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Abstract. We give the first demonstration of the cryptographic hard-
ness of the Goldreich-Goldwasser-Micali (GGM) function family when
the secret key is exposed. We prove that for any constant ε > 0, the
GGM family is a 1/n2+ε-weakly one-way family of functions, when the
lengths of secret key, inputs, and outputs are equal. Namely, any efficient
algorithm fails to invert GGM with probability at least 1/n2+ε – even
when given the secret key.

Additionally, we state natural conditions under which the GGM fam-
ily is strongly one-way.

1 Introduction

Pseudorandom functions (PRFs) are fundamental objects in general and in cryp-
tography in particular. A pseudorandom function ensemble is a collection of
(efficient) functions F = {fs}s∈{0,1}∗ indexed by a secret key s ∈ {0, 1}∗ with
the dual properties that (1) given the secret key s, fs is efficiently computable
and (2) without knowledge of the secret key, no probabilistic polynomial-time
algorithm can distinguish between oracle access to a random function from the
ensemble and access to a random oracle. The security property of PRFs depends
on the absolute secrecy of the key, and no security is guaranteed when the secret
key is revealed. Pseudorandom functions have found wide use: in cryptography
to construct private-key encryption and digital signatures [Gol04], in computa-
tional learning theory for proving negative results [Val84], and in computational
complexity to demonstrate the inherent limits of using natural proofs to prove
circuit lower-bounds [RR97].

The first construction of pseudorandom function families starting from any
one-way functions came in 1986 by Goldreich, Goldwasser, and Micali [GGM86].
Assuming only that a function is hard to invert, the construction amplifies
the secrecy of a short random secret key into an exponentially-long, randomly-
accessible sequence of pseudorandom values. For about 10 years, this was the only
known method to construct provably secure PRFs, even from specific number-
theoretic assumptions. Almost 30 years later, it remains the only generic app-
roach to construct PRFs from any one-way function.
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Almost three decades after its conception, we are continuing to discover sur-
prising power specific to the GGM pseudorandom function family. The basic
ideas of this construction were used in constructions of broadcast encryp-
tion schemes in the early 90s [FN94]. Additionally, these same ideas were to
construct function secret sharing schemes for point functions, leading to 2-
server computationally-secure PIR schemes with poly-logarithmic communica-
tion [BGI15]. More recently, Zhandry exhibited the first quantum-secure PRF by
demonstrating that the (classical) GGM ensemble (instantiated with a quantum-
secure pseudorandom generator) is secure even against quantum adversaries
[Zha12]. In [BW13,BGI14,KPTZ13], the notion of constrained pseudorandom
functions was introduced. The “constrained keys” for these PRFs allow a user
to evaluate the function on special subsets of the domain while retaining pseudo-
randomness elsewhere. The GGM ensemble (and modifications thereof) is a con-
strained PRF for the family of prefix-constraints (including point-puncturing),
and GGM yields the simplest known construction of constrained PRFs. This
family of constraints is powerful enough to enable many known applications of
these families for program obfuscation [SW14].

In this work, we give the first demonstration that the GGM family enjoys
some measure of security even when the secret key is revealed to an attacker. In
this setting, pseudorandom functions do not necessarily guarantee any security.
For example, the Luby-Rackoff family of pseudorandom permutations [LR88]
are efficiently invertible given knowledge of the secret key. This suggests that we
must examine specific constructions of pseudorandom functions to see if security
is retained when the secret key is revealed. In this work, we ask the following
question:

What security, if any, does the GGM ensemble provide when the secret key
is known?

A version of this question was posed and addressed by Goldreich1 in 2002 [Gol02].
Goldreich casts the question from the angle of correlation intractability. Infor-
mally, a function ensemble {fs}s∈{0,1}∗ is correlation intractable if – even given
the function description s – it is computationally infeasible to find an input x
such that x and fs(x) satisfy some “sparse” relation. Correlation intractability
was formalized in [CGH04], which proved that no such family exists for |x| ≥ |s|.

In [Gol02], Goldreich proves that the GGM ensemble is not correlation
intractable, even for |x| < |s|, in a very strong sense. Goldreich constructs a
pseudorandom generator G(0) which, when used to instantiate the GGM ensem-
ble, allows an adversary with knowledge of the secret key s to efficiently find
preimages x ∈ f−1

s (0n). This allows the inversion of fs for a specific image 0n,
but not necessarily for random images.

1 And posed much earlier by Micali and by Barak: see Acknowledgments of [Gol02].
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1.1 Our Contributions

In this work, we prove that the length-preserving2 GGM ensemble is a weakly
one-way family of functions. This means that any efficient algorithm A, when
given a random secret key s and fs(x) for a random input x, must fail to invert
with non-negligible probability.

Moreover, we prove that if either a random function in FG is “regular” in
the sense that each image has a polynomially-bounded number of pre-images, or
is “nearly surjective” in a sense made precise below, then the length-preserving
GGM ensemble is strongly one-way. Formally:

Theorem 1. Let FG = {fs}s∈{0,1}∗ be the length-preserving GGM function
ensemble with pseudorandom generator G, where fs : {0, 1}|s| → {0, 1}|s|. Then
for every constant ε > 0, FG is a 1/n2+ε–weakly one-way collection of functions.
That is, for every probabilistic polynomial-time algorithm A, for every constant
ε > 0, and all sufficiently large n ∈ N,

Pr
s←Un
x←Un

[A(s, fs(x)) ∈ f−1
s (fs(x))] < 1 − 1

n2+ε
(1)

where Un is the uniform distribution over {0, 1}n.

Theorem 2. Let FG be the GGM ensemble with pseudorandom generator G.
FG is a strongly one-way collection of functions if either of the following hold:

(a) There exists a negligible function negl(·) such that for all sufficiently large
n ∈ N

E
s←Un

[ |Img(fs)|
2n

]
≥ 1 − negl(n) (2)

(b) There exists a polynomial B such that for all sufficiently large n ∈ N and for
all s, y ∈ {0, 1}n ∣∣f−1

s (y)
∣∣ ≤ B(n) (3)

Remark 1. The conditions of Theorem 2 are very strong conditions. Whether
a pseudorandom generator G exists which makes the induced GGM ensemble
satisfy either condition is an interesting and open question. The possibility of
such a generator is open even for the stronger requirement that for every secret
key s, fs is a permutation.

Remark 2. The length-preserving restriction can be somewhat relaxed to the
case when |x| = |s| ± O(log |s|), affecting the weakly one-way parameter. A
partial result holds when |x| > |s| + ω(log |s|), and nothing is currently known
if |x| < |s| − ω(log |s|). See the full version for further discussion.

2 We consider the secret keys, inputs, and outputs to be of the same lengths. See
Remark 2.
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1.2 Overview of Proof

Let’s go into the land of wishful thinking and imagine that for each secret key
s ∈ {0, 1}n, every string y ∈ {0, 1}n occurs exactly once in the image of fs; that
is, suppose that the GGM ensemble FG is a family of permutations. In this case
we can prove that the GGM family is strongly one-way (in fact, this is a special
case of Theorem 2).

The assumption that FG is a permutation implies the following two facts.3

– Fact 1: For each secret key s ∈ {0, 1}n, the distributions fs(Un) and Un are
identical.

– Fact 2: For each string y ∈ {0, 1}n, there are exactly two pairs (b, x) ∈ {0, 1}×
{0, 1}n such that Gb(x) = y, where G is the PRG underlying the GGM family,
and G0(x) and G1(x) are the first and second halves of G(x) respectively.

We may now prove that the GGM ensemble is strongly one-way in two steps:

– Step 1: Switch the adversary’s input to uniformly random.
– Step 2: Construct a distinguisher for the PRG.

Step 1. For a PPT algorithm A, let 1/α(n) be A’s probability of successfully
inverting y with secret key s; namely:

Pr
s←Un

y←fs(Un)

[A(s, y) ∈ f−1
s (y)] =

1
α(n)

By Fact 1, A has exactly the same success probability if y is sampled uniformly
from {0, 1}n:

Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y)] =

1
α(n)

Step 2. We now construct a PPT algorithm D that has advantage 1/2α(n) −
negl(n) in distinguishing outputs from the PRG G from random strings (i.e., U2n

and G(Un)). By the security of G, this implies that 1/α(n) = negl(n), completing
the proof.
The distinguisher D is defined as follows:

Input: (y0, y1) // a sample from either G(Un) or U2n

Sample a secret key s ← Un and a bit b ← U ;
Compute x ← A(s, yb);
Let x̃ = x ⊕ 0n−11 // x̃ differs from x only at the last bit;
if fs(x) = yb and fs(x̃) = y1−b then

Output 1; // Guess ‘‘PRG’’
else

Output 0; // Guess ‘‘random’’
end

Algorithm 1. The PRG distinguisher D
3 While these are indeed facts in the land of wishful thinking, they are not generally

true. In this overview we wish to highlight only the usefulness of these facts, and
believe that their proofs (though elementary), do not further this goal.
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Notice that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If
(y0, y1) was sampled uniformly from U2n, then this happens with probability at
most 2n+1/22n. Therefore,

Pr[D(U2n) = 1] ≤ 1/2n−1.

Now we use Fact 2 from above. There are only 2 possible x’s that A could
have output in agreement with fs(x); if (y0, y1) was sampled from G(Un) and
fs(x) = yb (which happens with probability 1/α(n)), then with probability at
least 1/2: fs(x̃) = y1−b. Therefore,

Pr[D(G(Un)) = 1] ≥ 1/2α(n),

completing the proof of this special case.

Leaving the land of wishful thinking, the proof that the GGM ensemble is weakly
one-way follows exactly the same two steps as the special case proved above,
but the facts we used are not true in general. We carry out Step 1 in the Input
Switching Proposition (Proposition 1): we more carefully analyze the relationship
between the distributions fs(Un) and Un, losing a factor of 1 − 1/n2+ε in the
adversary’s probability of successfully inverting. We carry out Step 2 in the
Distinguishing Lemma (Lemma 2): we analyze the success probability of the
distinguisher (the same one as above) by more carefully reasoning about the
number of preimages for a value y.

Organization. Section 2 contains standard definitions and the notation used
throughout this work. Section 3 contains the proof of Theorem1, leaving the
proof of the crucial Combinatorial Lemma (Lemma 1) to Sect. 4. Theorem 2 is
proved in Sect. 5, and Sect. 6 concludes.

2 Preliminaries

2.1 Notation

For two strings a and b we denote by a‖b their concatenation. For a bit string
x ∈ {0, 1}n, we denote by x[i] its i-th bit, and by x[i : j] (for i < j) the sequence
x[i]‖x[i + 1]‖ · · · ‖x[j]. We abbreviate ‘probabilistic polynomial time’ as ‘PPT’.

For a probability distribution D, we use Supp(D) to denote the support of
D. We write x ← D to mean that x is a sample from the distribution D. By
Un, we denote the uniform distribution over {0, 1}n, and omit the subscript
when n = 1. For a probabilistic algorithm A, we let A(x) denote a sample from
the probability distribution induced over the outputs of A on input x, though
we occasionally abuse notation and let A(x) denote the distribution itself. For
a function f : X → Y and a distribution D over X, we denote by f(D) the
distribution (f(x))x←D over Y .
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Definition 1 (Computationally Indistinguishable). Two ensembles
{Xn}n∈N, {Yn}n∈N are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm A, every polynomial p(·), and all sufficiently large
n ∈ N

|Pr [A (Xn) = 1] − Pr [A (Yn) = 1]| ≤ 1
p(n)

We write Xn ≈c Yn to denote that {Xn}n∈N and {Yn}n∈N are computationally
indistinguishable.

Definition 2 (Multiset). A multi-set M over a set S is a function M : S → N.
For each s ∈ S, we call M(s) the multiplicity of s. We say s ∈ M if
M(s) ≥ 1, and denote the size of M by |M | =

∑
S M(s). For two multi-sets

M and M ′ over S, we define their intersection M ∩ M ′ to be the multiset
(M ∩ M ′)(s) = min[M(s),M ′(s)] containing each element with the smaller of
the two multiplicities.

2.2 Standard Cryptographic Notions, and the GGM Ensemble

Definition 3 (One-way collection of functions; adapted from [Gol04]).
A collection of functions {fs : {0, 1}|s| → {0, 1}∗}s∈{0,1}∗ is called strongly
(weakly) one-way if there exists a probabilistic polynomial-time algorithm Eval
such that the following two conditions hold:

– Efficiently computable: On input s ∈ {0, 1}∗, and x ∈ {0, 1}|s|, algorithm Eval
always outputs fs(x).

– Strongly one-way: For every polynomial w(·), for every probabilistic
polynomial-time algorithm A and all sufficiently large n,

Pr
s←Un
x←Un

[A(s, fs(x)) ∈ f−1
s (fs(x))

]
<

1
w(n)

(4)

– Weakly one-way: There exists a polynomial w(·) such that for every probabilis-
tic polynomial-time algorithm A and all sufficiently large n,

Pr
s←Un
x←Un

[A(s, fs(x)) ∈ f−1
s (fs(x))

]
< 1 − 1

w(n)
(5)

In this case, the collection is said to be 1/w(n)-weakly one-way.

We emphasize that in weakly one-way definition the polynomial w(n) bounds
the success probability of every efficient adversary. Additionally, weakly one-
way collections can be easily amplified to achieve (strongly) one-way collections
[Gol04].

We will use the following notation.
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Definition 4 (Inverting Advantage). For an adversary A and distribution
D over (s, y) ∈ {0, 1}n × {0, 1}n, we define the inverting advantage of A on
distribution D as

AdvA(D) = Pr
(s,y)←D

[A(s, y) ∈ f−1
s (y)

]
(6)

Definition 5 (Pseudo-random generator). An efficiently computable func-
tion G : {0, 1}n → {0, 1}2n is a (length-doubling) pseudorandom generator
(PRG), if G(Un) is computationally indistinguishable from U2n. Namely for any
PPT D ∣∣∣∣Pr[D(G(Un)) = 1] − Pr[D(U2n) = 1]

∣∣∣∣ = negl(n)

Definition 6 (GGM function ensemble [GGM86]). Let G be a determinis-
tic algorithm that expands inputs of length n into string of length 2n. We denote
by G0(s) the |s|-bit-long prefix of G(s), and by G1(s) the |s|-bit-long suffix of
G(s) (i.e., G(s) = G0(s)‖G1(s). For every s ∈ {0, 1}n (called the secret key),
we define a function fG

s : {0, 1}n → {0, 1}n such that for every x ∈ {0, 1}n,

fG
s (x[1], . . . , x[n]) = Gx[n](· · · (Gx[2](Gx[1](s)) · · · ) (7)

For any n ∈ N, we define Fn to be a random variable over {fG
s }s∈{0,1}n . We call

FG = {Fn}n∈N the GGM function ensemble instantiated with generator G.
We will typically write fs instead of fG

s .

The construction is easily generalized to the case when |x| �= n. Though we
define the GGM function ensemble as the case when |x| = n, it will be useful to
consider the more general case.

2.3 Statistical Distance

For two probability distributions D and D′ over some universe X, we recall two
equivalent definitions of their statistical distance SD(D,D′):

SD(D,D′) :=
1
2

∑
x∈X

|D(x) − D′(x)| = max
S⊆X

∑
x∈S

D(x) − D′(x)

For a collection of distributions {D(p)} with some parameter p, and a distribu-
tion P over the parameter p, we write

(p,D(p))P

to denote the distribution over pairs (p, x) induced by sampling p ← P and
subsequently x ← D(p).4 It follows from the definition of statistical distance
(see appendix) that for distributions P , D(P ), and D′(P ):

SD
((

p,D(p)
)
P

,
(
p,D′(p)

)
P

)
= E

p←P

[
SD

(
D(p),D′(p)

)]
(8)

4 For example, the distribution (x,Bernoulli(x))Uniform[0,1] is the distribution over (x, b)
by drawing the parameter x uniformly from [0, 1], and subsequently taking a sample
b from the Bernoulli distribution with parameter x.
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The quantity |Img(f)| is related to the statistical distance between the uni-
form distribution Un and the distribution f(Un). For any f : {0, 1}n → {0, 1}n,

SD(f(Un), Un) = 1 − |Img(f)|
2n

(9)

This identity can be easily shown by expanding the definition of statistical dis-
tance, or by considering the histograms of the two distributions and a simple
counting argument. See the appendix for a proof.

2.4 Rényi Divergences

Similar to statistical distance, the Rényi divergence is a useful tool for relating
the probability of some event under two distributions. Whereas the statistical
distance yields an additive relation between the probabilities in two distributions,
the Rényi divergence yields a multiplicative relation. The following is adapted
from Sect. 2.3 of [BLL+15].

For any two discrete probability distributions P and Q such that Supp(P ) ⊆
Supp(Q), we define the power of the Rényi divergence (of order 2) by

R (P‖Q) =

⎛
⎝ ∑

x∈Supp(Q)

P (x)2

Q(x)

⎞
⎠ . (10)

An important fact about Rényi divergence is that for an abitrary event E ⊆
Supp(Q)

Q(E) ≥ P (E)2

R (P‖Q)
. (11)

3 The weak one-wayness of GGM

We now outline the proof of Theorem1: that the GGM function ensemble is
1/n2+ε-weakly one-way. The proof proceeds by contradiction, assuming that
there exists a PPT A which inverts on input (s, y) with > 1−1/n2+ε probability,
where s is a uniform secret key and y is sampled as a uniform image of fs.

At a high level there are two steps. The first step (captured by the Input
Switching Proposition below) is to show that the adversary successfully inverts
with some non-negligible probability, even when y is sampled uniformly from
{0, 1}n, instead of as a uniform image from fs. The second step (captured by the
Distinguishing Lemma below) will then use the adversary to construct a distin-
guisher for the PRG underlying the GGM ensemble. The proof of Input Switch-
ing Proposition (Proposition 1) depends on the Combinatorial Lemma proved in
Sect. 4. Together, these suffice to prove Theorem 1.
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3.1 Step 1: The Input Switching Proposition

As discussed in the overview, our goal is to show that for any adversary
that inverts with probability > 1 − 1/n2+ε on input distribution (s, y) ←
(s, fs(Un))s←Un

will invert with non-negligible probability on input distribution
(s, y) ← (Un, Un). For convenience, we name these distributions:

– Dowf : This is A’s input distribution in the weakly one-way function security
game in Definition 3. Namely,

Dowf = (s, fs(Un))s←Un

– Drand: This is our target distribution (needed for Step 2), in which s and y are
drawn uniformly at random. Namely,

Drand = (Un, Un)

Proposition 1 (Input Switching Proposition). For every constant ε > 0
and sufficiently large n ∈ N

AdvA(Dowf) > 1 − 1/n2+ε =⇒ AdvA(Drand) > 1/poly(n) (12)

It suffices to show that for every constant ε > 0 and sufficiently large n ∈ N

|AdvA(Dowf) − AdvA(Drand)| < 1 − 1/n2+ε − 1/poly(n) (13)

If SD(Dowf ,Drand) < 1 − 1/n2, then the above follows immediately (even for an
unbounded adversary).5 If instead SD(Dowf ,Drand) ≥ 1−1/n2, we must proceed
differently.6

What if instead y is sampled as a random image from fs′ , where s′ is a totally
independent seed? Namely, consider the following distribution over (s, y):

– Dmix: This is the distribution in which y is sampled as a uniform image from
fs′ and s, s′ are independent secret keys.

Dmix = (s, fs′(Un))s,s′←Un×Un

In order to understand the relationship between AdvA(Dowf) and AdvA(Dmix) we
define our final distributions, parameterized by an integer k ∈ [0, n − 1]. These
distributions are related to Dowf and Dmix, but instead of sampling (s, s′) from
Un×Un, they are sampled from (G(fr(Uk)))r←Un

. If k = 0, we define fr(Uk) = r.

5 Whether this indeed holds depends on the PRG used to instantiate the GGM ensem-
ble. We do not know if such a PRG exists.

6 If there exists a PRG, then there exists a PRG such that SD(Dowf , Drand) = 1 −
Es←Un [|Img(fs)|/2n] ≥ 1 − 1/n2. For example, if the PRG only uses the first n/2
bits of its input, then |Img(fs)| < 2n/2+1.
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– Dk
0 : Like Dowf but the secret key is s = G0(ŝ) where ŝ is sampled as

ŝ ← (fr(Uk))r←Un
. Namely,

Dk
0 = (s, fs(Un)) r←Un; ŝ←fr(Uk)

s=G0(ŝ)

– Dk
1 : Like Dmix, but the secret keys are s = G0(ŝ) and s′ = G1(ŝ) where ŝ is

sampled as ŝ ← (fr(Uk))r←Un
. Namely,

Dk
1 = (s, fs′(Un)) r←Un; ŝ←fr(Uk)

(s,s′)=(G0(ŝ),G1(ŝ))

Claim (Indistinguishability of Distributions). For every k ∈ [0, n − 1],

(a) Dowf ≈c Dk
0 , (b) Dk

1 ≈c Dmix, (c) Dmix ≈c Drand

Proof (Indistinguishability of Distributions). By essentially the same techniques
as in [GGM86], the pseudorandomness of the PRG implies that for any k ≤ n,
the distribution fUn

(Uk) is computationally indistinguishable from Un. Claim
(c) follows immediately. By the same observation, Dk

0 ≈c D0
0 and Dk

1 ≈c D0
1.

Finally, by the pseudorandomness of the PRG, Dowf ≈c D0
0 and D0

1 ≈ Dmix. This
completes the proofs of (a) and (b).

The above claim and the following lemma (proved in Sect. 4) allow us to complete
the proof of the Input Switching Proposition (Proposition 1).

Lemma 1 (Combinatorial Lemma). Let Dowf , Dk
0 , Dk

1 , Dmix and Drand be
defined as above. For every constant ε′ > 0 and every n ∈ N,

– either there exists k∗ ∈ [0, n − 1] such that

SD
(
Dk∗

0 ,Dk∗
1

)
≤ 1 − 1

n2+ε′ (L.1)

– or
SD (Dowf ,Drand) <

2
nε′/2 (L.2)

We now prove (13) and thereby complete the proof of Input Switching Propo-
sition (Proposition 1). Fix a constant ε > 0 and n ∈ N. Apply the Combinatorial
Lemma (Lemma 1) with ε′ = ε/2. In the case that (L.2) is true,

|AdvA(Dowf) − AdvA(Drand)| ≤ SD(Dowf ,Drand) <
2

nε/4

In the case that (L.1) is true, we use the Triangle Inequality. Let k∗ ∈ [0, n − 1]
be as guaranteed by (L.1):

|AdvA(Dowf)−AdvA(Drand)|
≤∣∣AdvA(Dowf) − AdvA(Dk∗

0 )
∣∣ +

∣∣AdvA(Dk∗
0 ) − AdvA(Dk∗

1 )
∣∣

+
∣∣AdvA(Dk∗

1 ) − AdvA(Dmix)
∣∣ +

∣∣AdvA(Dmix) − AdvA(Drand)
∣∣

≤negl(n) +
(

1 − 1
n2+ε′/2

)
+ negl(n) + negl(n)

≤1 − 1
n2+ε/4

+ negl(n)
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3.2 Step 2: The Distinguishing Lemma

As discussed in the overview, in this step we show that any efficient algorithm
A that can invert fs on uniformly random values y ∈ {0, 1}n with probability ≥
1/α(n) can be used to distinguish the uniform distribution from uniform images
of the PRG G underlying the GGM ensemble with probability ≥ 1/poly(α(n)).
Formally, we prove the following lemma:

Lemma 2 (Distinguishing Lemma). Let G be a PRG and FG the corre-
sponding GGM ensemble. For all PPT algorithms A and polynomials α(n), there
exists a PPT distinguisher D which for all n ∈ N:

AdvA(Un × Un) ≥ 1
α(n)

=⇒ ∣∣Pr [D (G (Un)) = 1] − Pr [D (U2n) = 1]
∣∣ ≥

(
1

4α(n)

)5

− negl(n)

Proof. Let A be a PPT algorithm such that for some polynomial α(n)

AdvA(Un × Un) ≥ 1
α(n)

(14)

The distinguisher D is defined as follows:
Input: (y0, y1) // a sample from either G(Un) or U2n

Sample a secret key s ← Un and a bit b ← U ;
Compute x ← A(s, yb);
Let x̃ = x ⊕ 0n−11 // x̃ differs from x only at the last bit;
if fs(x) = yb and fs(x̃) = y1−b then

Output 1; // Guess ‘‘PRG’’
else

Output 0; // Guess ‘‘random’’
end

Algorithm 2. The PRG distinguisher D
Next we show that the distinguisher D outputs 1 given input sampled uniformly
with only negligible probability, but outputs 1 with some non-negligible proba-
bility given input sampled from G(Un). This violates the security of the PRG,
contradicting assumption (14).

Observe that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If
(y0, y1) was sampled uniformly from U2n, then this happens with probability at
most 2n+1/22n. Therefore,

Pr[D(U2n) = 1] = negl(n) (15)

We prove that

Pr[D(G(Un)) = 1] ≥
(

1
4α(n)

)5

(16)
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At a very high level, the intuition is that for most (y0, y1) ∈ Img(G), there are
not too many y′

1 for which either (y0, y′
1) ∈ Img(G) or (y′

1, y0) ∈ Img(G) (simi-
larly for y′

0 and y1). After arguing that A must invert even on such “thin” y’s,
the chance that y′

1−b = y1−b is significant. We now formalize this high level
intuition.

We define the function G∗ : {0, 1} × {0, 1}n → {0, 1}n

G∗(b, y) = Gb(y)

Definition 7 (θ-thin, θ-fat). An element y ∈ Img(G∗) is called θ-thin under
G if |G−1

∗ (y)| ≤ θ. Otherwise, it is called θ-fat. Define the sets

Thinθ := {y ∈ Img(G∗) : y is θ − thin}
Fatθ := {y ∈ Img(G∗) : y is θ − fat}

Note that Thinθ � Fatθ = Img(G∗)

We define an ensemble of distributions {Zn}, where each Zn is the following
distribution over (s, y0, y1, b) ∈ {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}:

Zn = (Un, G0(r), G1(r), U)r←Un
. (17)

Additionally, for every x ∈ {0, 1}n, we define x̃ to be x with its last bit flipped,
namely

x̃ = x ⊕ 0n−11.

We begin by expanding Pr[D(G(Un)) = 1].

Pr[D(G(Un)) = 1]
= Pr

(s,y0,y1,b)←Zn

[fs(x) = yb ∧ fs(x̃) = y1−b | x ← A(s, yb)]

≥ Pr
(s,y0,y1,b)←Zn

[yb ∈ Thinθ] (18)

· Pr
(s,y0,y1,b)←Zn

[
fs(x) = yb

∣∣∣∣ x ← A(s, yb)
yb ∈ Thinθ

]
(19)

· Pr
(s,y0,y1,b)←Zn

[
fs(x̃) = y1−b

∣∣∣∣ x ← A(s, yb)
yb ∈ Thinθ ∧ fs(x) = yb

]
(20)

To show that Pr[D(G(Un)) = 1] is non-negligible, it’s enough to show that (18),
(19), and (20) are each non-negligible.

The first term can be lower-bounded by

Pr
(s,y0,y1,b)←Zn

[y ∈ Thinθ] ≥ 1
2α(n)

− 1
θ

(21)
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To see why, first recall that by hypothesis AdvA(Un × Un) ≥ 1
α(n) . If

y �∈ Img(fs), then of course A(s, y) cannot output a preimage of y. Therefore
2n/α(n) ≤ |Img(fs)| ≤ |Img(G∗)|. On the other hand, because each θ-fat y must
have at least θ preimages, and the domain of G∗ is of size 2n+1, there cannot be
too many θ-fat y’s:

|Fatθ| ≤ 2n+1

θ
(22)

Recalling that Img(G∗) = Thinθ � Fatθ:

Pr
y←GU (Un)

[y ∈ Thin] =
|{(b, x) : Gb(x) ∈ Thinθ}|

2n+1

≥ |Thinθ|
2n+1

=
1

2α(n)
− 1

θ

The second term can be lower-bounded by:

Pr
(s,y0,y1,b)←Zn

[
fs(x) = yb

∣∣∣∣ x ← A(s, yb)
yb ∈ Thinθ

]
≥

(
1

4α(n)

)3

(23)

We now provide some intuition for the proof of the above, which is included in
the appendix in full. In the course of that argument, we will set θ = 4α(n).

Definition 8 (q-good). For any q ∈ [0, 1], an element y ∈ {0, 1}n is called
q-good with respect to θ if it is both θ-thin and A finds some preimage of y for
a uniformly random secret key s with probability at least q. Namely,

Goodq :=
{
y ∈ Thinθ : Pr

s←Un

[A(s, y) ∈ f−1
s (y)] > q

}

The marginal distribution of yb where (s, y0, y1, b) ← Zn is GU (Un). To make
the notation more explicit, we use the latter notation for the intuition below. In
this notation, (23) can be written

Pr
s←Un

y←GU (Un)

[A(s, y) ∈ f−1
s (y)

∣∣ y ∈ Thinθ

] ≥
(

1
4α(n)

)3

The proof of the above inequality boils down to two parts. First, we show that,
by the definition of θ-thin:

Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ] ≥ θ · Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ]

Second, we must lower-bound the latter quantity. At a high level, this second step
follows from the fact that most of the y ∈ {0, 1}n are θ-thin. By assumption,
A inverts with decent probability when y ← Un, and therefore must invert
with some not-too-much-smaller probability when conditioning on the event y ∈
Thinθ.
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The third term can be lower-bounded by:

Pr
(s,y0,y1,b)←Zn

[
fs(x̃) = y1−b

∣∣∣∣ x ← A(s, yb)
yb ∈ Thinθ ∧ fs(x) = yb

]
≥ 1

θ
(24)

To see why, suppose that indeed yb ∈ Thinθ and fs(x) = yb. Because yb is θ-thin,
there are at most θ-possible values of y′

1−b := fs(x̃), where x̃ = x ⊕ 0n−11. The
true y1−b is hidden from the adversary’s view, and takes each of the possible
values with probability at least 1/θ. Thus the probability that y1−b = y′

1−b is as
above.
Finally, letting θ = 4α(n) as required to lower-bound the second term and
putting it all together implies that

Pr [D(G(Un)) = 1] >

(
1

2α(n)
− 1

θ

)
·
(

1
4α(n)

)3

· 1
θ

(25)

≥
(

1
4α(n)

)5

(26)

This completes the proof of Lemma 2.

4 The Combinatorial Lemma

In the proof of the Input Switching Proposition (Proposition 1), we defined the
following distributions over (s, y) ∈ {0, 1}n × {0, 1}n, for k ∈ [0, n − 1]. If k = 0,
we define fr(Uk) = r.

Dowf = (s, fs(Un))s←Un

Dk
0 =

(
G0(ŝ), fG0(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

Dk
1 =

(
G0(ŝ), fG1(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

Dmix = (s, fs′(Un))s,s′←Un×Un

Drand = (Un, Un)

We define two additional distributions:

D̂k
0 =

(
ŝ, fG0(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

D̂k
1 =

(
ŝ, fG1(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

We restate the lemma stated and used in the proof Input Switching Proposition.

Lemma1 (Combinatorial Lemma). Let Dowf , Dk
0 , Dk

1 , Dmix and Drand be
defined as above. For every constant ε′ > 0 and every n ∈ N,

– either there exists k∗ ∈ [0, n − 1] such that

SD
(
Dk∗

0 ,Dk∗
0

)
≤ 1 − 1

n2+ε′ (L.1)
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– or
SD (Dowf ,Drand) <

2
nε′/2 (L.2)

We will prove something slightly stronger, namely that either (L.1∗) or (L.2)
holds, where (L.1∗) is:

SD
(
D̂k∗

0 , D̂k∗
1

)
≤ 1 − 1

n2+ε′ (L.1∗)

To see why (L.1∗) implies (L.1), observe that for every k, given a sample
from D̂k

0 (resp. D̂k
1 ) it is easy to generate a sample from Dk

0 (resp. Dk
1 ). Thus

an (unbounded) distinguisher for the former pair of distributions implies an
(unbounded) distinguisher with at least the same advantage for the latter pair.7

Remark 3. By (8) and (9), SD(Dowf ,Drand) = 1 − Es←Un
[Img(fs)/2n]. Using

(L.1∗) and this interpretation of (L.2), the lemma informally states that either:

– There is a level k∗ such that for a random node ŝ on the k∗th level, the
subtrees induced by the left child G0(ŝ) and the right child G1(ŝ) are not too
dissimilar.

– The image of fs is in expectation, a very large subset of the co-domain.

Finally, it is worth noting that the proof of this lemma is purely combinatorial
and nowhere makes use of computational assumptions. As such, it holds for and
GGM-like ensemble instantiated with arbitrary length-doubling function G.

Proof (Combinatorial Lemma). Fix n ∈ N and a secret key s ∈ {0, 1}n. Recall
that for a multi-set M , M(x) is the multiplicity of the element x in M .

For every k ∈ [0, n − 1] and v ∈ {0, 1}k (letting {0, 1}0 = {ε}, where ε is
the empty string), we define two multi-sets over {0, 1}n (‘L’ for ‘leaves’) which
together contain all the leaves contained in the subtree with prefix v of the GGM
tree rooted at s.

Ls
v,0 = {fs(x) : x = v‖0‖t}t∈{0,1}n−k−1

Ls
v,1 = {fs(x) : x = v‖1‖t}t∈{0,1}n−k−1

(27)

Define Is
v := Ls

v,0 ∩ Ls
v,1 to be their intersection.

For each v ∈ {0, 1}k, we define a set Bs
v of “bad” inputs x to the function fs.

For each y ∈ Is
v , there are at least Is

v(y)-many distinct x0 (respectively, x1) such
that fs(x0) = y and x0 = v‖0‖t begins with the prefix v‖0 (respectively, v‖1).
Assign arbitrarily Is

v(y)-many such x0 and x1 to the set Bs
v. By construction,

|Bs
v| = 2|Is

v | (28)

Let Bs =
⋃n−1

k=0

⋃
v∈{0,1}k Bs

v, and let Qs := {0, 1}n\Bs be the set of “good”
inputs.

7 This essentially a data-processing inequality.
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Observe that fs is injective on Qs. To see why, consider some x ∈ Qs, and let
x′ �= x be such that fs(x) = fs(x′) = y if one exists. Suppose that the length of
their longest common prefix v is maximal among all such x′. By the maximality
of the prefix v, x must be in Bs

v. Therefore,

|Img(fs)| ≥ |Qs| (29)

To reduce clutter we define the following additional notation: for every secret
key r ∈ {0, 1}n and level � ∈ [n] we define

Δmix(r; �) = SD(fG0(r)(U�); fG1(r)(U�))

Informally, Δmix(r; �) is the difference between the left and right subtrees rooted
at r of depth �. For all � < n and r ∈ {0, 1}n:

Δmix(r; �) ≥ Δmix(r;n) (30)

This can be seen by expanding the definitions, or by considering the nature of the
distributions as follows. The GGM construction implies that if two internal nodes
have the same label, then their subtrees exactly coincide. Thus, the fraction of
nodes at level n that coincide on trees rooted at G0(r) and G1(r) is at least the
fraction of nodes at level � that coincide.

For every secret key s ∈ {0, 1}n, k ∈ [0, n − 1], and v ∈ {0, 1}k, it holds that:

Δmix(fs(v);n − k − 1) = 1 − |Is
v |

2n−k−1
(31)

Rearranging (31) and using (30) with � = n − k, we have that

|Is
v |

2n−k−1
≤ 1 − Δmix(fs(v);n) (32)

Claim. For ε > 0, n ∈ N, if SD(D̂k∗
0 , D̂k∗

1 ) ≤ 1 − 1
n2+ε′ (i.e., if (L.1∗) is false),

then

1 − E
s←Un

[ |Qs|
2n

]
= E

s←Un

[ |Bs|
2n

]
<

2
nε/2

(33)

See proof below. This claim implies (L.2) as follows, completing the proof:

SD
(
Dowf ,Drand

)
= 1 − E

s←Un

[ |Img(fs)|
2n

]
≤ 1 − E

s←Un

[ |Qs|
2n

]
< 1 − 2

nε/2
(34)
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Proof (of Claim). We can now bound the expected size of |Bs| as follows.

E
s←Un

[ |Bs|
2n

]
(35)

= Pr
s←Un
x←Un

[x ∈ Bs]

≤
n−1∑
k=0

∑
v∈{0,1}k

Pr
s,x

[x ∈ Bs
v] by the definition of Bs

=
n−1∑
k=0

Pr
s,x

[
x ∈ Bs

x[1:k]

]

≤
n−1∑
k=0

T · Pr
s,x

( |Bs
x[1:k]|

2n−k
≤ T

)
+ Pr

s,x

( |Bs
x[1:k]|

2n−k
> T

)
for any 0 ≤ T ≤ 1

≤
n−1∑
k=0

T + Pr
s,x

( |Is
x[1:k]|

2n−k−1
> T

)
by (28)

Fix constant ε > 0. Suppose (L.1∗) is false; namely, for all k ∈ [0, n − 1],

SD
(
D̂k∗

0 , D̂k∗
1

)
= E

r←Un

ŝ←fr(Uk)

[
Δmix(ŝ;n)

]
> 1 − 1

n2+ε
(36)

By Markov’s Inequality, for any τ > 0:

Pr
r←Un

ŝ←fr(Uk)

[
1 − Δmix(ŝ;n) >

τ

n2+ε

]
<

1
τ

(37)

Observe that the distributions
(
fs(x[1 : k])

)
s←Un
x←Un

and
(
ŝ
)

r←Un

ŝ←fr(Uk)
are identical.

Therefore, by inequality (32) and the above Markov bound:

Pr
s←Un
x←Un

( |Is
x[1:k]|

2n−k−1
> T

)
≤ Pr

s←Un
x←Un

(
1 − Δmix(fs(x[1 : k]);n) > T

)
≤ 1

Tn2+ε
(38)

Continuing the series of inequalities from (35):

≤
n−1∑
k=0

(
T +

1
Tn2+ε

)
by (32)

≤ n
τ

n2+ε
+ n

1
τ

for T =
τ

n2+ε
,by (37)

=
2

nε/2
for τ = n1+ε/2

This completes the proof of the claim.
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5 When Is GGM Strongly One-Way?

Theorem 2 shows that under some natural – albeit strong – conditions, the
GGM function ensemble is strongly one-way. Whether pseudorandom generators
G exist that induce these conditions in the GGM ensemble is, as yet, unknown.
Theorem 2. Let FG be the GGM ensemble with pseudorandom generator G.
FG is a strongly one-way collection of functions if either of the following hold:

(a) There exists a negligible function negl(·) such that for all sufficiently large n

E
s←Un

[ |Img(fs)|
2n

]
≥ 1 − negl(n) (39)

(b) There exists a polynomial β(·) such that for all sufficiently large n and for
all s, y ∈ {0, 1}n ∣∣f−1

s (y)
∣∣ ≤ β(n) (40)

Remark 4. These two conditions have some overlap, but neither is contained in
the other. Additionally, a weaker – but somewhat more abstruse – condition

than (b) also suffices: namely, that
∑

s,y

( |f−1
s (y)|
2n

)2

is bounded above by some
polynomial. This quantity is related to the collision entropy of the distribution
(s, fs(Un))s←Un

.

Proof (Theorem 2). Suppose FG satisfies one of the conditions of Theorem
2. Further suppose towards contradiction that there exists a probabilistic
polynomial-time A and a polynomial w(·), such that for infinitely-many n ∈ N

AdvA
(
(s, fs(Un))s←Un

) ≥ 1
w(n)

(41)

By the Distinguishing Lemma, to derive a contradiction it suffices to prove for
some polynomial α(·) related to w

AdvA(Un × Un) >
1

α(n)
(42)

Case (a): Applying Eqs. (8) and (9) to the assumption on Es←Un

[ Img(fs)
2n

]
yields

SD
(
(s, fs(Un))Un

, (Un, Un)
) ≤ negl(n) (43)

It follows immediately that (42) holds for 1/α(n) = 1/w(n) − 1/poly(n), for any
polynomial poly (e.g. for 1/α(n) = 1/2w(n)).
Case (b): For this case, we use the facts about Rényi divergence from the
Preliminaries and follow that notation closely. Let P = Dowf = (s, fs(Un))s←Un

and Q = Drand = U2n be probability distributions over {0, 1}2n.

Claim. R (P‖Q) ≤ β(n)2.
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Proof (of Claim).

R (P‖Q) =
∑

(s,y)∈{0,1}2n

P (s, y)2

Q(s, y)

= 22n
∑
s,y

P (s, y)2

= 22n
∑
s,y

(
1
2n

· Pr
P

[y|s]
)2

=
∑
s,y

Pr
P

[y|s]2

=
∑
s,y

( |f−1
s (y)|
2n

)2

≤ β(n)2

Let the event

E =
{

(s, y) ∈ {0, 1}n × {0, 1}n : Pr
A

[A(s, y) ∈ f−1
s (y)] >

1
2w(n)

}

be the set of pairs (s, y) on which A successfully inverts with probability at least
1/2w(n). By an averaging argument:

1
w(n)

< AdvA(P ) = Pr
(s,y)←P

[A(s, y) ∈ f−1
s (y)]

= Pr
P

[A(s, y) ∈ f−1
s (y) ∧ E]

+ Pr
P

[A(s, y) ∈ f−1
s (y) ∧ ¬E]

≤ Pr
P

[E] + Pr[A(s, y) ∈ f−1
s (y) | ¬E]

≤ P (E) +
1

2w(n)

Using (11) from the Preliminaries (i.e., Q(E) ≥ P (E)2

R(P‖Q) ), we get that

P (E) >
1

2w(n)
=⇒ Q(E) >

1
4w(n)2B(n)2

(44)

From the definition of event E, it follows that the condition in (42) holds, com-
pleting the proof:

AdvA(Q) = Pr
(s,y)←U2n

[A(s, y) ∈ f−1
s (y)] >

Q(E)
2w(n)

>
1

8w(n)3B(n)2
(45)
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6 Conclusion

In this work, we demonstrated that the length-preserving Goldreich-Goldwasser-
Micali function family is weakly one-way. This is the first demonstration that
the family maintains some cryptographic hardness even when the secret key is
exposed.

Open Questions. Two interesting open questions suggest themselves.

1. Is GGM strongly one-way for all pseudorandom generators, or does there
exist a generator for which the induced GGM ensemble can be inverted some
non-negligible fraction of the time? A positive answer to this question would
be very interesting and improve upon this work; a negative answer would be
a spiritual successor to [Gol02].

2. In the absence of a positive answer to the above, do there exist pseudorandom
generators for which the induced GGM ensemble is strongly one-way? In
particular, do there exist generators that satisfy the requirements of Theorem
2?
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A Appendix

Proof of (8):

SD ((p,D(p))P , (p,D′(p))P )

=
1
2

∑
(p,x)∈Supp(P )×X

∣∣∣∣ Pr
(p,D(p))P

(p, x) − Pr
(p,D′(p))P

(p, x)
∣∣∣∣

=
∑

p∈Supp(P )

Pr
P

(p) · 1
2

∑
x∈X

∣∣∣∣ Pr
D(p)

(x) − Pr
D′(p)

(x)
∣∣∣∣

=
∑

p∈Supp(P )

Pr
P

(p) · SD (D (p) ,D′ (p))

= E
p←P

[SD (D (p) ,D′ (p))]
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Proof of (9):

SD(f(Un), Un) =
1
2

∑
α∈{0,1}n

∣∣∣∣Pr[f(Un) = α] − Pr[Un = α]
∣∣∣∣

=
1
2

∑
α

∣∣∣∣ |f
−1(α)|
2n

− 1
2n

∣∣∣∣
=

1
2

( ∑
α∈Img(f)

∣∣∣∣ |f
−1(α)|
2n

− 1
2n

∣∣∣∣ +
∑

α/∈Img(f)

1
2n

)

=
1
2

(
1 − |Img(f)|

2n
+ 1 − |Img(f)|

2n

)

= 1 − |Img(f)|
2n

Proof of Inequality (23): Recall the following definition.
Definition8 (q-good). For any q ∈ [0, 1], an element y ∈ {0, 1}n is called
q-good with respect to θ if it is both θ-thin and A finds some preimage of y for
a uniformly random secret key s with probability at least q. Namely,

Goodq :=
{
y ∈ Thinθ : Pr

s←Un

[A(s, y) ∈ f−1
s (y)] > q

}

We begin with two observations:

– The distribution over yb is equivalent to the distribution (Gb(x))(b,x)←U×Un
.

The number of pairs (b, x) such that Gb(x) ∈ Goodq is at least |Goodq|, while
the number of pairs (b, x) such that Gb(x) ∈ Thinθ is at most θ|Thinθ|. There-
fore:

Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ]

= Pr
(b,x)←U×Un

[Gb(x) ∈ Goodq | Gb(x) ∈ Thinθ]

≥ 1
θ

· |Goodq|
|Thinθ|

=
1
θ

· Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ]

– By definition of Goodq:

Pr
s←Un

y←GU (Un)

[A(s, y) ∈ f−1
s (y)

∣∣ y ∈ Goodq

]
> q (46)
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Combining the above

Pr
s←Un

y←GU (Un)

[A(s, y) ∈ f−1
s (y)

∣∣ y ∈ Thinθ

]

≥ Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ] · Pr
s←Un

y←GU (Un)

[A(s, y) ∈ f−1
s (y)

∣∣ y ∈ Goodq

]

≥ q

θ
· Pr

s,y←Un

[y ∈ Goodq|y ∈ Thinθ] (47)

If we show that

Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ] ≥ 1
α(n)

− 2
θ

− q (48)

then selecting θ = 4α(n) and q = 1/4α(n), the value of (47) is bounded below
by

Pr
s←Un

y←GU (Un)

[A(s, y) ∈ f−1
s (y)

∣∣ y ∈ Thinθ

] ≥ q

θ
· Pr

s,y←Un

[y ∈ Goodq|y ∈ Thinθ]

≥
(

1
4α(n)

)3

The following proves inequality (48) and completes the proof of (23).

1
α(n)

< Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y)] by (14)

= Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) ∧ y ∈ Thinθ]

+ Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) ∧ y �∈ Thinθ]

≤ Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ] + Pr

y←Un

[y �∈ Thinθ]

≤ Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ] +

2n+1/θ

2n
by (22)
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=⇒ 1
α(n)

− 2
θ

< Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ]

= Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ]

· Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Goodq]

+ Pr
s←Un
y←Un

[y �∈ Goodq | y ∈ Thinθ]

· Pr
s←Un
y←Un

[A(s, y) ∈ f−1
s (y) | y ∈ Thinθ\Goodq]

≤ Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ] + q

The final inequality is by the definition of Thinθ\Goodq.
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