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Abstract. λ-DRT is a typed theory combining simply typed λ-calculus
with discourse representation theory, used for modelling the semantics of
natural language. With the aim of type-checking natural language texts
in the same vein as is familiar from type-checking programs, we propose
untyped λ-DRT with automatic type reconstruction. We show a princi-
pal types theorem for λ-DRT and how type reconstruction can be used
to make pronoun resolution type-correct, i.e. the inferred types of a pro-
noun occurrence and its antecedent noun phrase have to be compatible,
thereby reducing the number of possible antecedents.

Keywords: Pronoun resolution · Discourse representation theory ·
λ-DRT · Type reconstruction · Principal types

1 Introduction

In order to give a compositional semantics for discourse, [2] have extended the
non-compositional and first-order approach of Discourse Representation Theory
(DRT, [10]) by adding λ-abstraction and functional application. As is familiar
from Montague-semantics, the meaning of an expression can then be defined
bottom-up, by abstracting from the meaning contribution of the context; func-
tion application is then used to combine this meaning with those of expressions
from the context.

While DRT uses discourse representation structures, i.e. pairs of variables
and quantifier-free formulas, and avoids higher-order logic on its way to trans-
late natural language to first-order logic, Montague-grammar and λ-DRT make
heavy use of higher order types and are commonly expressed in a simply typed
language.

Our first goal is to have a type-free notation of λ-DRS-terms, such that
meanings can be written without types, but checked for typeability by “recon-
structing” suitable types from types of built-in constants (polymorphic function
words and monomorphic content words in the lexicon) and the context of occur-
rence. For this, we will show that most general types exist and can be inferred
automatically. The second goal is to integrate the type reconstruction into a pro-
gram for pronoun resolution. We want to be able to type-check when a pronoun
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resolution (i.e. the unification of the discourse variable of a pronoun with the
discourse referent of an antecedent) is type-correct, and moreover, we want to
use the type reconstruction for unresolved pronouns to filter possible antecedents
by their types and the type of the unresolved pronoun.

2 λ-DRT

Where [18] uses meanings like a �→ λPλQ∃x(P x ∧ Qx), man �→ λx.man(x)
and walks �→ λx.walk(x) and combines these by application to a man walks �→
∃x(man(x) ∧ walk(x)), in λ-DRT of [2], one uses somewhat different lexical
entries

λPλQ(
x ⊗ P x ⊗ Qx), λx

man(x)
, λx

walk(x)

and an operation ⊗ of merging discourse representation structures as in

x ⊗
man(x)

⊗
walk(x)

=
x
man(x), walk(x)

.

In general, two discourse structures are merged by appending their (disjoint)
lists of discourse referents (variables) and formulas, respectively:

x1, . . . , xm

ϕ1, . . . , ϕk
⊗ y1, . . . , yn

ψ1, . . . , ψp
=

x1, . . . , y1, . . .
ϕ1, . . . , ψ1, . . .

Since a variable in the referent list is seen as a binding, a binder of each merge-
factor can bind free variable occurrences in the formulas of both merge-factors.
In a discourse A man walks. He talks., the meanings of the sentences have to be
combined. The pronoun he in the second sentence introduces a new discourse
referent y with the appropriate property. The combination of the meanings of
the sentences is the merging

x
man(x), walk(x)

⊗ y
talk(y)

of their discourse structures, followed by pronoun resolution: the referent y of
the anaphoric pronoun is resolved against some previously introduced discourse
referent, here x. This can be implemented by adding an equational constraint
x = y to the merged DRS, or by unifying the variables.

If one assumes some co-indexing of pronouns and antecedent noun phrases
as a result of syntactic analysis, one can use the referent of the antecedent noun
phrase as referent of the anaphoric pronoun. Then, the binding is dynamic, i.e.
the scope extends beyond sentence boundaries as the discourse goes on:

x
man(x), walk(x)

⊗
talk(x)

.
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With type reconstruction for λ-DRT, one could just check the type-soundness
of pronoun resolution, i.e. that the semantic type of the pronoun occurrence fits
the semantic type of the referent of its antecedent. However, we want to use type
reconstruction to help pronoun resolution. To do so, we mark discourse referents
as anaphors or possible antecedents, use type reconstruction for λ-DRT to infer
types for the discourse referents, and then do pronoun resolution with typed
referents. Our typing rules for DRSs and DRT’s accessibility relation are closely
related.

2.1 Untyped λ-DRS-Terms

We use four kinds of raw expressions: terms, formulas, discourse representation
structures, and discourses:

Term: s, t := x (x ∈ V ar)

| c (c ∈ Const)

λ-DRS: D := x (x ∈ V ar)

| λxD

| (D1 · D2)

| 〈[], ϕ〉
| 〈x,D〉
| (D1 ⊗ D2)

Formula: ϕ,ψ := 

| R(t1, . . . , tn)

| t1=̇t2

| (ϕ ∧ ψ)

| ¬D

| (D1 ⇒ D2)

| (D1 ∨ D2)

Discourse: D := ε

| D ; D

All terms are atomic. Formulas are built from atomic formulas by conjunction
of formulas and (non-conjunctive) Boolean combinations of λ-DRSs.

A box or value-DRS D is a pair 〈[x1, . . . , xn], ϕ〉 of a list [x1, . . . , xn] of
variables and a formula ϕ, recursively defined by

〈[x1, x2, . . . , xn], ϕ〉 :=
{ 〈[], ϕ〉, n = 0,

〈x1, 〈[x2, . . . , xn], ϕ〉〉, else.

Two DRSs D1 and D2 may be merged to a DRS (D1 ⊗ D2). So far, the merge-
operator ⊗ is just a constructor. We will later add reduction rules which provide
the intended meaning of the merge of two value-DRSs (with disjoint variable
lists) as

〈[x1, . . . , xn], ϕ〉 ⊗ 〈[y1, . . . , ym], ψ〉 →∗ 〈[x1, . . . , xn, y1, . . . , ym], (ϕ ∧ ψ)〉.

Finally, we want to have abstraction and application of λ-DRSs. Note: We use
the pair notation 〈s, t〉 not for arbitrary terms s, t. Likewise for the types σ × τ :
the intention is that σ is an individual type, τ a DRS-type.
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The toplevel referents and the free variables of D are defined by

top(x) = ∅
top(λxD) = ∅

top(D1 · D2) = ∅
top(〈[], ϕ〉) = ∅
top(〈x,D〉) = {x} ∪ top(D)

top(D1 ⊗ D2) = top(D1) ∪ top(D2)

free(x) = {x}
free(λxD) = free(D) \ {x}

free(D1 · D2) = free(D1) ∪ free(D2)

free(〈[], ϕ〉) = free(ϕ)

free(〈x,D〉) = free(D) \ {x}
free(D1 ⊗ D2) = (free(D1) ∪ free(D2))

\ top(D1 ⊗ D2)

For formulas built from DRSs, we put

free(¬D) = free(D)
free((D1 ⇒ D2)) = free((D1 ∨ D2))

= free(D1) ∪ (free(D2) \ top(D1))

This is motivated by considering free variables of D2 (representing pronouns) as
bound by toplevel referents of D1 (their antecedents). However, these notions
are not stable under β-reduction →: for example, for D1 = λy〈[x], ϕ〉 · y and
D′

1 = 〈[x], ϕ〉 we have D1 → D′
1, but top(D1) = ∅ �= top(D′

1), and so (D1 ⇒ D2)
may bind less variables of D2 than (D′

1 ⇒ D2). Hence these definitions make
sense for expressions in β-normal form only.1

In Sect. 5 we define the meaning of application · by β-reduction, i.e. by reduc-
ing an application (t · s) to the substitution t[x/s] of free occurrences of x in t
by s. Some care is needed to avoid variable capture.

We treat toplevel referents of a merge-factor as binders with scope over all
factors. Hence, when substituting a free occurrence of x in (D1 ⊗ D2) by s, we
have to α-rename the top-level referents of D1 and D2 to avoid capturing free
variables of s. But we also have to rename toplevel referents of s when applying
[x/s] to (D1 ⊗ D2), since s might become a merge-factor, as for D1 = x, and
then its toplevel referents would capture free variables of D2. Since D1,D2, s
might have toplevel referents after some reductions, we define t[x/s] in such a
way that all bound variables and referents of t and s are renamed to fresh ones
before the free occurrences of x are replaced.2

1 In Sect. 6.2, the DRSs are computed bottom-up along the syntax tree, and at each
syntactic construction, the DRS resulting from a combination of the constituents’
DRSs is reduced.

2 Our implementation actually does the renaming only when applications are involved,
so λP ((P ·x)⊗(P ·y)) ·λzD copies λzD to get (λzD ·x)⊗(λzD ·y) and then renames
referents in D when treating the applications as (D[z/x] ⊗ D[z/x]). Thus, merge-
factors have disjoint reference lists, provided the lexical entries have.
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An essential clause in the definition of D[x/s] is:

(D1 ⊗ D2)[x/s] = (D′
1[x/s′] ⊗ D′

2[x/s′′]),

where D′
i is Di with top(D1⊗D2)∩free(s) renamed, and s′, s′′ are s with bound(s)

renamed. Similar clauses are needed to treat (D1 ⇒ D2)[x/s] and (D1∨D2)[x/s].
For example, if P is not in ϕ, then in

(〈[x], ϕ〉 ⊗ (P · x))[P/λxD] = (〈[x′], ϕ[x/x′]〉 ⊗ (P · x′)[P/λxD′])
= (〈[x′], ϕ[x/x′]〉 ⊗ D′[x/x′]),

D′ is D with toplevel referents renamed and hence does not bind free variables
of ϕ.

3 Typing Rules

Montague-semantics and λ-DRT usually come with base types e for entities and
t for truth values. As boxes are pairs 〈x , ϕ〉 of a list of individual variables and
a formula, it seems natural to give them the pair type e∗ × t, where e∗ is the
type of lists of entities. Instead, all boxes have another base type in [2], and the
type s → (s → t) of binary relations between situations s (resp. assignments of
entities to discourse referents) in [19]).

For the kind of semantic checking of texts we want to do, a more fine-grained
typing of DRSs is needed. One should distinguish between entities of different
kinds, i.e. replace the base type e by a family 〈ei〉i∈I of base types or sorts. The
type of a box 〈x , ϕ〉 then becomes a pair e × t, so that, essentially, a typed DRS
〈x , ϕ〉 : e × t is a pair of a type environment x : e and a formula ϕ : t.

The type e × t of a merge-DRS D1 ⊗ D2 then ought to be related to the
types e1 × t and e2 × t of the constituents D1 and D2 in that e is obtained by
appending e1 and e2, so e = append(e1, e2). However, since ⊗ is just a DRS-
constructor, we will likewise introduce a type constructor ⊗ and use a constraint
e = e1 ⊗e2 in the type reconstruction process. Since the length of referent- and
type-lists have to match –even if we had only a single sort of entities–, we cannot
use the list type constructor ∗, but build type lists by consing a type ei to a list
e of types, ei × e , beginning with the type 11 for the empty list paired with a
truth value.

Types:

σ, τ := α (type variables)
| ei (atomic types of individuals) | (σ × τ) (DRSs with non-empty ref-list)
| t (truth values) | (σ ⊗ τ) (merge-DRSs)
| 11 (DRSs with empty ref-list) | (σ → τ) (functions)

We call a type a drs-type, if it is of the forms α, 11, ei ×τ , or σ⊗τ with drs-types
σ and τ . We write σ×τ ×11 for (σ×(τ ×11)) and [σ1, . . . , σn] for σ1× . . .×σn ×11.
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Typing rules:

Typing variables (and constants),
abstractions and applications

x : σ, Γ � x : σ
(var1)

x �≡ y Γ � x : σ

y : τ, Γ � x : σ
(var2)

x : ρ, Γ � t : τ

Γ � λxt : (ρ → τ)
(abs)

Γ � t : σ → τ Γ � s : σ

Γ � (t · s) : τ
(app)

Using a typed DRS as a type context

Γ � x : σ

〈[], ϕ〉 : 11, Γ � x : σ
(var3)

y : ρ, D : τ, Γ � x : σ

〈y,D〉 : ρ × τ, Γ � x : σ
(var4)

D : ρ,E : σ, Γ � x : τ

(D ⊗ E) : (ρ ⊗ σ), Γ � x : τ
(var5)

Γ � x : τ

(D1 · D2) : σ, Γ � x : τ
(var6)

Γ � x : τ

λyD : σ, Γ � x : τ
(var7)

An assumption D : σ can only be used when D is a variable, a value-DRS,
or a merged DRS. The rules (var3) and (var4) amount to a typing rule

x1 : σ1, . . . , xn : σn, Γ � x : σ

〈[x1, . . . , xn], ϕ〉 : [σ1, . . . , σn], Γ � x : σ
(var+)

which says that a typed DRS as assumption is used as a list of typing assump-
tions of its top-level discourse referents. By (var5), assuming a typed merged
DRS amounts to assuming suitably typed merge-factors. By (var6) and (var7),
assumptions for typed applications and abstractions can be ignored.

We need typed DRSs as assumptions to type merge-DRSs, disjunctions,
implications and discourses (rules (⊗), (impl), (disj), ( ; )), where part of the DRS
to be typed contains top-level referents whose types have to be assumed to type
the rest of the DRS.

Typing value DRSs and merged DRSs

Γ � ϕ : t
Γ � 〈[], ϕ〉 : 11

(drs+1 )
x : σ, Γ � D : τ

Γ � 〈x,D〉 : (σ × τ)
(drs+2 )

D2 : τ2, Γ � D1 : τ1 D1 : τ1, Γ � D2 : τ2
Γ � (D1 ⊗ D2) : (τ1 ⊗ τ2)

(⊗)

Notice that in (drs+2 ) a variable is removed from the context and built into a
DRS. Hence, 〈x,D〉 corresponds to a binding operator, written δx.D in Kohlhase
e.a. [13] But in (⊗) a typed DRS is used like a type context to type another DRS,
whereby the scope of 〈x,D〉 : σ is extended to terms outside of D. This is what
Kohlhase e.a. [13] call “dynamic” binding of variables in D2 by binding operators
of D1.
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Typing formulas

Γ � t1 : τ1 . . . Γ � tn : τn

Γ � R : τ1 → (. . . → (τn → t) . . .)
Γ � R(t1, . . . , tn) : t

(rel)

Γ � t1 : e Γ � t2 : e

Γ � t1=̇t2 : t
(eqn)

Γ � ϕ : t Γ � ψ : t
Γ � (ϕ ∧ ψ) : t

(conj)

Γ � D : σ

Γ � ¬D : t
(neg)

Γ � D1 : σ1

D1 : σ1, Γ � D2 : σ2

Γ � (D1 ∨ D2) : t
(disj)

Γ � D1 : σ1

D1 : σ1, Γ � D2 : σ2

Γ � (D1 ⇒ D2) : t
(impl)

Discourses are sequences of sentences; to type the sequence of their DRSs,
each DRS is typed in the context extended by the previous DRSs. (Thereby we
can resolve pronouns anaphoric ally, to referents in the left textual context.)

Typing discourses

Γ � D1 : τ1 D1 : τ1, Γ � D2 : τ2
· · · Dn : τn, . . . , D1 : τ1, Γ � Dn+1 : τn+1

Γ � (D1 ; D2 ; . . . ; Dn+1) : ((. . . (τ1 ⊗ τ2) . . .) ⊗ τn+1)
( ; )

In typing a term, a typed assumption D : σ can only be used by decomposing
it to the typed top-level discourse referents of D, using (var3) to (var5). This
cannot be done if D is a variable, application, or abstraction. We ignore assumed
typed abstractions by (var7), which is harmless since they cannot evaluate to
boxes, but (var6), ignoring assumed typed applications, is not: they may reduce
to a box containing x as a top-level discourse referent and thus block an assump-
tion x : τ in Γ . We need to restrict (var6) to have a form of subject-reduction,
see Sect. 5.

By induction on the structure of terms, formulas and λ-DRSs t, we obtain:

Lemma 1. Suppose for all x ∈ free(t) and all types σ, Γ � x : σ iff Δ � x : σ.
Then Γ � t : τ iff Δ � t : τ .

Corollary 1. 1. If Γ, 〈[], ϕ〉 : 11,Δ � s : σ, then Γ,Δ � s : σ.
2. If x : ρ,E : τ, Γ � s : σ and x is not a top-level referent of E, then

E : τ, x : ρ, Γ � s : σ.

4 Type Reconstruction

We want to extend Hindley’s well-known “principal types”-theorem from (simply
typed) λ-calculus to λ-DRT. The theorem says that the set of typings Γ � t : τ
of a term t is the set of instances SΓ0 � t : Sτ0 of a single typing Γ0 � t : τ0,
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where S : TyVar → Ty are the assignments of types to type variables. Then
Γ0 � t : τ0 is a most general or principal typing of t. A (principal) typing of t
modulo Γ is a (principal) typing SΓ � t : σ for some type substitution S and
type σ.

It is not hard to see that instances of a DRS-typing are also typings of the
DRS.

Lemma 2. If Γ � D : σ and S : TyVar → Ty, then SΓ � D : Sσ.

More work is needed to show the existence of principal typings.

Theorem 1. There is an algorithm W that, given a type context Γ and a term
t, either returns a pair (U, τ) of a type substitution U : TyVar → Ty and a type
τ such that UΓ � t : τ is a most general typing of t modulo Γ , or returns ‘fail’,
if there is no (U, τ) such that UΓ � t : τ .

The algorithm W has an easy modification which, on input (Γ, e) where e has a
type in some instance of Γ , not only delivers (U, τ) such that UΓ � e : τ , but
also a variant e′ of e where variable bindings are annotated with types.

Proof. The proof is an extension of the proof of [6,9]. We only consider the cases
of variables and terms that are new in λ-DRT over the λ-calculus. Define W as
follows:

W (Γ, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Id, τ), Γ = x : τ, Γ ′ for some Γ ′,
W ((D : σ,E : τ, Γ ′), x), Γ = (D ⊗ E) : (σ ⊗ τ), Γ ′,
W ((z : σ,D : τ, Γ ′), x) Γ = 〈z,D〉 : σ × τ, Γ ′,
W (Γ ′, x), Γ = s : σ, Γ ′, else,
fail, else

W (Γ, 〈x,D〉) = Sα × Sτ, if W ((x : α, Γ ),D) = (S, τ) for fresh TyVar α

W (Γ, (D1 ⊗ D2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(US2S1, (US2τ1 ⊗ Uτ2)),
if for some τ1, τ2 and freshα2

W ((D2 : α2, Γ ),D1) = (S1, τ1),
W ((D1 : τ1, S1Γ ),D2) = (S2, τ2),
and U = mgu(τ2, S2S1α2) �= fail

fail, else

By induction on t, we want to show that for all Γ, S, τ :

(i) W (Γ, t) terminates.
(ii) If W (Γ, t) = fail, then there is no typing of t modulo Γ .
(iii) If W (Γ, t) = (S, τ), then SΓ � t : τ is a principal typing of t modulo Γ .
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Case t = x: (i) W (Γ, x) searches the type context from left to right, unpacking
boxes and merge-DRSs to lists of typed referents, and applies (var1) to the first
assumption x : τ found. Clearly, this terminates. (ii) If W (Γ, x) = fail, then
no assumption x : τ is found in the (unpacked) context, so x is untypeable,
since (var1) cannot be applied to x. (iii) If W (Γ, x) = (S, τ), then S = Id and
Γ = x : τ, Γ ′ for some Γ ′. Suppose RΓ � x : ρ is a typing of x modulo Γ . Then
RΓ = x : Rτ,RΓ ′, and hence ρ = Rτ by (var1). So RΓ � x : ρ is obtained
from SΓ � x : τ by instantiating with R.

Case t = (D1 ⊗ D2):

(i) W (Γ, (D1 ⊗ D2)) terminates, since by induction, W ((D2 : α, Γ ),D1) ter-
minates, for each (S1, τ1), W ((D1 : τ1, S1Γ ),D2) terminates, and for each
(S2, τ2), mgu(τ2, S2S1α) terminates.

(ii) Suppose there is a typing of (D1 ⊗ D2) modulo Γ . For some S, τ1, τ2, the
typing derivation ends in

D2 : τ2, SΓ � D1 : τ1 D1 : τ1, SΓ � D2 : τ2

SΓ � (D1 ⊗ D2) : (τ1 ⊗ τ2)
(⊗).

Thus there is a typing of D1 modulo D2 : α2, Γ , whence, by induc-
tion, W ((D2 : α2, Γ ),D1) �= fail, and there is a most general typing
D2 : S1α2, S1Γ � D1 : σ1 of D1 modulo (D2 : α2, Γ ). Since it is most
general, there is a type substitution T1 such that

D2 : τ2, SΓ � D1 : τ1 ≡ D2 : T1S1α2, T1S1Γ � D1 : T1σ1.

There is also a typing of D2 modulo

(D1 : τ1, SΓ ) ≡ (D1 : T1σ1, T1S1Γ ),

hence a typing of D2 modulo (D1 : σ1, S1Γ ). Therefore, by induc-
tion, W ((D1 : σ1, S1Γ ),D2) �= fail, and there is a most general typing
D1 : S2σ1, S2S1Γ � D2 : σ2 of D2 modulo (D1 : σ1, S1Γ ). Since it is most
general, there is a type substitution T2 such that

D1 : τ1, SΓ � D2 : τ2 ≡ D1 : T1σ1, T1S1Γ � D2 : τ2

≡ D1 : T2S2σ1, T2S2S1Γ � D2 : T2σ2.

So we have T2σ2 = τ2 = T1S1α2, and on the type variables of S1Γ and
σ1, T1 = T2S2. On type variables β of S1α2 which are not in S1Γ or σ1,
we have S2β = β as S2 is idempotent. We can assume that β is not in the
support of T2 and put T2β := T1β, obtaining T1β = T2S2β. Then from
T2σ2 = τ2 = T1S1α2 = T2S2S1α2, we know that σ2 and S2S1α2 unify,
so mgu(σ2, S2S1α2) �= fail. By the definition of W , it then follows that
W (Γ, (D1 ⊗ D2)) �= fail.

(iii) Suppose W (Γ, (D1 ⊗ D2)) = (US2S1, (US2σ1 ⊗ Uσ2)) with U, S1, S2, σ1, σ2

as in the definition of W . Then with fresh α2, W ((D2 : α2, Γ ),D1) =
(S1, σ1), W ((D1 : σ1, S1Γ ),D2) = (S2, σ2), and U = mgu(σ2, S2S1α2) �=
fail. By induction, we know that
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(a) D2 : S1α2, S1Γ � D1 : σ1 is a principal typing of D1 modulo (D2 :
α2, Γ ),

(b) D1 : S2σ1, S2S1Γ � D2 : σ2 is a principal typing of D2 modulo (D1 :
σ1, S1Γ ).

By specializing the typing in (a) with US2 and the one in (b) with U , one
obtains

D2 : US2S1α2, US2S1Γ � D1 : US2σ1,

and D1 : US2σ1, US2S1Γ � D2 : Uσ2.

Since US2S1α2 = Uσ2, we can apply the rule (⊗) and obtain a typing

US2S1Γ � (D1 ⊗ D2) : (US2σ1 ⊗ Uσ2)

of (D1 ⊗ D2) modulo Γ . It remains to be shown that this is a most general
typing.

So suppose (D1 ⊗ D2) has a typing modulo Γ . The last step in the typing
derivation is

D2 : τ2, SΓ � D1 : τ1, D1 : τ1, SΓ � D2 : τ2

SΓ � (D1 ⊗ D2) : (τ1 ⊗ τ2)
(⊗).

For the left subderivation of D2 : τ2, SΓ � D1 : τ1 we may assume τ2 = Sα2

for some fresh type variable α2. So D1 has a typing (S, τ1) modulo D2 :
α2, Γ . By a) there is a type substitution T1 such that (S, τ1) = (T1S1, T1σ1),
whence

D2 : τ2, SΓ � D1 : τ1 ≡ D2 : T1S1α2, T1S1Γ � D1 : T1σ1.

Now the right subderivation D1 : τ1, SΓ � D2 : τ2 is a derivation of

D1 : T1σ1, T1S1Γ � D2 : T1S1α2,

which is a typing of D2 modulo (D1 : σ1, S1Γ ). By b), there is a type
substitution T2 with

D1 : τ1, SΓ � D2 : τ2 ≡ D1 : T2S2σ1, T2S2S1Γ � D2 : T2σ2.

It follows that

SΓ � (D1 ⊗ D2) : (τ1 ⊗ τ2) ≡ &T2S2S1Γ � (D1 ⊗ D2) : (T2S2σ1 ⊗ T2σ2).

To show that this is an instance of the typing

US2S1Γ � (D1 ⊗ D2) : (US2σ1 ⊗ Uσ2),

we need a type substitution R such that T2 = RU on the type variables of
S2S1Γ , S2σ1 and σ2. We have T2σ2 = T1S1α2. As in (ii), T1 = T2S2 on the
type variables of S1α2, so T2τ2 = T2S2S1α, and since U = mgu(τ2, S2S1α2),
T2 = RU on the type variables of τ2 and S2S1α2. On other type variables
β, we have Uβ = β = Rβ and can redefine Rβ := T2β, to obtain T2 = RU
on all type variables of S2S1Γ , S2σ1 and σ2.
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The remaining cases of t can be treated similarly.

Example 1. The lexicon entry for the indefinite article a in λ-DRT of [13] is

λPλQ(δxi
 ⊗ P (̂ xi) ⊗ Q(̂ xi)) : (d, t), ((d, t), t)

where d is the type of individual concepts and t the type of DRSs. Simplify-
ing this to the extensional case and using the DRS-notation from above, type
reconstruction yields the principal typing

� λPλQ(〈[x],
〉 ⊗ Px ⊗ Qx) : (α → γ) → (α → δ) → [α] ⊗ γ ⊗ δ.

Instead of the basic type t for DRSs in [13], we have infinitely many types
[σ1, . . . , σn]. Moreover, we have the principal typing

man′ : e → t � λx〈[],man′ x〉 : e → 11.

The unreduced meaning term for a man therefore is

λPλQ(〈[x],
〉 ⊗ Px ⊗ Qx) · λx〈[],man′ x〉
and has the principal type (e → δ) → [e] ⊗ 11 ⊗ δ.

For the kind of semantic checking of natural language text that we are inter-
ested in, we need to distinguish between different sorts of individuals. Lexical
entries should assign different base types to the arguments of content words, in
particular verbs and nouns. It is then useful, if not imperative, to have a lexicon
with polymorphic types for the functional words like the indefinite article above,
rather than be forced to put into the lexicon all the instance types needed for a
specific application.

The type-checking in texts is slightly different from the one in programs: in
programs, we need to check that in applications f(a1, . . . , an), the type of the
arguments equal (or are subtypes of) the argument types of the function, while
in texts, in predications v(np1, . . . , npk) the types of the (generally quantified)
argument noun phrases have to be related by type-raising to the argument types
of the verb.

But in principle, we want to have the same phase distinction between type
checking and evaluation: we want to build meaning terms according to the syn-
tactic structure, then check if the meaning is typable, and only then perform
semantic evaluation. Thus, evaluation only needs to be defined on typed expres-
sions, and type checking would be pointless if evaluation would not preserve the
type of expressions.

5 Reduction

We assume the familiar β-reduction and congruence rules of λ-calculus,

(λxD · s) → D[x/s]
(β)

D → D′

λxD → λxD′ ,

D → D′

(D · E) → (D′ · E)
,

E → E′

(D · E) → (D · E′)
.
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The intended meaning of the merge (D1⊗D2) of two value-DRSs with disjoint
referent lists, D1 = 〈[x1, . . . , xn], ϕ〉 and D2 = 〈[y1, . . . , ym], ψ〉, is the value-DRS

〈[x1, . . . , xn, y1, . . . , ym], (ϕ ∧ ψ)〉.

We therefore define the reduction (resp. evaluation) of DRS-expressions by the
following δ-reduction rules:

〈[], ϕ〉 ⊗ 〈[], ψ〉 → 〈[], (ϕ ∧ ψ)〉 (δ1), 〈[], ϕ〉 ⊗ 〈y,E〉 → 〈y, 〈[], ϕ〉 ⊗ E〉 (δ2),

〈x,D〉 ⊗ E → 〈x,D ⊗ E〉 (δ3).

From these, the intended meaning for the merge of value-DRSs follows:

〈[x1, . . . , xn], ϕ〉 ⊗ 〈[y1, . . . , ym], ψ〉 →∗ 〈[x1, . . . , xn, y1, . . . , ym], (ϕ ∧ ψ)〉.

In order to use (δ1) - (δ3), by reductions we must achieve that arguments of
⊗ are value-DRSs. Hence we also need congruence rules for δ = 〈·, ·〉 and ⊗:

D → E

〈x,D〉 → 〈x,E〉 (δ4),
D → D′

(D ⊗ E) → (D′ ⊗ E)
(δ5),

E → E′

(D ⊗ E) → (D ⊗ E′)
(δ6),

so that reductions can be performed in subterms of 〈x,D〉, (D ⊗ E) as well as
λxD and (D1 · D2). Then the following reduction rules are derivable:

E →∗ E′

〈[], ϕ〉 ⊗ 〈y,E〉 →∗ 〈y, 〈[], ϕ〉 ⊗ E′〉 (δ+2 ),
D →∗ D′, E →∗ E′

〈x,D〉 ⊗ E →∗ 〈x,D′ ⊗ E′〉 (δ+3 ).

Normalization

It is obvious that applications of the δ-reduction rules do not lead to new occur-
rences of β-redexes. Therefore, expressions can be reduced by first performing
β-reductions as long as possible, and only then apply δ-reduction rules. If we start
with a typed expression, then from the strong normalization property for simply
typed λ-calculus the first will terminate. It is also clear that the δ-reduction rules
cannot lead to infinite reduction sequences.

Notice that on value-DRSs with disjoint top-level referents, ⊗ is associative,
if we consider formula conjunction to be associative, i.e. use list [ϕ1, . . . , ϕn] of
formulas, as we do in Sect. 6.2.

We would like to show that in a derivable typing statement Γ � s : σ,
where the “predicate” σ applies to the “subject” s, we may reduce the subject
and still the predicate σ applies. However, this is not quite true: when we reduce
a merge-DRS, the type constructor × is interpreted as a cons of a referent and
a referent list, and ⊗ is interpreted as an append of referent lists, and since the
type of a DRS mirrors its construction, we need to cons resp. append the lists
of types of the referents.
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We use the following type reductions, which amount to a recursive definition
of append (⊗) in terms of the empty list (11) and cons (×):

11 ⊗ 11 ⇀ 11
(δ′

1) 11 ⊗ (σ × ρ) ⇀ σ × (11 ⊗ ρ)
(δ′

2)

(σ × ρ) ⊗ τ ⇀ σ × (ρ ⊗ τ)
(δ′

3)

Moreover, type reduction may operate on embedded type expressions:

σ ⇀ σ′

σ × τ ⇀ σ′ × τ
(×′)

τ ⇀ τ ′

σ × τ ⇀ σ × τ ′ (×′′)

σ ⇀ σ′

σ ⊗ τ ⇀ σ′ ⊗ τ
(⊗′)

τ ⇀ τ ′

σ ⊗ τ ⇀ σ ⊗ τ ′ (⊗′′)

σ ⇀ σ′

(σ → τ) ⇀ (σ′ → τ)
(→′)

τ ⇀ τ ′

(σ → τ) ⇀ (σ → τ ′)
(→′′)

Example 1. (continued) Reducing the above term

λPλQ(〈[x],
〉 ⊗ Px ⊗ Qx) · λx〈[],man′ x〉
by β-reductions gives λQ(〈[x],
〉 ⊗ 〈[],man′ x〉 ⊗ Qx) and reducing further by
δ-reductions leads to

λQ(〈[x],
 ∧ man′ x〉 ⊗ Qx).

Its principal type (e → δ) → [e] ⊗ δ is obtained from the one of the unreduced
term by applications of (⊗′), (δ′

3), and (δ′
1) that simplify [e] ⊗ 11 ⊗ δ to [e] ⊗ δ.

Since our types of DRSs closely reflect the construction of their top-level
referent lists, in order to have a subject reduction property we need to consider
types equivalent when they get equal by interpreting ⊗ as append, × as cons,
and 11 as the empty list.

A more serious obstacle to subject-reduction is the typing rule (var6) which
permits us to ignore assumptions (D1 · D2) : σ. In fact, the subject-reduction
property does not hold in general.

Example 2. Consider the application of

D2 : τ2, Γ � D1 : τ1 D1 : τ1, Γ � D2 : τ2

Γ � (D1 ⊗ D2) : (τ1 ⊗ τ2)
(⊗)

Suppose (D1 ⊗ D2) → (D′
1 ⊗ D2) via D1 → D′

1. As we have seen above, we may
have x ∈ top(D′

1)\ top(D1). In the left subderivation D1 : τ1, Γ � D2 : τ2, a free
occurrence of x in D2 gets its type from Γ , while in the context D′

1 : τ1, Γ , it gets
its type from D′

1 : τ1. Hence, it may be impossible to obtain D′
1 : τ1, Γ � D2 : τ2.

(For example, take D1 : τ1 = λy〈x,E〉 · a : (σ × τ), D2 : τ2 = 〈[], Px〉 : 11.) Thus,
Γ � (D1 ⊗ D2) : (τ1 ⊗ τ2) does not imply Γ � (D′

1 ⊗ D2) : (τ1 ⊗ τ2).
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The problem similarly arises for (D1 ⇒ D2), (D1 ∨ D2), or (D1 ; D2), where
D1 may β-reduce to a DRS with a new top-level referent occurring free in D2.
This is a defect of λ-DRT terms which admit the binding part D1 of such expres-
sions to arise from a β-redex like (λzz · D1).

We will sidestep this problem for the application to pronoun resolution below
by assuming

1. all λ-DRS-expressions used as meanings of lexical entries are closed and in
normal form,

2. in substitution t[x/s], bound variables (including referents) in t are renamed
to make them distinct from free variables of s,

3. in t[x/s], s is in normal form, and referents of s are renamed at each occurrence
of x in t (in merge-factors, so that their scope does not extend).3

4. all bound variables are pairwise distinct; in particular, no referent is used
twice as a binding variable.

In particular, we will use a call-by-value strategy when computing the meaning
of phrases: if the meaning of a phrase is an application λxt · s, we will have λxt
and s in normal form, and deliver a normal form nf (t[x/s]) of t[x/s] as value,
see the computation rules in Sect. 6.2. We think that the following weak form of
the subject reduction property holds under the above assumptions:

Conjecture 1. If t and s are in normal form, and Γ � (λxt · s) : τ , then there
is τ ′ with τ ⇀∗ τ ′ and Γ � nf (t[x/s]) : τ ′.

However, we do not make use of that in the following; termination of reduction
suffices.

6 Application to Pronoun Resolution

There are two possible ways to combine type reconstruction and pronoun res-
olution. Either one applies a pronoun resolution algorithm and then uses type
reconstruction to check if the resolution is type-correct, or one first applies type
reconstruction and then does pronoun resolution by exploiting the type infor-
mation.

6.1 Type Informed Pronoun Resolution

The second way has been implemented [22]. It roughly proceeds as follows:

– Step 1: for each pronoun occurrence, introduce a fresh discourse referent x and
extend the DRS by an anaphor-declaration like anp(x, fem, sg). For the dis-
course referent y of each noun phrase that is not a pronoun, add an antecedent-
declaration like ant(y,masc, sg) to the DRS.

3 Notice that λP (P ⊗ P ) · 〈[z], [ϕ]〉 then reduces to (〈[z1], [ϕ(z/z1)]〉 ⊗ 〈[z2], [ϕ(z/z2)]〉,
and further to 〈[z1, z2], [ϕ(z/z1), ϕ(z/z2)]〉, like turning (∃zϕ∧∃zϕ) into prenex form
∃z1∃z2(ϕ1(z/z1) ∧ ϕ(z/z2)).
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– Step 2: apply type reconstruction to get a most general typing for the dis-
course, including individual types ei for discourse referents x as inferred from
the occurrence context of the pronoun.

– Step 3: “resolve” an anaphoric (or cataphoric) pronoun by unifying its typed
discourse referent x : α with some discourse referent y : β of a possible
antecedent of the same type, observing the grammatical properties of gender
and number in the corresponding declarations anp(x, gx, nx) and ant(y, gy, ny).

A more detailed description is best obtained by explaining the relevant parts of
the Prolog-program of [22].

A parse tree is represented as a list [Root|Subtrees] where the root is
the syntactic category of the parsed expression. A discourse is either empty,
with tree [d], or the extension of a discourse by a sentence, and then has tree
[d,S,D] where S is the parse tree of the final sentence and D the parse tree of the
initial discourse.4 For each parse tree, sem(+Tree,-DRS) computes a number of
meanings. If the tree is a discourse, each meaning is a typed λ-DRS, otherwise
an untyped λ-DRS in normal form.

% sem(+ParseTree,-DRS); for a discourse, DRS is typed

...

sem([d], drs([],[])) :- !.

sem([d,S,D], Sem) :-

!, sem(S,SemS), sem(D,SemD), resolve(SemS,SemD,Sem).

Having computed a typed meaning SemD for the initial discourse and an untyped
meaning SemS for the final sentence, we try to resolve anaphors of SemS, using
SemD as accessible DRS for possible antecedents.

% resolve(+SemS,+SemD,-Sem)

resolve(SemS,SemD,Sem) :-

type([],SemS,SemSTy,_TypS),

resolve_drs([SemSTy,SemD],[DrsS,DrsD]),

mergeTerm(DrsD + DrsS, Sem).

First, type reconstruction type/4 is applied to SemS; as pronouns get fresh dis-
course referents in SemS, we can use the empty type context to find a princi-
pal type TypS for the DRS SemS. Actually, we use a modification of the type
reconstruction algorithm that also returns a typed version SemSTy of SemS,
which has type annotations at variable bindings (including referents in refer-
ent lists). This typed DRS SemSTy is resolved with SemD as accessible DRS,
using resolve drs/2; the modifications DrsS and DrsD are finally merged by
appending the referents and formulas of DrsS to those of DrsD.

To resolve a DRS drs(Refs,Fmls) with respect to a stack Ds1 of partially
resolved accessible DRSs, we go through the formulas, which may contain unre-
solved DRSs, resolve these, and construct a resolved form of drs(Refs,Fmls)
on top of the stack:
4 To prevent Prolog’s top-down parsing strategy from diverging for left-recursive gram-
mar rules d -> d, s., we use a right-recursive rule d --> s, d. for discourses and
reverse the sequence of input sentences before parsing.
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% resolve_drs(+DRSs, -resolvedDRSs)

resolve_drs([drs(Refs,Fmls)|Ds1],RDs):-

resolve_fml(Fmls,[drs(Refs,[])|Ds1],RDs).

If a formula is built from DRSs, like (D1 ⇒ D2), (D1∨D2), or ¬D, the component
DRSs are resolved in term, respecting the accessibility conditions of DRT, and
the formula built form the resolved component DRSs is added to the result-DRS
under construction, before the remaining formulas are processed:

% resolve_fml(+Fmls,[?resultDRS|+accessDRSs],-resolvedDRSs)

resolve_fml([(D1 => D2)|Fmls],Ds,RDs):-

!, resolve_drs([D1|Ds],[D1r|Dsr]),

resolve_drs([D2,D1r|Dsr],[D2R,D1R,drs(R,F)|Ds3]),

resolve_fml(Fmls,[drs(R,[(D1R => D2R)|F])|Ds3],RDs).

...

If the formula is an anaphor anp(Ref,Gen,Num) with typed(!) referent Ref and
gender and number information, one tries to find a suitable antecedent in the
result-DRS under construction (i.e. in the pronoun’s left textual context in the
current sentence) or the accessible DRSs, or in the remaining formulas of the
DRS currently under process:

resolve_fml([anp(Ref,Gen,Num)|Fmls], [drs(R,F)|Ds1], RDs) :-

!, ( ( % in sentence prefix or previous sentences

resolve_anp(Ref,Gen,Num,[drs(R,F)|Ds1])

; % in sentence suffix

resolve_anp(Ref,Gen,Num,[drs(R,Fmls)])

),

delete_ref(Ref,R,NewR), % omit duplicates of Ref

NewD = drs(NewR,F) % omit anp(Ref,..) in the result DRS

; NewD = drs(R,[anp(Ref,Gen,Num)|F]) % or: fail, to

), % exclude unre-

resolve_fml(Fmls,[NewD|Ds1],RDs). % solved anaphors

Possessive pronouns are handled by looking for antecedents in their left context
only.

To find a suitable antecedent, simply choose some of the accessible DRSs and
some antecedent among its formulas that can be unified with the referent:

% resolve_anp(+Ref,+Gen,+Num,+DRSs)

resolve_anp(Ref,Gen,Num,Ds):-

member(drs(_Refs,Fs),Ds),

member(ant(Ref,Gen,Num),Fs).

By using the same variables Ref, Gen, Num, Prolog unifies a typed anaphor R:Ty
with a typed antecedent R′:Ty′ of the same number and gender features.

Atomic formulas can just be transferred to the result-DRS under construc-
tion, and when all formulas of the DRS are processed, the sequence of resolved
formulas is reversed to its expected order:
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resolve_fml([Fml|Fmls],[drs(R,F)|Ds1],RDs):-

!, resolve_fml(Fmls,[drs(R,[Fml|F])|Ds1],RDs).

resolve_fml([],[drs(R,F)|Ds],[drs(R,Frev)|Ds]):-

!, reverse(F,Frev).

The stack of resolved DRSs with a resolved form of the DRS drs(Refs,Fmls)
on top is returned.

6.2 Example

We assume that nouns N and relational nouns RN are classified according to
gender g ∈ {m, f, n} (masculine, feminine, neuter), and implicitly inflect for
number n ∈ {sg, pl} and case c. (We use gender m as in the corresponding
German nouns and pronouns to get more possible antecedents below.)

1. Content words are assigned a meaning and a type in the lexicon, for example:

expression meaning type
Galilei : PN galilei h

Jupiter : PN jupiter s

astronomer : N λx〈[], [ant(x,m, sg), astronomer(x)]〉 h → 11
star : N λx〈[], [ant(x,m, sg), star(x)]〉 s → 11

moon : RN λxλy〈[], [ant(x,m, sg),moon(x, y)]〉 s → (s → 11)
shine : V λx〈[], [shine(x)]〉 s → 11

observe : TV λxλy 〈[], [observe(x, y)]〉 h → (s → 11)
discover : TV λxλy 〈[], [discover(x, y)]〉 h → (s → 11)

Pronouns inflect for number, gender, and case, if we consider person fixed
to 3rd person. Like determiners, pronouns have polymorphic type; i.e. from
their untyped λ-DRS-meaning we reconstruct their most general (schematic)
type.

expression meaning principal type
he : Pron λP (〈[x], [anp(x,m, sg)]〉 ⊗ P x) (α → β) → [α] ⊗ β

she : Pron λP (〈[x], [anp(x, f, sg)]〉 ⊗ P x) (α → β) → [α] ⊗ β

his : PossPron λRλP ( 〈[x, y], [anposs(y,m, sg)]〉
⊗(R xy ⊗ P x))

(α → β → γ)
→ (α → δ)
→ [α, β] ⊗ γ ⊗ δ

who : RelPron λPλx (P x) (α → β) → (α → β)
a : Det λNλP (〈[x], []〉 ⊗ (N x ⊗ P x)) (α → β) → (α → γ)

→ [α] ⊗ β ⊗ γ

every : Det λNλP 〈[], [(〈[x], []〉 ⊗ N x) ⇒ P x]〉 (α → β) → (α → γ)
→ 11

eq λxλy.eq(x, y) α → (α → t)
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Each use of a personal, relative, or possessive pronoun uses a new referent x.
Moreover, eq, anp, anposs, ant have polymorphic lexical (not reconstructed)
type.

2. Compound expressions are built according to grammar rules; each grammar
rule is accompanied by one or several meaning computation rules. Some exam-
ples are:

p : PNg

p : NP
(S 1)

p′

λP (〈[x], [ant(x, g, sg),
eq(x, p′)]〉 ⊗ P · x)

(C 1)

p : Prong,n

p : NP
(S 2)

p′

p′ (C 2)

d : Det n : N

d n : NP
(S 3)

d′ n′

nf (d′ · n′)
(C 3)

p : PossPron r : RN

p r : NP
(S 4)

p′ r′

nf (p′ · r′)
(C 4)

np1 : NP v : TV np2 : NP

np1 v np2 : S
(S 5)

np′
1 v′ np′

2

nf (np′
1 · λx(np′

2 · λy(v′ · x · y)))
(C 5)

ε : D (S 6) 〈[], []〉 (C 6)

d : D s : S

d ; s : D (S 7)
d′ s′

(d′′ ⊗ s′′)
(C 7)

An additional computation rule (C 5′) for sentences np1 v np2 : S might
give np2 wide scope. In (C 7), d′′ and s′′ are obtained by pronoun-resolution
from most general typings of d′ and s′ in the empty type context, i.e.
resolve(s′, d′, d′′ ⊗ s′′) by the resolution algorithm explained above.

3. Let us consider the sample discourse Galilei observed a star. He discovered
his moon. The first sentence is constructed with (S 1), (S 3), and (S 5). We
compute the meaning of the subject as

np′
1 = λP (〈[x], [ant(x,m, sg), eq(x, galilei)]〉 ⊗ P · x),

the meaning of the object as

np′
2 = nf (λNλP (〈[x], []〉 ⊗ (N x ⊗ P x)) · λx〈[], [ant(x,m, sg), star(x)]〉)

= nf (λP (〈[x], []〉 ⊗ (〈[], [ant(x,m, sg), star(x)]〉 ⊗ P x)))
= λP (〈[x], [ant(x,m, sg), star(x)]〉 ⊗ P x)

and from those obtain the sentence meaning by the computation rule for
(S 5) as
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s′
1 = nf (np′

1 · λx(np′
2 · λy(v′ · x · y)))

= nf (np′
1 · λx(np′

2 · λy(〈[], [observe(x, y)]〉)))
= nf (np′

1 · λx.(〈[x], [ant(x,m, sg), star(x)]〉⊗P x)[P/λy〈[], [observe(x, y)]〉])
= nf (np′

1 · λx(〈[x̃], [ant(x̃,m, sg), star(x̃)]〉 ⊗ 〈[], [observe(x, x̃)]〉))
= nf (np′

1 · λx〈[y], [ant(y,m, sg), star(y), observe(x, y)]〉)
= nf ((〈[x], [ant(x,m, sg), eq(x, galilei)]〉 ⊗ P x)[P/λx〈[y], [ant(. . .), . . .]〉])
= nf ((〈[x], [ant(x,m, sg), eq(x, galilei)]〉 ⊗ 〈[y], [ant(y,m, sg), . . .]〉))
= 〈[x, y], [ant(x,m, sg), eq(x, galilei), ant(y,m, sg), star(y), observe(x, y)]〉

From the type assumptions for nouns and verbs (and eq), type reconstruction
can annotate the bound variables of s′

1 as

〈[x : h, y : s], [ant(x : h,m, sg), eq(x, galilei), ant(y : s,m, sg), . . .]〉
and return a most general type 〈[h, s], t〉. In the second sentence, the subject
he has meaning

np′
1 = λP (〈[x], [anp(x,m, sg)]〉 ⊗ P x),

which receives the following annotation and principal type:

λP : (α → β)(〈[x : α], [anp(x : α,m, sg)]〉 ⊗ P x) : (α → β) → [α] ⊗ β.

The object his moon gets the meaning5

np′
2 = nf (λRλP (〈[x, y], [anposs(y,m, sg)]〉 ⊗ (R xy ⊗ P x))

·λxλy〈[], [ant(x,m, sg),moon(x, y)]〉)
= λP (〈[x, y], [anposs(y,m, sg), ant(x,m, sg),moon(x, y)]〉 ⊗ P x),

which type reconstruction annotates to

λP : (s → α)(〈[x : s, y : s], [anposs(y : s,m, sg),
ant(x : s,m, sg),moon(x, y)]〉⊗P x)

and to which it assigns a most general type (s → α) → [s, s] ⊗ α. By the
computation rule for (S 5), the meaning of the second sentence is

s′
2 = nf (np′

1 · λx(np′
2 · λy(v′ · x · y)))

= nf (np′
1 · λx(np′

2 · λy〈[], [discover(x, y)]〉))
= nf (np′

1 · λx〈[x̃, y], [anposs(y,m, sg), ant(x̃,m, sg),moon(x̃, y),
discover(x, x̃)]〉)

= nf ((〈[x], [anp(x,m, sg)]〉 ⊗ P x)[P/λx〈[x̃, y], [anposs(y,m, sg), . . . , ]〉)
= 〈[x, x̃, y], [anp(x,m, sg), anposs(y,m, sg),

ant(x̃,m, sg),moon(x̃, y), discover(x, x̃)]〉.
5 By an additional reduction D1 ⊗ (D2 ⊗ D3) → (D1 ⊗ D2) ⊗ D3 when D1, D2 are
value-DRSs.
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If several computation rules can be applied, a sentence can get several untyped
meanings this way. As normalisation has to return fresh bound variables, we
write

s′
2 = 〈[u, v, z], [anp(u,m, sg), anposs(z,m, sg),

ant(v,m, sg),moon(v, z), discover(u, v)]〉.
4. Pronoun resolution for the discourse ε ; s1 ; s2 proceeds as follows.

(a) The most general typing of the meaning 〈[], []〉 of ε in the empty context
is � 〈[], []〉 : 11.

(b) Type reconstruction is applied to the first sentence, followed by pro-
noun resolution with 〈[], []〉 : 11. As no pronoun occurred in s1, the type-
annotated version of s′

1 is returned:

s′′
1 = 〈[x : h, y : s], [ant(x : h,m, sg), eq(x, galilei),

ant(y : s,m, sg), star(y), observe(x, y)]〉
= 〈[], []〉 ⊗ s′′

1 .

(c) Type reconstruction is applied to (each of) the meaning(s) of the next sen-
tence, followed by pronoun resolution with s′′

1 . Here type reconstructions
just returns

s′′
2 = 〈[u : h, v : s, z : s], [anp(u : h,m, sg), anposs(z : s,m, sg),

ant(v : s,m, sg),moon(v, z), discover(u, v)]〉,
where the types of u, v, z are derived from the argument types of nouns
and verbs whose argument positions they occupy. The anaphor u : h
has no antecedent in the current sentence, as v : s has different type.
Assuming that possessives have to be resolved in their left context, the
possessive anaphor z : s also cannot be resolved against v : s.

(d) Pronouns of s2 may also be resolved against antecedents in the type-
annotated left context, s′′

1 . For each typed anaphor, we search for a suit-
ably typed antecedent, unify the referents and remove the anaphor ref-
erent in the DRS of the current sentence, s′′

2 . For the anaphor anp(u :
h,m, sg), the only type-compatible antecedent in s′′

1 is ant(x : h,m, sg),
so we unify u with x (i.e. rename u by x in s′′

2), remove x : h from its
referent list and anp(x : h,m, sg) from its formulas, getting a partially
resolved DRS

〈[v : s, z : s], [anposs(z : s,m, sg), ant(v : s,m, sg),
moon(v, z), discover(x, v)]〉.

The next formula is a possessive anaphor anposs(z : s,m, sg). As we want
these to be resolved in their left context only, z : s cannot be resolved
against v : s. But it can be resolved against ant(y : s,m, sg) in s′′

1 , which
leads to

r(s′′
2) = 〈[v : s], [ant(v : s,m, sg),moon(v, y), discover(x, v)]〉

as the resolved”‘result”’-DRS of s′′
2 .
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(e) Finally, the resolved version of s′′
2 is merged with s′′

1 , yielding

s′′
1 ⊗ r(s′′

2) = 〈[x : h, y : s, v : s],
[ant(x : h,m, sg), eq(x, galilei), ant(y : s,m, sg), star(y),
observe(x, y), ant(v : s,m, sg),moon(v, y), discover(x, v)]〉

as the typed meaning of the discourse d = ε ; s1 ; s2.

6.3 Type Reconstruction for Bach-Peters-Sentences

One of the motivations for the symmetric merge-operator ⊗ was hinted at, but
not elaborated in [13, p. 480]: the potential to treat Bach-Peters-sentences “in
which two phrases are connected by both an anaphor and a cataphor”, like [The
boy who deserved ity]x got [the prize hex wanted ]y. We use variants of (S 2),
(S 5) and (C 2), (C 5) as syntax and computation rules for relative clauses

p : RelPron

p : RelNP
(S 2′)

p′

p′ (C 2′)

np1 : RelNP np2 : NP v : TV

np1 np2 v : RelS
(S 5′)

np′
1 v′ np′

2

nf (np′
1 · λx(np′

2 · λy(v′ · x · y)))
(C 5′)

d : Det n : N s : RelS

d n s : NP
(S 8)

d′ n′ s′

nf (d′ · λx(n′ x ∧ s′ x))
(C 8)

Omitting the grammatical features and the uniqueness conditions for the definite
article, the untyped meaning of a boy who deserves it gets the prize he wanted
is obtained via

λP (

x, y
ant(x)
boy(x)
anp(y)
deserve(x, y)

⊗ P x) · λz

x′, y′

ant(y′)
prize(y′)
anp(x′)
want(x′, y′)
get(z, y′)

→β

x, y
ant(x)
boy(x)
anp(y)
deserve(x, y)

⊗

x′, y′

ant(y′)
prize(y′)
anp(x′)
want(x′, y′)
get(x, y′)

.

From suitable type assumptions for nouns and verbs in the lexicon, with a type
h of humans and e of objects, type reconstruction would infer types x : h, y :
e, x′ : h, y′ : e, and hence type-respecting pronoun resolution could only resolve
x′ against x and y against y′, as expected.

The typing rule for ⊗-DRSs was designed for merge-DRSs whose factors are
linked through resolving cataphors and anaphors by type-independent “coindex-
ing” or referent unification. Type-checking a DRS 〈[x], ϕ(x, y)〉⊗ 〈[y], ψ(x, y)〉 of
this kind leads to a typing problem of the form

x : α, y : β � ϕ(x, y) : t

...

y : β, x : α � ψ(x, y) : t

...
� 〈[x], ϕ(x, y)〉 ⊗ 〈[y], ψ(x, y)〉 : [α] ⊗ [β]
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The type variables α, β get instantiated when the two typing problems in the
premise are solved. As we perform merging of value-DRSs during normalization,
we need the typing rule (⊗) only when a merge-factor is not a value-DRS, not
for Bach-Peters-sentences.

6.4 Supporting Pronoun Translation

To translate between natural languages, we need to resolve pronouns in order to
translate them correctly: the gender of the translated pronoun is generally not
the gender of the source language pronoun, but the gender of the antecedent
noun phrase in the target language, which in turn depends on the antecedent
of the pronoun in the source sentence. For example, Google translates the Eng-
lish text The child opened the box. It contained a pen. into the German Das
Kind öffnete die Schachtel. Es enthielt einen Stift., where neuter es should be
feminine sie. A type difference between humans h and things e and the verb
type contain/enthalten : e → e → t shows that it at position of type e cannot
refer to the child : (h → t) → t at position of type h. But only if it is resolved
to the box : (e → t) → t, the gender for the German pronoun er/sie/es can be
inferred to be the gender of the translation die Schachtel of the box, i.e. feminine.

6.5 Related Work

On the practical side, discourse representation structures are used as intermedi-
ate representation of meaning when translating texts from natural language to
first-order logic. This is done for large-scale processing of newspaper texts by the
C&C/Boxer program6 [5] and for mathematical texts by the Naproche system
[4].

The Groningen Meaning Bank [3] (GMB) is a large collection of English
texts for which C&C computes syntactic analyses in categorial grammar and
Boxer turns them into DRSs and first-order formulas. By using referents for
individuals, events and times and predicates for thematic roles, Boxer covers
far more of discourse representation theory than we do. In the examples of the
GMB, nouns are classified according to animacy (human, non-concrete, etc.),
which can be seen as type assignments. But, apparently, these classifications
are not related to the meaning of verbs and hence not used in the pronoun
resolution process. For example, in Ein Mann füttert einen Hund; wenn er ihn
beißt, schlägt er ihn., our system correctly resolves the four pronouns in the
only type-compatible way (the first er to Hund, the second to Mann etc.), if we
provide types h for humans, a for animals and typings for nouns Mann : h → t,
Hund : a → t and verbs füttern, schlagen : h → a → t and beißen : a → h → t.
The C&C/Boxer program, when we use masculine pronouns in the English
input A man feeds a dog. If he bites him, he beats him., resolves both subject

6 Since the link provided in [5] did not work, we were only able to access C&C/Boxer
via its demo version gmb.let.rug.nl/webdemo/demo.php of the Groningen Meaning
Bank.
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pronouns he to the man and both object pronouns to the dog (as one can infer
from the logical formula). Thus, if the argument slots of verbs of the GMB were
annotated with animacy, too, its pronoun resolution and meaning translation
could be improved by using our type-respecting resolution procedure. As type
distinctions are easier to make in mathematics than for natural language, a
similar improvement can be expected for the anaphora resolution in systems
using DRS-like proof representations like [4,8].

On the theoretical side, there is a growing amount of work (cf. [1,14,17,20])
that uses constructive type theory to develop semantic representations for nat-
ural language. In this setting, the notion of type is extended (from simple types,
i.e. intuitionistic propositional formulas) to first-order formulas, and proofs of
the formulas are the objects of these types. In particular, proofs of existential
statements ∃xϕ consist of pairs (t, p) where t is a term denoting an individ-
ual and p a proof of ϕ[x/t]. Such terms t may then be used to resolve anaphoric
expressions. For example, Mineshima [17] uses constructive type theory enriched
by ε-terms to treat definite descriptions; the use of an ε-term has to be justified
by an existential sentence, whose proof object then contains a referent for the
description. Instead of ε-terms, Bekki [1] has terms (@ : γ → e)(c) of unknown
choice functions @ applied to contexts c to select suitable referents of type e;
by instantiating γ and constructing an object of type γ → e from proof objects
in the typing environment Γ , this amounts to “anaphora resolution by proof
search and type checking”. Clearly, the contexts Γ used in constructive type
theory provide a more general domain to search for referents than the typed
DRS of the textual left context in our system; for example, one can have back-
ground assumptions that do not arise from translation of the textual left context,
which is useful to handle bridging anaphora [14]. However, the formulation of
background knowledge may often be unfeasible, and proof search in constructive
type theory seems more complex that type reconstruction by unification from
simple type annotations in the lexicon.

7 Open Problems

Extension to generalized quantifiers and plural pronouns. In [16], we
have shown that type reconstruction for Montague grammar with plural noun
phrases can be used to resolve some plural ambiguities. The idea is that plural
noun phrases in general have several types, for distributive, reciprocal and collec-
tive readings, but argument types of predicates only unify with one of those. The
type reconstruction program of [16] has been changed in [22] to type reconstruc-
tion for λ-DRT and extended to type-respecting pronoun resolution for singular
pronouns. So far, type reconstruction for plurals is not adapted to λ-DRT yet.
To interpret She introduced the guests to each other, for example, we would need
discourse referents X for sets of individuals and apply the symmetric predicate
distributively to any 2-element subset of X. As our system admits second-order
discourse referents X, it seems possible to add type-respecting pronoun reso-
lution for plural pronouns. For this, one should consider if the treatment of
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plurals and generalised quantifiers via “duplex conditions” [10] can be given a
formulation that allows for principal types and type reconstruction.
First-order λ-DRT. In contrast to typed versions of λ-DRT, our untyped ver-
sion is a kind of “higher-order” DRT: there is no demand that discourse referents
have individual type. So we can type some expressions which, from a traditional
point of view, should be untypable. For example,

P : σ → t � (
x
Px

⊗ x) : [σ] ⊗ σ

is a most general typing, using σ both as a referent-type and as a drs-type. To
avoid such defects, we could introduce different kinds of types, notice when a
type variable must be instantiated by an individual resp. by a drs-type, and
forbid to equate types of different kinds. But in realistic cases, conditions of a
DRS express properties of referents using predicates with individual argument
type, which makes a formal restriction to first-order referents unnecessary.
Principal typings for pronoun resolved discourses. Does type-respecting
pronoun resolution as suggested above “preserve principal types”? More pre-
cisely, in a merge-DRS D1 ⊗ D2 of two typed DRSs with disjoint toplevel refer-
ent lists and principal types, we unify referents x : σ of D1 and x′ : σ′ of D2 by
substituting x for y in D2 and removing x′ : σ′ from its referent list. Applying
the most general unifier U of x : σ and x′ : σ′ gives a typed DRS UD1 ⊗ UD2.
Can one prove that UD1 ⊗UD′

2 corresponds to the principal typing of D̃1 ⊗ D̃′
2,

where D′
2 is the modification of D2 by the pronoun resolution, and D̃1 resp. D̃′

2

are the untyped versions of D1 and D′
2?

Semantics. A semantics for typed λ-DRT is given in [13,15], with a composi-
tional meaning for the symmetric ⊗. The relational interpretation of [19] for the
unsymmetric merge (; ) is not sufficient for our purposes. The Dynamic lambda
calculus DLC of [11,12] claims to give a typed semantics for a system subsum-
ing typed λ-DRT, but we found their types involving individual variables fairly
incomprehensible. In order to show that the typing and reduction rules given here
are correct, we ought to interprete typings Γ � t : τ in a suitable domain-model
of the untyped λ-calculus, like the one in [21], and handle free type variables as
universally quantified. We have not yet tried to do so.

8 Conclusion

Our aim was to use semantic type information from the lexicon to reduce the
number of possible antecedents of an anaphor to type-compatible ones. For this,
a single type e of entities is too crude. Many verbs and nouns in natural language
can only be applied to facts/propositions, inanimate physical objects, animals,
or humans, respectively. Candidates for pronoun resolution can be reduced with
these types quite reasonably in many situations. Of course, in a discourse about
humans only, the reduction in candidates may be minimal.

The basic idea is simple: a pronoun gets a type from its occurrence as an
argument of a verb, and a noun phrase gets a type from its head noun and the
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verb argument type of its occurrence; hence, one can filter the set of possible
antecedents of a pronoun by comparing their types. To do this efficiently, we
prefer a system of simple types with schematic types for function words like
determiners, in which complex expressions have principal types that can easily be
reconstructed from type assumptions for content words. (A complex expression
can have a principal type for each choice of types of its words.)

Using DRSs provides us with DRTs [10] notion of possible “accessible”
antecedent noun phrases. Our typing rules for λ-DRT expressions closely reflect
the accessibility conditions of DRT; this is to be expected, as the antecedent
noun phrase provides a type assumption for its discourse referent, which in turn
corresponds to the pronoun occurrences referring to the antecedent. However,
the peculiarities of λ-DRT concerning the subject-reduction property might be
a good reason to consider a mathematically “cleaner” language for expressing
the dynamics of discourse, such as simply typed λ-calculus with continuation
semantics [7]. But in contrast to [7], we are not assuming pronoun resolution
via some oracles, but rather integrate a type reconstruction algorithm into a
pronoun resolution algorithm – in a particularly simple way.

Acknowledgement. We thank the referees for a number of critical remarks and ques-
tions that helped to improve the presentation.
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