of a phase space with a relation R is
essentially wider than that with a set O for the non-unital spaces, even based on
(commutative) semigroups. Therefore the former may also be useful in the theory
of associative linear logics with no multiplicative units (not only in language,
but in the corresponding algebras). Clearly (COM-O) (resp. (Cy)) holds for any
O ⊆ M , if · is associative (resp. commutative).

3 Logics

We present a dual Schütte style system for CNL. Formulas are built from vari-
ables p, q, . . ., negated variables p∼, q∼, . . ., and connectives ⊗,⊕. A,B,C,D
range over formulas. By S we denote the free groupoid generated by all formu-
las. Γ,Δ,Θ range over elements of S. These elements are represented as formula
structures. The groupoid operation is: Γ · Δ = (Γ,Δ).

In CNL, sequents are formula-structures, containing at least two formulas; the
set of all sequents is denoted by S(2). So the distinction between quasi-sequents
and sequents in [11] corresponds to our distinction between formula-structures
and sequents. In axioms and rules of our systems (and after the provability
symbol �) we omit outer parentheses, e.g. we write � Γ,Δ for � (Γ,Δ). The
axioms and the rules of CNL are as follows.

(id) p, p∼

(r-⊗) (A,B),Γ
A⊗B,Γ (r-⊕) A,Γ B,Δ

A⊕B,(Δ,Γ )

(r-sym) Γ,Δ
Δ,Γ (r-com)

(Γ,Δ),Θ

Γ,(Δ,Θ)

(r-⊗), (r-⊕) are the introduction rules for connectives, and (r-sym), (r-com)
are the structural rules (expressing the symmetry of R and the condition (COM-
R) in phase spaces for CNL).
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We write Γ ∼ Δ, if Δ can be derived from Γ by finitely many applications
of (r-sym), (r-com). Clearly ∼ is an equivalence relation (but not a congruence
in S).

Proposition 3. For any sequent Γ ′ ∈ S(2), containing one marked formula A,
there exists a unique Δ′ ∈ S such that Γ ′ ∼ (A,Δ′).

Proof. We describe an algorithm which reduces Γ ′ to some sequent (A,Δ′). We
underline the substructure containing A. The reduction rules are as follows.

(R1) (Γ,Δ) → (Δ,Γ )
(R2) ((Γ ,Δ), Θ) → (Γ , (Δ,Θ))
(R3) ((Γ,Δ), Θ) → (Δ, (Θ,Γ ))

Each reduction step can be executed by applying at most three instances of
(r-sym), (r-com). This procedure is deterministic. If we run it on a sequent Γ ′ ∈
S(2), then the algorithm terminates in finitely many steps and yields (A,Δ′).

The uniqueness of Δ′, satisfying Γ ′ ∼ (A,Δ′), follows from the fact:

(F1) if Γ ′ reduces to (A,Δ′) and Θ′ ∼ Γ ′, then Θ′ reduces to (A,Δ′).

The proof of (F1) has two parts: (I) one proves it for Θ′ resulting from Γ ′ by
one application of (r-sym) or (r-com), (II) one proves (F1) by induction on the
number of applications of (r-sym), (r-com) leading from Γ ′ to Θ′. We skip details.

Now assume that Γ ′ ∼ (A,Δ) and Γ ′ ∼ (A,Δ′). Then (A,Δ) ∼ (A,Δ′). By
(F1), (A,Δ) reduces to (A,Δ′). Since the algorithm stops on sequents of this
form, then Δ = Δ′. ��

Example 3. Take Γ ′ = ((B, (C ′, A)), (C,D)). The reduction looks as follows:

Γ ′ →R3 ((C ′, A), ((C,D), B)) →R3 (A, (((C,D), B), C ′)).

Due to Proposition 3, the introduction rules can be restricted to the left-most
occurrences of formulas in sequents, as above.

We say that a reduction of Γ ′ to (A,Δ′) preserves a substructure Θ of Γ ′,
if Θ can be replaced by a variable in the whole reduction. The reduction in
Example 3 preserves (C,D).

Lemma 1. Assume that Γ ′ reduces to (A,Δ′) and Θ is a substructure of Γ ′,
which does not contain A. Then, the reduction preserves Θ.

Proof. Let Γ1 result from Γ ′ after one has replaced Θ by a new variable p. By
Proposition 3, Γ1 reduces to a sequent (A,Δ1). Now we substitute Θ for p in the
whole reduction, which yields the reduction of Γ ′ to a sequent (A,Δ). We have
Δ = Δ′, since the algorithm is deterministic. Consequently, the reduction of Γ ′

to (A,Δ′) preserves Θ. ��
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Let M be a CNL-algebra. A valuation in M is a homomorphism of the free
algebra of CNL-formulas into M such that μ(p∼) = μ(p)∼, for any (non-negated)
variable p. The valuation μ is extended for sequents, by setting: μ((Γ,Δ)) =
μ(Γ )⊗μ(Δ). The sequent (Γ,Δ) is true for μ in M, if μ(Γ ) ≤ μ(Δ)∼. A sequent
is valid in M, if it is true for all valuations in M.

The above system of CNL is weakly complete: the provable sequents are
precisely the sequents valid in all CNL-algebras. Since the system is cut-free, its
weak completeness entails the cut-elimination theorem (see below). Soundness
is easy. The proof of completeness is a routine modification of similar proofs
for different substructural logics, tracing back to Lafont [12]; see [9] for a wider
discussion. Since for CNL and its variants no proof can be found in the literature,
we give some details. We write � Γ if Γ is provable in CNL.

In metalanguage, one defines A∼ for any formula A:

(p∼)∼ = p

(A ⊗ B)∼ = B∼ ⊕ A∼ (A ⊕ B)∼ = B∼ ⊗ A∼

By formula induction, one proves A∼∼ = A and μ(A∼) = μ(A)∼, for any
formula A and any valuation μ in M. Also � A,A∼, for any A.

It is convenient to write Γ ⇒ A for the sequent (Γ,A∼); due to (r-sym),
it is deductively equivalent to (A∼, Γ ). Clearly Γ ⇒ A is true for μ in M, if
μ(Γ ) ≤ μ(A). We define [A] = {Γ ∈ S :� Γ ⇒ A}.

We consider the phase space (M, ·, R) such that (M, ·) = (S, ·) and R =
{(Γ,Δ) ∈ S2 :� Γ,Δ}. Since (M, ·) is a free groupoid, R can be replaced by the
set OR = {(Γ,Δ) ∈ S : R(Γ,Δ)} (see Remark 2 in Sect. 2). Due to (r-com), (r-
sym), R is symmetric and satisfies (COM-R). By Theorem 1, MR with inclusion
and ⊗φR , \, /,∼ is a CNL-algebra. For any formula A, we have: [A] = {A∼}∼. So
[A] is φR-closed for any formula A.

We define a valuation μ in MR:

μ(p) = [p] = {p∼}∼, μ(p∼) = μ(p)∼ . (1)

By formula induction, one proves:

A ∈ μ(A) ⊆ [A], for any formula A. (2)

We only consider the case: A ⊗ B. Since A ∈ μ(A), B ∈ μ(B), then (A,B) ∈
μ(A) · μ(B) ⊆ μ(A ⊗ B). We use the fact:

(F2) if (A,B) ∈ X and X is φR-closed then A ⊗ B ∈ X.

Let X = Y ∼, (A,B) ∈ X. Then, for all Γ ∈ Y , � (A,B), Γ , hence � A ⊗ B,Γ ,
by (r-⊗). So A ⊗ B ∈ X. Consequently A ⊗ B ∈ μ(A ⊗ B).

We show μ(A ⊗ B) ⊆ [A ⊗ B]. Since [A ⊗ B] is φR-closed, it suffices to show
μ(A) · μ(B) ⊆ [A ⊗ B]. Let Γ ∈ μ(A), Δ ∈ μ(B). Then, Γ ∈ [A], Δ ∈ [B], hence
� A∼, Γ , � B∼,Δ. By (r-⊕), � (A ⊗ B)∼, (Γ,Δ), which yields (Γ,Δ) ∈ [A ⊗ B].
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Now assume �� Γ,Δ. By Proposition 3, there exists a sequent (A,Θ) ∼ (Γ,Δ).
Then �� A,Θ, hence Θ �∈ [A∼]. By (2), Θ �∈ μ(A∼) and Θ ∈ μ(Θ). Consequently
(A,Θ) is not true for μ in the complex algebra of (M, ·, R). It follows that (Γ,Δ)
is not true, since the set of true sequents is invariant under ∼. This finishes the
proof of weak completeness.

The sequents valid in CNL-algebras are closed under the cut rule:

(cut)
Γ [A] A∼,Δ

Γ [Δ]
.

Therefore (cut) is admissible in the cut-free system of CNL. By Proposition 3,
this rule can also be formulated in the form:

(cut’)
A,Γ A∼,Δ

Δ, Γ
.

The system of CNL with (cut’) is strongly complete with respect to CNL-
algebras: the sequents provable from a set of assumptions Φ are precisely those
which follow from Φ in CNL-algebras.

Let f(Γ ) be the formula arising from Γ after one has replaced each comma by
⊗. Every sequent (Γ,Δ) is deductively equivalent to (f(Γ ), f(Δ)). This is easy
to prove with applying (cut); for the cut-free system one can use the reversibility
of (r-⊗). Therefore, without lost of generality, we assume that all sequents in Φ
are of the form (A,B).

In the proof of strong completeness, one constructs the complex algebra of
(S, ·, R), where R = {(Γ,Δ) ∈ S : Φ � Γ,Δ}. Now [A] = {Γ ∈ S : Φ � Γ ⇒ A},
and μ is defined by (1).

In the presence of (cut’), the inclusion in (2) can be replaced by μ(A) = [A];
so A ∈ μ(A) may be omitted. We use the fact:

(F3) if X is φR-closed, A ∈ X and Φ � Γ ⇒ A, then Γ ∈ X.

This is needed to prove that all sequents from Φ are true for μ in the complex
algebra. Let (A,B) ∈ Φ. Then, A ∈ [B∼], hence [A] ⊆ [B∼], by (F3). Conse-
quently μ(A) ⊆ μ(B∼) = μ(B)∼.

Remark 3. We have shown in Sect. 2 that not every phase space (M, ·, R) can
be replaced by (M, ·, O). The above proof shows that CNL is strongly complete
with respect to phase spaces of the latter form, satisfying (COM-O) and (Cy)
(even based on free groupoids). It follows that every CNL-algebra is isomorphic
to a subalgebra of the complex algebra of some space (M, ·, O) such that (M, ·)
is a free groupoid.

The connectives \, / can be defined by: A\B = A∼⊕B, A/B = A⊕B∼. Each
NL-sequent Γ ⇒ A can be treated as a CNL-sequent Γ ⇒ A, i.e. (A∼, Γ ). We
prove that CNL with (cut’) is a strongly conservative extension of NL with (NL-
cut). The weak conservativeness was proved in [11] by proof-theoretic methods.

Theorem 2. Let Φ be a set of NL-sequents (of the form C ⇒ D), and let Γ ⇒ A
be an NL-sequent. Then, Φ �NL Γ ⇒ A iff Φ �CNL Γ ⇒ A.
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Proof. The only-if part is easy. The easiest proof uses the strong completeness,
hence soundness, of NL with respect to residuated groupoids and the strong
completeness of CNL with respect to CNL-algebras. We prove the if-part.

We consider the free groupoid (M, ·) generated by all NL-formulas and for-
mally negated NL-formulas A∼, i.e. A with superscript ∼. The elements of M
are represented as formula-structures, as above. We define O ⊆ M as the small-
est set which contains all (A∼, Γ ) such that Φ �NL Γ ⇒ A and is closed under
(r-sym), (r-com). Clearly each element of O contains at least two formulas and
exactly one negated formula.

We consider the complex algebra MO, i.e. MR for R = RO. Since O satisfies
(COM-O) and (Cy), MO is a CNL-algebra, by Theorem 1.

For any NL-formula A, we define [A] = {Γ : Φ �NL Γ ⇒ A}. We show
[A] = {A∼}∼. Clearly [A] ⊆ {A∼}∼, by the definition of O. We prove {A∼}∼ ⊆
[A]. Let Γ ∈ {A∼}∼. Then (A∼, Γ ) ∈ O. By the definition of O, there exists
a NL-sequent Δ ⇒ A such that Φ �NL Δ ⇒ A and (A∼, Γ ) ∼ (A∼,Δ). By
Proposition 3, Γ = Δ (take A∼ as the marked formula). Consequently Γ ∈ [A].

So all sets [A] are φO-closed. We define μ by (1). By formula induction we
show μ(A) = [A] for any NL-formula A. This is obvious for p.

The cases A\B, A/B are treated in the same way as in analogous proofs
for NL. Let us consider A\B. Assume Γ ∈ μ(A\B). Since A ∈ μ(A), then
(A,Γ ) ∈ μ(B). So (A,Γ ) ∈ [B], which yields Γ ∈ [A\B], by (⇒ \). Assume
Γ ∈ [A\B]. By the reversibility of (⇒ \) in NL, (A,Γ ) ∈ [B]. Let Δ ∈ μ(A).
Then Δ ∈ [A], which yields (Δ,Γ ) ∈ [B], by (NL-cut). So (Δ,Γ ) ∈ μ(B) for any
Δ ∈ μ(A), and consequently Γ ∈ μ(A\B).

The case A ⊗ B needs (F2), (F3), which remain true for NL-formulas. We
prove (F2). Let X = Y ∼, (A,B) ∈ X. Then, (Γ, (A,B)) ∈ O for any Γ ∈ Y .
We fix Γ ∈ Y . Let C∼ be the only negated formula in Γ ; we treat C∼ as the
marked formula. By Proposition 3, there is a unique Δ such that (Γ, (A,B)) ∼
(C∼,Δ). By the construction of O, Φ �NL Δ ⇒ C. By Lemma 1, the reduction
of (Γ, (A,B)) to (C∼,Δ) preserves (A,B), hence Δ = Θ[(A,B)]. Accordingly
Φ �NL Θ[A⊗B] ⇒ C, by (⊗ ⇒), hence (C∼, Θ[A⊗B]) ∈ O. Clearly (Γ,A⊗B) ∼
(C∼, Θ[A⊗B]). Consequently (Γ,A⊗B) ∈ O. This yields A⊗B ∈ X. (F3) can
be proved in a similar way (� in (F3) means �NL).

We prove [A ⊗ B] ⊆ μ(A ⊗ B). Since A ∈ μ(A), B ∈ μ(B), then (A,B) ∈
μ(A) ·μ(B) ⊆ μ(A⊗B). By (F2), A⊗B ∈ μ(A⊗B). Hence [A⊗B] ⊆ μ(A⊗B),
by (F3). We prove μ(A ⊗ B) ⊆ [A ⊗ B]. Since [A ⊗ B] is φO-closed, it suffices to
show μ(A) · μ(B) ⊆ [A ⊗ B], which amounts to [A] · [B] ⊆ [A ⊗ B]. This holds,
by (⇒ ⊗).

Now assume Φ ��NL Γ ⇒ A. Then Γ ∈ μ(Γ ), Γ �∈ [A] = μ(A), and con-
sequently Γ ⇒ A is not true for μ. Let C ⇒ D ∈ Φ. μ(C) ⊆ μ(D) follows
from [C] ⊆ [D]. Therefore Γ ⇒ A does not follow from Φ in CNL-algebras.
Consequently Φ ��CNL Γ ⇒ A. ��

The results of this section can be extended for several richer logics. Proofs
are similar, and we omit them.
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First, we consider CNL with ∼ in the language. So formulas are built from
variables and ⊗,⊕,∼. One adds the rules:

(r-∼∼) A,Γ
A∼∼,Γ

(r-⊗∼) A∼,Γ B∼,Δ
(A⊗B)∼,(Γ,Δ) (r-⊕∼) (B∼,A∼),Γ

(A⊕B)∼,Γ .

This system is equivalent to the former one in a strong sense. Every formula
with ∼ can be translated into a formula without ∼ (except its occurrences at
variables), using the metalanguage definition of ∼, given above. The translation
can be extended for sequents and sets of sequents. Γ is provable from Φ in CNL
with ∼ if and only if the translation of Γ is provable from the translation of Φ
in CNL without ∼.

CNL1 is obtained by adding the constants 1, 0, treated as atomic formulas,
and:

(a-0) 0, (r-1)
Γ

1, Γ
.

The new axiom (a-0) introduces a sequent containing only one formula. We
define sequents as all elements of S. The set of formula-structures is defined as
the free unital groupoid S1 = S ∪ {λ}, where λ satisfies Γ · λ = Γ = λ · Γ . One
may imagine λ as the ‘empty structure’. Γ and Δ may be empty in (r-⊗), (r-⊕).

For CNL1 without ∼, the metalanguage negation is defined as above, with:
1∼ = 0, 0∼ = 1. Given a CNL1-algebra and a valuation μ, one sets μ(λ) = 1.
A sequent Γ ∈ S is said to be true for μ, if μ(Γ ) ≤ 0. For sequents (Γ,Δ) this
amounts to the former definition of a true sequent.

CNL1 (in both versions) admits cut elimination, since the cut-free system
is weakly complete with respect to CNL1-algebras. With (cut’) it is strongly
complete. CNL1 is a strongly conservative extension of NL1.

CNL∗ is obtained from CNL1 by dropping 1 and 0. Since CNL∗ is strongly
complete with respect to CNL1-algebras, then CNL1 is a strongly conservative
extension of CNL∗. Notice that CNL∗ is stronger than CNL; p ⊗ p∼ is prov-
able in CNL∗, by (id) and (r-⊗), but not in CNL. In CNL1-algebras this law
expresses a ⊗ a∼ ≤ 0, which lacks sense in CNL-algebras without 0. The axiom
(id) expresses a ≤ a, which holds in all ordered algebras.

In the completeness proofs, the underlying unital groupoid is (S1, ·, λ) and
O consists of all provable sequents. Then O satisfies (COM-O) and (Cy), hence
the complex algebra is a CNL1-algebra. (1) is extended by: μ(0) = O, μ(1) =
φO({λ}).

If C is a closure operation on a complete lattice, then the C-closed sets
are closed under infinite meets. So they form a complete lattice. The results of
this section can be extended to CNL and CNL1 with lattice connectives ∨,∧,
satisfying the lattice laws. These logics may be called Full CNL and Full CNL1
(FCNL and FCNL1) by analogy with FNL, i.e. NL with ∨,∧. FCNL (resp.
FCNL1) is a strongly conservative extension of FNL (resp. FNL1).
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For FCNL, the connectives are ⊗,⊕,∨,∧. One adds three new rules.

(r-∧)
A,Γ

B ∧ A,Γ

A, Γ

A ∧ B,Γ
(r-∨)

A,Γ B, Γ

A ∨ B,Γ

In the complex algebra of (M, ·, R) (an arbitrary phase space) one defines:
X ∧ Y = X ∩ Y , X ∨ Y = φR(X ∪ Y ). With these operations the complex
algebra of a phase space for CNL is a lattice-ordered CNL-algebra. We refer to
these algebras as FCNL-algebras. FCNL1-algebras are defined in a similar way.

These results remain true for associative and/or commutative CNL-algebras
and CNL1-algebras. The associative FCNL1-algebras are the algebras of Cyclic
Noncommutative MALL [15]; the commutative and associative FCNL1-algebras
are the algebras of MALL [10]. The completeness results were proved in these
papers. The fact that Cyclic Noncommutative MALL is a (weakly) conservative
extension of FL1 was proved in Abrusci [2] by a tedious proof-theoretic argument.
This can be proved like Theorem2, which yields the strong conservativeness.

4 Main Results

We need an extended subformula property for Φ �CNL Γ . Let T be a set of
formulas. ST consists of all Γ ∈ S such that every formula in Γ belongs to T .
A T -sequent is a sequent Γ ∈ S2 ∩ ST . A T -proof is a formal proof from Φ in
CNL which consists of T -sequents only. We write Φ �T

CNL Γ , if there exists a
T -proof of Γ from Φ in CNL. We write � for �CNL and �T for �T

CNL. We define
[A]T = {Γ ∈ ST : Φ �T Γ ⇒ A}.

Lemma 2. Let T be a set of formulas, closed under subformulas and ∼. Let Φ
be a set of T -sequents of the form (A,B). For any T -sequent Γ0, Φ � Γ0 if and
only if Φ �T Γ0.

Proof. The if-part is obvious. For the only-if part, we consider the phase space
(M, ·, R) such that M = ST , · is defined as in Sect. 3, and R = {(Γ,Δ) ∈ (ST )2 :
Φ �T Γ,Δ}. Clearly R is symmetric and satisfies (COM-R). So the complex
algebra of (M, ·, R) is a CNL-algebra. We define: μ(p) = [p]T = {p∼}∼ for
p ∈ T ; the values of μ for p �∈ T may be arbitrary. One proves: μ(A) = [A]T for
any A ∈ T , by the same argument as in Sect. 3. Consequently, if Φ �T Γ0 does
not hold, then Γ0 is not true for μ, but all sequents in Φ are true for μ. Therefore
Φ � Γ0 does not hold. ��
Corollary 2. Let T be the smallest set of formulas, containing all formulas
occurring in Φ or Γ and being closed under subformulas and ∼. If Φ � Γ , then
Φ �T Γ .

We prove an interpolation lemma for CNL: every proper substructure Δ of
a provable sequent Γ can be replaced by a formula (an interpolant) from a
finite set.
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Lemma 3. Let T, Φ, Γ0 be as in Lemma 2, and let Δ0 be a substructure of Γ0,
Δ0 �= Γ0. We write Γ0 = Θ0[Δ0]. If Φ �T Γ0, then there exists D ∈ T such that
Φ �T D∼,Δ0 and Φ �T Θ0[D].

Proof. Assume Φ �T Γ0. We proceed by induction on T -proofs from Φ. If Δ0 is
a formula, then D = Δ0. So the thesis holds, if Γ0 is an axiom (id) or belongs
to Φ. We assume that Δ0 is not a formula.

Case: (r-⊗). Then D is the same as in the premise.
Case: (r-⊕). 1◦. Δ0 = (Δ,Γ ). Then D = (A ⊕ B)∼. 2◦. Δ0 is a substructure

of Γ or Δ. Then D is as in the appropriate premise.
Cases: (r-sym). D is as in the premise.
Case: (r-com) downwards. If Δ0 = (Δ,Θ), then D = D∼

1 , where D1 is the
interpolant of Γ in the premise. Otherwise D is the interpolant of Δ0 in the
premise. (r-com) upwards is treated in a similar way.

Case: (cut’). D is as in the appropriate premise. ��
There are two important consequences of Lemma 3.

Theorem 3. CNL has the strong finite model property (SFMP).

Proof. Let Φ be a finite set of sequents of the form (A,B). We show that for any
sequent Γ , if Φ �CNL Γ does not hold, then there exist a finite CNL-algebra M
and a valuation μ in M such that all sequents from Φ are true for μ, but Γ is
not true for μ.

Assume Φ �� Γ . Let T be defined as in Corollary 2. Clearly T is finite and
Φ ��T Γ . Let M be the complex algebra constructed in the proof of Lemma 2,
and let μ be defined as there. It suffices to show that M is finite, this means:
there are only finitely many φR-closed sets, i.e. sets of the form X∼, for X ⊆ ST .
We have X∼ =

⋂
Γ∈X{Γ}∼. So it suffices to show that there are only finitely

many sets of the form {Γ}∼.
Let Δ ∈ {Γ}∼. Then, Φ �T Γ,Δ. By Lemma 3, Φ �T Γ,D, for some D ∈ T

such that Φ �T D∼,Δ. We have: D ∈ {Γ}∼ and Δ ∈ [D]T . By (F3) (precisely:
its version for T -sequents and T -proofs), [D]T ⊆ {Γ}∼. Consequently, {Γ}∼ is
the union of some family of sets [D]T , for D ∈ T . There are only finitely many
sets [D]T such that D ∈ T , which yields our claim. ��

By a CNL-grammar we mean a triple G = (Σ, I,A0) such that Σ is a non-
empty, finite alphabet, I is a map from Σ to the family of finite sets of CNL-
formulas, and A0 is a CNL-formula. For any Γ ∈ S, we define a sequence of
formulas s(Γ ): s(A) = A, s((Γ,Δ)) = s(Γ )s(Δ), i.e. the concatenation of s(Γ )
and s(Δ). We say that G assigns A to the string a1 . . . an (ai ∈ Σ), if there
exists Γ ∈ S such that (A∼, Γ ) is provable, s(Γ ) = A1 . . . An and Ai ∈ I(ai) for
i = 1, . . . , n. Here ‘provable’ means ‘provable in CNL’. We also consider gram-
mars based on CNL augmented with finitely many assumptions; then ‘provable’
means ‘provable from Φ in CNL’, where Φ is the set of assumptions. The language
of G is the set of all x ∈ Σ+ such that G assigns A0 to x.
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Theorem 4. Let Φ be a finite set of sequents. Let G be a CNL-grammar based
on CNL augmented with the assumptions from Φ. Then, the language of G is a
context-free language.

Proof. Fix a grammar G = (Σ, I,A0). Let T be the smallest set of formulas
which contains A0 and all formulas appearing in Φ, I and is closed under sub-
formulas and ∼. Clearly T is finite. Let (A∼

0 , Γ ) be provable, Γ ∈ ST . Let (A,B)
be a substructure of Γ ; so Γ = Θ[(A,B)]. By Lemma 3, there exists D ∈ T
such that (D∼, (A,B)) and (A∼

0 , Θ[D]) are provable. Accordingly, every Γ ∈ ST

such that (A∼
0 , Γ ) is provable can be derived (as a derivation tree) from A0 by

means of context-free rules: A �→ B (resp. A �→ B,C) such that A,B,C ∈ T
and B ⇒ A (resp. (B,C) ⇒ A) is provable. The language of G is generated by
the context-free grammar with the terminal alphabet Σ, the nonterminal alpha-
bet T , the start symbol A0, and the production rules as above plus A �→ a for
A ∈ I(a). ��

Conversely, every ε-free context-free language is generated by some CNL-
grammar (without assumptions). This follows from Theorem2 and the fact that
every ε-free context-free language is generated by an NL-grammar [3].

Theorem 3 implies the decidability of the finitary consequence relation for
CNL. We prove that it is decidable in polynomial time. [11] shows the polynomial
time decidability of CNL.

Theorem 5. The relation Φ � Γ , for finite sets Φ and Γ ∈ S(2), is decidable in
polynomial time.

Proof. A sequent Γ ∈ S(2) is said to be restricted, if it is of the form (A,B),
(A, (B,C)) or ((A,B), C). So (id) and all sequents from Φ are restricted. Fix a
finite set Φ and Γ0 ∈ S(2). Let T be defined as in Corollary 2 (for Γ = Γ0).

By CNLT
r we denote the system whose axioms and rules are those of CNL

with (cut’), limited to restricted T -sequents. Clearly there are finitely many
restricted T -sequents. All sequents provable in CNLT

r from Φ can be determined
in polynomial time (in the size of Φ ∪ {Γ0}).

By CNLT
Φ we denote the system whose axioms are all sequents provable in

CNLT
r from Φ and the only inference rule is (cut) (now admitting unrestricted

T -sequents). Notice that (cut) is not the same as (cut’). Observe that every
restricted T−sequent provable in CNLT

Φ must be provable in CNLT
r from Φ (if

the conclusion of (cut) is restricted, then the premises are restricted; also (cut)
limited to restricted T -sequents is derivable in CNLT

r ). We prove:

Φ �T
CNL Γ iff Γ is provable in CNLT

Φ .

(⇐) is obvious. For (⇒), we observe that CNLT
Φ has the interpolation prop-

erty: if Θ0[Δ0] is provable and Δ0 �= Θ0[Δ0], then there exists D ∈ T such that
(D∼,Δ0) and Θ0[D] are provable.

First, one proves this property for CNLT
r with the assumptions from Φ in the

same way as Lemma 3. For rules (r-⊕), (r-com) one uses the fact that (A,A∼),
for A ∈ T , is provable in CNLT

r .
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Second, one shows this property for CNLT
Φ by induction on derivations based

on (cut), which is easy. The only interesting case is the following: Θ0[Θ1[Δ]] arises
by (cut) from A∼,Δ and Θ0[Θ1[A]], and Δ0 = Θ1[Δ]. Then, the interpolant of
Δ0 equals the interpolant of Θ1[A] in Θ0[Θ1[A]].

Third, one shows that all rules of CNL, restricted to T -sequents, are admis-
sible in CNLT

Φ . We only consider (r-sym). Let (Γ,Δ) be provable in CNLT
Φ . By

interpolation, there exist C ∈ T , D ∈ T such that (C,D), (C∼, Γ ), (D∼,Δ)
are provable in CNLT

Φ . Since (C,D) is provable in CNLT
r from Φ, then (D,C)

is provable in CNLT
r from Φ, and consequently, (Δ,Γ ) is provable in CNLT

Φ , by
two applications of (cut). This yields (⇒).

By Lemma 2, Φ �CNL Γ0 if and only if Γ0 is provable in CNLT
Φ . In particular,

for a restricted Γ0, Γ0 is provable in CNL from Φ if and only if Γ0 is provable in
CNLT

r . ��
We have noted in Sect. 1 that CNL− does not have SFMP. The status of

Theorems 4 and 5 for CNL− remains an open problem. They are true for the
pure CNL− (i.e. Φ = ∅); the proof will be given in another paper.

Chvalovsky [7] proves that the consequence relation for FNL is undecidable.
Since FCNL is a strongly conservative extension of FNL, then the consequence
relation for FCNL is undecidable (hence SFMP fails). On the other hand, the
analogues of Theorems 3 and 4 hold for DFCNL, i.e. FCNL admitting the dis-
tributive laws for ∨,∧, like for DFNL and its variants [5,6].
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