
On the Multiplicative Complexity of Boolean
Functions and Bitsliced Higher-Order Masking

Dahmun Goudarzi1,2(B) and Matthieu Rivain1

1 CryptoExperts, Paris, France
{dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

2 ENS, CNRS, INRIA and PSL Research University, Paris, France

Abstract. Higher-order masking is a widely used countermeasure to
make software implementations of blockciphers achieve high security lev-
els against side-channel attacks. Unfortunately, it often comes with a
strong impact in terms of performances which may be prohibitive in some
contexts. This situation has motivated the research for efficient schemes
that apply higher-order masking with minimal performance overheads.
The most widely used approach is based on a polynomial representation
of the cipher s-box(es) allowing the application of standard higher-order
masking building blocks such as the ISW scheme (Ishai-Sahai-Wagner,
Crypto 2003). Recently, an alternative approach has been considered
which is based on a bitslicing of the s-boxes. This approach has been
shown to enjoy important efficiency benefits, but it has only been applied
to specific blockciphers such as AES, PRESENT, or custom designs. In
this paper, we present a generic method to find a Boolean representation
of an s-box with efficient bitsliced higher-order masking. Specifically, we
propose a method to construct a circuit with low multiplicative com-
plexity. Compared to previous work on this subject, our method can
be applied to any s-box of common size and not necessarily to small
s-boxes. We use it to derive higher-order masked s-box implementations
that achieve important performance gain compared to optimized state-
of-the-art implementations.

1 Introduction

One of the most widely used strategy to protect software implementations of block-
ciphers against side-channel attacks consists in applying secret sharing at the
implementation level. This strategy also known as (higher-order)masking notably
achieves provable security in the probing security model [ISW03] and in the noisy
leakage model [PR13,DDF14]. While designing a higher-order masking scheme for
a given blockcipher, the main issue is the secure and efficient computation of the
s-box. Most of the proposed solutions (see for instance [RP10,CRV14,CPRR15])
arebasedonapolynomial representationof the s-boxover thefinite fieldF2n (where
n is the input bit-length), for which the field multiplications are secured using the
ISW scheme due to Ishai et al. [ISW03].

An alternative approach has recently been put forward which consists in apply-
ing higher-order masking at the Boolean level by bitslicing the s-boxes within a
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 457–478, 2016.
DOI: 10.1007/978-3-662-53140-2 22

458 D. Goudarzi and M. Rivain

cipher round [GLSV15,GR16]. In the bitsliced higher-order masking paradigm,
the ISW scheme is applied to secure bitwise AND instructions which are signifi-
cantly more efficient than their field-multiplication counterparts involved in poly-
nomial schemes. Moreover, such a strategy allows to compute all the s-boxes within
a cipher round at the same time, which results in important efficiency gains. To the
best of our knowledge, bitsliced higher-order masking has only been applied to spe-
cific blockciphers up to now. In [GLSV15], Grosso et al. introduce new blockciphers
with LS-designs tailored to efficient masked computation in bitslice. The approach
has also been used by Goudarzi and Rivain in [GR16] to get fast implementations
of two prominent blockciphers, namely AES and PRESENT, masked at an order
up to 10.However, no genericmethod to apply this approach to any blockcipher has
been proposed so far. In contrast several generic methods have been published for
the polynomial setting [CGP+12,CRV14,CPRR15]. Therefore, and given the effi-
ciency benefits of bitsliced higher-order masking approach, defining such a generic
method is an appealing open issue.

Finding a Boolean representation of an s-box that yields an efficient compu-
tation in the bitsliced masking world merely consists in finding a circuit with
low multiplicative complexity. The multiplicative complexity of Boolean functions
has been studied in a few previous papers [MS92,BPP00,TP14]. In particular,
optimal circuits have been obtained for some small (3-bit/4-bit/5-bit) s-boxes
using SAT solvers [CMH13,Sto16]. However no general (heuristic) method has
been proposed up to now to get an efficient decomposition for any s-box, and in
particular for n-bit s-boxes with n ≥ 6.

In this paper, we introduce a new heuristic method to decompose an s-box
into a circuit with low multiplicative complexity. Our proposed method follows
the same approach as the CRV and algebraic decomposition methods used to get
efficient representations in the polynomial setting [CRV14,CPRR15]. We also
introduce the notion of parallel multiplicative complexity to capture the fact that
several AND gates might be bundled in a single instruction, enabling further gain
in the bitslice setting [GR16]. Eventually, we describe ARM implementations of
bitsliced higher-order-masked s-box layers using our decomposition method and
we compare them to optimized versions of the CRV and algebraic decomposition
methods. Our results show a clear superiority of the bitslice approach when the
masking order exceeds a certain threshold.

The paper is organized as follows. Section 2 gives some preliminaries about
Boolean functions and higher-order masking. We then introduce the notion of
(parallel) multiplicative complexity and discuss previous results as well as our
contribution in Sect. 3. Section 4 presents our heuristic method in a general set-
ting as well as some s-box-specific improvements. Finally, Sect. 5 describes our
implementations and the obtained performances.

2 Preliminaries

2.1 Boolean Functions

Let F2 denote the field with 2 elements and let n be a positive integer. A Boolean
function f with n variables is a function from F

n
2 to F2. The set of such functions

On the Multiplicative Complexity 459

is denoted Fn in this paper. Any Boolean function f ∈ Fn can be seen as a
multivariate polynomial over F2[x1, x2, . . . , xn]/(x2

1 − x1, x
2
2 − x2, . . . , x

2
n − xn):

f(x) =
∑

u∈{0,1}n

au xu, (1)

where x = (x1, x2, . . . , xn), xu = xu1
1 · xu2

2 · . . . · xun
n , and au ∈ F2 for every

u ∈ {0, 1}n. The above representation is called theAlgebraic Normal Form (ANF).
For any family f1, f2 . . . , fm ∈ Fn, the set 〈f1, f2 . . . , fm〉 =

{∑m
i=0aifi | ai ∈

F2

}
is called the span of the fi’s (or the space spanned by the fi’s), which

is a F2-vector space. Let Mn denote the set of monomial functions that is
Mn =

{
x �→ xu | u ∈ {0, 1}n

}
. Then, the set of Boolean functions with n

variables can be defined as the span of monomial functions, that is Fn = 〈Mn〉.
Let n and m be two positive integers, and let S be a function mapping

F
n
2 to F

m
2 . Such a function can be seen as a vector of Boolean functions, i.e.

S(x) = (f1(x), f2(x) . . . , fm(x)) and is hence called a vectorial (Boolean) func-
tion also known as an (n × m) s-box in cryptography. The Boolean functions
f1, f2, . . . , fm ∈ Fn are then called the coordinate functions of S.

2.2 Higher-Order Masking

Higher-order masking consists in sharing each internal variable x of a crypto-
graphic computation into d random variables x1, x2, . . . , xd, called the shares
and satisfying x1 + x2 + · · · + xd = x, for some group operation +, such that
any set of d − 1 shares is randomly distributed and independent of x. In this
paper, the considered masking operation will be the bitwise addition. It has been
formally demonstrated that in the noisy leakage model, where the attacker gets
noisy information on each share, the complexity of recovering information on x
grows exponentially with the number of shares [CJRR99,PR13]. This number d,
called the masking order, is hence a sound security parameter for the resistance
of a masked implementation.

The main issue while protecting a blockcipher implementation with mask-
ing is the secure computation of the nonlinear layer applying the s-boxes to
the cipher state. The prevailing approach consists in working on the polyno-
mial representation of the s-box over the field F2n , which is secured using the
ISW scheme [ISW03] for the field multiplications [RP10,CGP+12]. The most
efficient polynomial evaluation method in this paradigm is due to Coron et
al. [CRV14]. The polynomial representation can also be decomposed in func-
tions of lower algebraic degree as recently proposed by Carlet et al. in [CPRR15].
In the quadratic case, these functions can then be efficiently secured using the
CPRR scheme [CPRR14].

2.3 Bitsliced Higher-Order Masking

A variant of polynomial methods is to apply masking at the Boolean level using
bitslicing (see for instance [DPV01,GLSV15,BGRV15]). In [GR16], the authors

460 D. Goudarzi and M. Rivain

apply this approach to get highly efficient implementations of AES and PRESENT
with masking order up to 10. In their implementations, bitslice is applied at the
s-box level. Specifically, based on a Boolean circuit for an s-box S, one can per-
form � parallel evaluations of S in software by replacing each gate of the circuit
with the corresponding bitwise instruction, where � is the bit-size of the underly-
ing CPU architecture. It results that the only nonlinear operations in the parallel
s-box processing are bitwise AND instructions between �-bit registers which can
be efficiently secured using the ISW scheme. Such an approach achieves important
speedup compared to polynomial methods since (i) ISW-based ANDs are substan-
tially faster than ISW-based field multiplications in practice, (ii) all the s-boxes
within a cipher round are computed in parallel. The authors of [GR16] propose
an additional optimization. In their context, the target architecture (ARM) is of
size � = 32 bits, whereas the number of s-boxes per round is 16 (yielding 16-bit
bitslice registers). Therefore, they suggest to group the ANDs by pair in order to
perform a single ISW-based 32-bit AND where the standard method would have
performed two ISW-based 16-bit AND. This roughly decreases the complexity by
a factor up to two.1

3 Multiplicative Complexity of Boolean Functions

Weshall callBoolean circuit anycomputationgraphcomposedofF2-multiplication
nodes (AND gates), F2-addition nodes (XOR gates), and switching nodes (NOT
gates). Informally speaking, the multiplicative complexity of a Boolean function is
the minimum number of F2-multiplication gates required by a Boolean circuit to
compute it. This notion can be formalized as follows:

Definition 1. The multiplicative complexity C(f1, f2, . . . , fm) of a family of
Boolean functions f1, f2, . . . , fm ∈ Fn, is the minimal integer t for which there
exist Boolean functions gi, hi ∈ Fn for i ∈ [[1, t]] such that:

{
g1, h1 ∈ 〈1, x1, x2, . . . , xn〉
∀i ∈ [[2, t]] : gi, hi ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gi−1 · hi−1〉 (2)

and
f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gt · ht〉. (3)

It is easy to see that any set of Boolean functions {f1, f2, . . . , fm} ⊆ Fn has
multiplicative complexity satisfying

C(f1, f2, . . . , fm) ≤ C(Mn) = 2n − (n + 1). (4)

Moreover, a counting argument shows that there exists f ∈ Fn such that

C(f) > 2
n
2 − n. (5)

1 Packing the operands and depacking the result implies a linear overhead in the number
of shares, whereas the number of quadratic operations (the ISW-ANDs) are divided
by a factor up to 2.

On the Multiplicative Complexity 461

In [BPP00], Boyar et al. provide a constructive upper bound for any Boolean
function:

Theorem 1 ([BPP00]). For every f ∈ Fn, we have

C(f) ≤
{

2
n
2 +1 − n

2 − 2 if n is even,

3 · 2
n−1
2 − n−1

2 − 2 otherwise.
(6)

The particular case of Boolean functions with 4 and 5 variables has been
investigated by Turan and Peralta in [TP14]. They give a complete characteri-
zation of affine-equivalence classes of these functions and they show that every
f ∈ F4 has C(f) ≤ 3 and every f ∈ F5 has C(f) ≤ 4.

Other works have focused on the multiplicative complexity of particular kinds
of Boolean functions. In [MS92], Mirwald and Schnorr deeply investigate the case
of functions with quadratic ANF. In particular they show that such functions
have multiplicative complexity at most �n

2 �. Boyar et al. give further upper
bounds for symmetric Boolean functions in [BPP00].

3.1 Multiplicative Complexity of S-Boxes

The multiplicative complexity of an s-box S : x �→ (f1(x), f2(x) . . . , fm(x)) is
naturally defined as the multiplicative complexity of the family of its coordinate
functions. We shall also call multiplicative complexity of a given circuit the actual
number of multiplication gates involved in the circuit, so that the multiplicative
complexity of a circuit gives an upper bound of the multiplicative complexity of
the underlying s-box.

The best known circuit for the AES s-box in terms of multiplicative com-
plexity is due to Boyar et al. [BMP13]. This circuit achieves a multiplicative
complexity of 32 which was obtained by applying logic minimization techniques
to the compact representation of the AES s-box due to Canright [Can05] (and
saving 2 multiplications compared to the original circuit).

In [CMH13], Courtois et al. use SAT-solving to find the multiplicative com-
plexity of small s-boxes. Their approach consists in writing the Boolean system
obtained for a given s-box and a given (target) multiplicative complexity t as a
SAT-CNF problem, where the unknowns of the system are the coefficients of the
gi and hi in Definition 1. For each value of t, the solver either returns a solution
or a proof that no solution exists, so that the multiplicative complexity is the
first value of t for which a solution is returned. They apply this approach to find
Boolean circuits with the smallest multiplicative complexity for a random 3 × 3
s-box (meant to be used in CTC2 [Cou07]), the 4 × 4 s-box of PRESENT, and
for several sets of 4×4 s-boxes proposed for GOST [PLW10]. These results have
recently been extended by Stoffelen who applied the Courtois et al. approach to
find optimal circuits for various 4 × 4 and 5 × 5 s-boxes [Sto16].

The main limitation of the SAT-solving approach is that it is only applica-
ble to small s-boxes due to the combinatorial explosion of the underlying SAT
problem, and getting the decomposition of an s-box of size e.g. n = 8 seems

462 D. Goudarzi and M. Rivain

out of reach. Moreover, the method is not generic in the sense that the obtained
decomposition stands for a single s-box and does not provide an upper bound
for the multiplicative complexity of s-boxes of a given size.

3.2 Our Results

We give new constructive upper bounds for the multiplicative complexity of
s-boxes. As a first result, we extend Theorem 1 to s-boxes (see proof in the full
version):

Theorem 2. For every S ∈ Fm
n , we have:

C(S) ≤ min
k∈[[1,n]]

(m2k + 2n−k + k) − (m + n + 1). (7)

When m = n, the min is achieved by k =
⌊n−log2 n

2

⌉
for most n ∈ N, which gives

C(S) ≤ Bn with

Bn ≈ √
n 2

n
2 +1 −

(3n + log2 n

2
+ 1

)
. (8)

We further introduce in this paper a heuristic decomposition method achiev-
ing lower multiplicative complexity. Our general result is summarized in the
following Theorem:

Theorem 3. For every S ∈ Fm
n , we have C(S) ≤ Cn,m with

Cn,m ≈ √
m 2

n
2 +1 − m − n − 1. (9)

And in particular

Cn,n =

⎧
⎨

⎩

17 for n = 5
31 for n = 6
50 for n = 7

and Cn,n =

⎧
⎨

⎩

77 for n = 8
122 for n = 9
190 for n = 10

(10)

In the above theorem, Cn,m denote the multiplicative complexity of the
generic method presented in Sect. 4. We also propose non-generic improvements
of this method that might give different results depending on the s-box. Table 1
summarizes the multiplicative complexities obtained by the two above theorems
and the non-generic improved method for n×n s-boxes with n ∈ [[4, 10]]. For the
latter, the figures represent what we hope to achieve for a random s-box (that
we were able to achieve for some tested s-boxes).

Table 1. Multiplicative complexities of n × n s-boxes.

n 4 5 6 7 8 9 10

Theorem 2 8 16 29 47 87 120 190

Our generic method (Cn,n) 8 17 31 50 77 122 190

Our improved method (C∗
n,n) 7 13 23 38 61 96 145

On the Multiplicative Complexity 463

3.3 Parallel Multiplicative Complexity

We introduce hereafter the notion of parallel multiplicative complexity for
Boolean functions and s-boxes. We consider circuits with multiplication gates
that can process up to k multiplications in parallel. The k-parallel multiplica-
tive complexity of an s-box is the least number of k-parallel multiplication gates
required by a circuit to compute it. We formalize this notion hereafter:

Definition 2. The k-parallel multiplicative complexity C(k)(f1, f2, . . . , fm) of
a family of Boolean functions f1, f2, . . . , fm ∈ Fn, is the minimal integer t for
which there exist Boolean functions gi, hi ∈ Fn for i ∈ [[1, tk]] such that:

⎧
⎨

⎩

g1, h1, g2, h2, . . . , gk, hk ∈ 〈1, x1, x2, . . . , xn〉 ,
∀i ∈ [[1, t − 1]] : gik+1, hik+1, . . . , g(i+1)k, h(i+1)k

∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gik · hik〉
(11)

and
f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gtk · htk〉. (12)

The main motivation for introducing this notion comes from the following
scenario. Assume we want to perform m s-box computations in bitslice on an �-bit
architecture, where � > m. Then we have to pick a circuit computing the s-box
and translate it in software by replacing Boolean gates with corresponding bit-
wise instructions. Since each bitsliced register contains m bits (m versions of the
same input or intermediate bit), one can perform up to k = ��/m� multiplication
gates with a single �-bit AND instruction (modulo some packing of the operands
and unpacking of the results). If the used circuit has a k-parallel multiplicative
complexity of t, then the resulting bitsliced implementation involve t bitwise
AND instructions. This number of AND instructions is the main efficiency crite-
rion when such an implementation is protected with higher-order masking which
makes the k-parallel multiplicative complexity an important parameter for an
s-box in this context.

The authors of [GR16] show that the AES circuit of Boyar et al. can be fully
parallelized at degree 2, i.e. its 2-parallel multiplicative complexity is 16. In the
full version of this paper, we further show that a sorted version of this circuit
can achieve k-parallel multiplicative complexity of 9, 7 and 6 for k = 4, k = 8,
and k = 16 respectively.

The decomposition method introduced in this paper has the advantage of
being highly parallelizable. Table 2 summarizes the obtained k-parallel multi-
plicative complexity C

(k)
n,n for n × n s-boxes for k ∈ {2, 4}. Note that we always

have C
(k)
n,n ∈ {�Cn,n

k �, �Cn,n

k � + 1} which is almost optimal.

4 A Heuristic Decomposition for S-Boxes

In this section, we introduce a heuristic decomposition method for s-boxes that
aim to minimize the number of F2 multiplications. The proposed method follows
the same approach than the CRV decomposition over F2n [x]. We first describe
the proposed heuristic for a single Boolean function before addressing the case
of s-boxes.

464 D. Goudarzi and M. Rivain

Table 2. Parallel multiplicative complexities of our method for n × n s-boxes.

n 4 5 6 7 8 9 10

Cn,n 8 17 31 50 77 122 190

C
(2)
n,n 4 9 16 25 39 62 95

C
(4)
n,n 2 5 9 13 20 31 48

4.1 Decomposition of a Single Boolean Function

Let f be a Boolean function. The proposed decomposition simply consists in
writing f as:

f(x) =
t−1∑

i=0

gi(x) · hi(x) + ht(x) (13)

where gi, hi ∈ 〈B〉, for some basis of functions B = {φj}|B|
j=1. Assume that all

the φj(x), φj ∈ B, can be computed with r multiplications. Then the total
multiplicative complexity of the above decomposition is of r+ t. We now explain
how to find such a decomposition by solving a linear system.

Solving a Linear System. As in the CRV method, we first sample t random
functions gi from 〈B〉. This is simply done by picking t · |B| random bits ai,j

and setting gi =
∑

φj∈B ai,jφj . Then we search for a family of t + 1 Boolean
functions {hi}i satisfying (13). This is done by solving the following system of
linear equations over F2:

A · c = b (14)

where b = (f(e1), f(e2), . . . , f(en))T with {ei} = F
n
2 and where A is a matrix

defined as the concatenation of t + 1 submatrices:

A = (A0|A1| · · · | At) (15)

with

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

φ1(e1) · gi(e1) φ2(e1) · gi(e1) ... φ|B|(e1) · gi(e1)
φ1(e2) · gi(e2) φ2(e2) · gi(e2) ... φ|B|(e2) · gi(e2)

...
...

. . .
...

φ1(e2n) · gi(e2n) φ2(e2n) · gi(e2n) ... φ|B|(e2n) · gi(e2n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(16)

On the Multiplicative Complexity 465

for 0 ≤ i ≤ t − 1, and

At =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

φ1(e1) φ2(e1) ... φ|B|(e1)
φ1(e2) φ2(e2) ... φ|B|(e2)

...
...

. . .
...

φ1(e2n) φ2(e2n) ... φ|B|(e2n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(17)

It can be checked that the vector c, solution of the system, gives the coeffi-
cients of the hi’s over the basis B. A necessary condition for this system to have
a solution whatever the target vector b (i.e. whatever the Boolean function f) is
to get a matrix A of full rank. In particular, the following inequality must hold:

(t + 1)|B| ≥ 2n. (18)

Another necessary condition to get a full-rank matrix is that the squared
basis B × B = {φi · φk | φi, φk ∈ B} spans the entire space Fn. A classic basis
of the vector space is the set of monomials Mn. Therefore, we suggest to take a
basis B such that Mn ⊆ B × B. Let

B0 = {x �→ xu, u ∈ U}
with U =

{
(u1, . . . , u�, 0, . . . , 0)

} ∪ {
(0, . . . , 0, u�+1, . . . , un)

}
(19)

where � = �n
2 � and where ui ∈ {0, 1} for every i ∈ [[1, n]]. Then, we clearly

have B0 × B0 = Mn. We hence suggest taking B ⊇ B0, with B possibly larger
than B0 since restraining ourselves to B = B0 could be non-optimal in terms
of multiplications for the underlying decomposition method. Indeed, (18) shows
that the more elements in the basis, the smaller t, i.e. the less multiplications
gi · hi. We might therefore derive a bigger basis by iterating B ← B ∪ {φj · φk},
where φj and φk are randomly sampled from B until reaching a basis B with the
desired cardinality.

We then have r = |B| − n − 1, where we recall that r denotes the number of
multiplications to derive B, and since x �→ 1, x �→ x1, . . . , x �→ xn ∈ B requires
no multiplications. By construction, we have |B| ≥ |B0| = 2� +2n−� −1, implying
r ≥ 2� + 2n−� − (n + 2). Let Cn = r + t denote the number of multiplications
achieved by our decomposition method. Then, by injecting Cn in (18) we get:

(Cn − r + 1)(n + 1 + r) ≥ 2n , (20)

that is:
Cn ≥ r +

2n

n + 1 + r
− 1. (21)

It can be checked that the value of r minimizing the above bound is 2
n
2 −(n−1).

However, r must satisfy r ≥ 2� + 2n−� − (n + 2) where � = �n
2 �, which is always

466 D. Goudarzi and M. Rivain

greater than 2
n
2 − (n − 1) for n ≥ 2. That is why we shall define the optimal

value of the parameter r (for the single-Boolean-function case) as:

ropt = 2� + 2n−� − (n + 2) =
{

2
n
2 +1 − (n + 2) if n even,

3 · 2
n−1
2 − (n + 2) if n odd,

(22)

which amounts to taking B = B0. The corresponding optimal value for t is then
defined as:

topt =
⌈ 2n

ropt + n + 1

⌉
− 1 (23)

which gives topt ≈ 2
n
2 −1 for n even, and topt ≈ 1

3 2
n+1
2 for n odd.

Table 3. Optimal and achievable parameters for a single Boolean function.

n 4 5 6 7 8 9 10

Optimal parameters

(r, t) (2,2) (5,2) (8,4) (15,5) (22,8) (37,10) (52,16)

|B| 7 11 15 23 31 47 63

Cn 4 7 12 20 30 46 68

Achievable parameters

(r, t) (2,3) (5,3) (9,5) (16,6) (25,9) (41,11) (59,17)

|B| 7 11 16 24 34 51 70

Cn 5 8 14 22 34 52 78

In Table 3, we give the optimal values for (r, t) as well as the corresponding
size of the basis B and multiplication complexity Cn for n ∈ [[4, 10]]. We also give
the parameter values that we could actually achieve in practice to get a full-
rank system. We observe a small gap between the optimal and the achievable
parameters, which results from the heuristic nature of the method (since we
cannot prove that the constructed matrix A is full-rank).

4.2 S-Box Decomposition

Let S : x �→ (f1(x), f2(x), . . . , fm(x)) be an s-box. We can apply the above heuris-
tic to each of the m coordinate functions fi to get a decomposition as follows:

fi(x) =
t−1∑

j=0

gj(x) · hi,j(x) + hi,t(x), (24)

for 1 ≤ i ≤ m. Here the gj ’s are randomly sampled from 〈B〉 until obtaining a
full-rank system, which is then used to decompose every coordinate function fi.
The total number of multiplications is Cn,m = r + m · t. Then, (18) gives:

Cn,m ≥ r + m
(2n

n + 1 + r
− 1

)
. (25)

On the Multiplicative Complexity 467

It can be checked that the value of r minimizing the above bound is
√

m2n−n−1.
We hence define

ropt =
⌊√

m2n
⌉

− n − 1, (26)

which minimizes (25) for every n ∈ [[2, 10]] and every m ∈ [[1, n]]. Moreover, this
value satisfies the constraint (18) i.e. ropt ≥ 2� +2n−� − (n+2) for every m ≥ 4,
and in practice we shall only consider s-boxes with m ≥ 4. The corresponding
optimal value topt is then defined w.r.t. ropt as in (23), which satisfies

topt =
⌈ 2

n
2√
m

⌉
− 1 (27)

for every n ∈ [[2, 10]] and every m ∈ [[1, n]]. We hence get

Cn,m ≥ ropt + m · topt ≈ √
m 2

n
2 +1 − (n + m + 1). (28)

In Table 4, we give the optimal values for the parameters (r, t) as well as the
corresponding size of the basis B and multiplication complexity Cn,n for n×n s-
boxes with n ∈ [[4, 10]]. We also give the parameter values that we could actually
achieve in practice to get a full-rank system.

Table 4. Optimal and achievable parameters for an n × n s-box.

n 4 5 6 7 8 9 10

Optimal parameters

(r, t) (3,1) (7,2) (13,3) (22,4) (36,5) (58,7) (90,10)

|B| 8 13 20 30 45 68 101

Cn,n 7 17 31 50 76 121 190

Achievable parameters

(r, t) (4,1) (7,2) (13,3) (22,4) (37,5) (59,7) (90,10)

|B| 9 13 20 30 46 69 101

Cn,n 8 17 31 50 77 122 190

In comparison to the single-Boolean-function case, the optimal size of the
basis B for the s-box decomposition is significantly bigger. This comes from the
fact that a bigger basis implies a lower t for each of the m coordinate functions
(i.e. decrementing t implies decreasing Cn,m by m). We also observe a very close
gap (sometimes null) between the optimal and the achievable parameters. This
tightness, compared to the single-Boolean-function case, is most likely due to
the fact that we use a bigger basis.

4.3 Improvements

We present hereafter some improvements of the above method which can be
applied to get a decomposition with better multiplicative complexity for a given

468 D. Goudarzi and M. Rivain

s-box. In comparison to the above results, the obtained system and the associated
multiplicative complexity depend on the target s-box and are not applicable to all
s-boxes.

BasisUpdate.Our first improvement of the above method is based on a dynamic
update of the basis, each time a coordinate function fi(x) is computed.2 Indeed,
the term gj(x) · hi,j(x) involved in the computation of fi(x) can be reused in the
computation of the following fi+1(x), . . . , fn(x). In our decomposition process,
this means that the gj · hi,j functions can be added to the basis for the decompo-
sition of the next coordinate functions fi+1, . . . , fn. Basically, we start with some
basis B1 ⊇ B0, where B0 is the minimal basis as defined in (19). Then, for every
i ≥ 1, we look for a decomposition

fi(x) =
ti−1∑

j=0

gi,j(x) · hi,j(x) + hi,ti(x), (29)

where ti ∈ N and gi,j , hi,j ∈ 〈Bi〉. Once such a decomposition has been found,
we carry on with the new basis Bi+1 defined as:

Bi+1 = Bi ∪ {gi,j · hi,j}ti−1
j=0 . (30)

Compared to the former approach, we use different functions gi,j and we get
a different matrix A for every coordinate function fi. On the other hand, for
each decomposition, the basis grows and hence the number ti of multiplicative
terms in the decomposition of fi might decrease. In this context, we obtain a
new condition for every i that is:

ti ≥ 2n

|Bi| − 1. (31)

The lower bound on ti hence decreases as Bi grows. The total multiplicative
complexity of the method is then of:

C∗
n,m = r +

m∑

i=1

ti, (32)

where r = |B1| − (n + 1) is the number of multiplications required to derive the
initial basis B1. From the above inequality, we can define the optimal sequence
of ti and si = |Bi| as:

t1 = ψn(s1) and

{
si+1 = si + ti

ti+1 = ψn(si+1)
for every i > 1 (33)

where ψn : x �→
⌈
2n

x

⌉
− 1. The sequence (si, ti) is fully determined by the cardi-

nality of the original basis s1 = |B1|, and we have:
{

si = (ψn + Id)(i−1)(s1)
ti = ψn ◦ (ψn + Id)(i−1)(s1)

(34)

2 A similar idea is used in [BMP13] to construct an efficient circuit for the inversion in
F16.

On the Multiplicative Complexity 469

for every i ≥ 1, where Id denote the identity function. The obtained optimal
complexity is then:

C∗
n,m = s1 − (n + 1) +

m∑

i=1

ψn ◦ (ψn + Id)(i−1)(s1)

= (ψn + Id)(m)(s1) − (n + 1) .

By definition of ψn, the obtained functions (ψn + Id)(i) are sums of continued
fractions with ceiling, for which we do not have an analytic expression.

Table 5. Optimal parameters with basis-update improvement.

n |B1| r t1, t2, . . . , tn C∗
n,n

4 7 2 2,1,1,1 7

5 11 5 2,2,2,1,1 13

12 6 2,2,1,1,1 13

6 15 8 4,3,2,2,2,2 23

16 9 3,3,2,2,2,2 23

7 23 15 5,4,3,3,3,3,2 38

8 31 22 8,6,5,5,4,4,4,3 61

32 23 7,6,5,5,4,4,4,3 61

33 24 7,6,5,5,4,4,3,3 61

34 25 7,6,5,4,4,4,3,3 61

9 47 37 10,8,7,7,6,6,5,5,5 96

48 38 10,8,7,7,6,5,5,5,5 96

49 39 10,8,7,6,6,5,5,5,5 96

10 63 52 16,12,11,10,9,8,7,7,7,6 145

64 53 15,12,11,10,9,8,7,7,7,6 145

65 54 15,12,11,9,9,8,7,7,7,6 145

In Table 5, we give the optimal parameters s1 = |B1| and corresponding
r = s1−(n+1), t1, t2, . . . , tn, and C∗

n,n for n×n s-boxes with n ∈ [[4, 10]]. When
the optimal multiplicative complexity is obtained for several values of s1, we give
all the obtained set of parameters. We observe that the optimal multiplicative
complexity is always achieved by starting with the minimal basis i.e. by taking
B1 = B0. It can also be obtained by taking s1 up to |B0| + 3 depending on the
values of n.

The achievable counterpart of Table 5 only exists with respect to a given
s-box since the functions gi,j · hi,j added to the basis at each step depend on
the actual s-box. But while focusing on a given s-box, we can still improve the
method as we show hereafter.

470 D. Goudarzi and M. Rivain

Rank Drop. Our second improvement is based on the observation that even
if the matrix A is not full-rank, the obtained system can still have a solution
for some given s-box. Specifically, if A is of rank 2n − δ then we should get a
solution for one s-box out of 2δ in average. Hence, instead of having ti satisfying
the condition (ti + 1)|B| ≥ 2n, we allow a rank drop in the system of equa-
tions, by taking ti ≥ 2n−δ

|Bi| − 1 for some integer δ for which solving 2δ systems
is affordable. We hence hope to get smaller values of ti by trying 2δ systems.
Note that heuristically, we can only hope to achieve the above bound if δ is
(a few times) lower than the maximal rank 2n (e.g. δ ≤ 2n

4). We can then define
the (theoretical) optimal sequence (si, ti) and the corresponding multiplicative
complexity C∗

n,m from s1 = |B1| as in (33) and (35) by replacing the function ψn

for ψn,δ : x �→ � 2n−δ
x �−1. As an illustration, Table 6 provides the obtained para-

meters for a δ up to 32. We see that the rank-drop improvement (theoretically)
saves a few multiplications.

Table 6. Optimal parameters with basis-update and rank-drop improvements.

n δ |B1| r t1, t2, . . . , tn C∗
n,n

4 4 7 2 1,1,1,1 6

5 8 11 5 2,1,1,1,1 11

8 12 6 1,1,1,1,1 11

6 16 15 8 3,2,2,2,1,1 19

16 16 9 2,2,2,2,1,1 19

7 32 23 15 4,3,3,2,2,2,2 33

32 24 16 3,3,3,2,2,2,2 33

8 32 31 22 7,5,5,4,4,3,3,3 56

32 32 23 6,5,5,4,4,3,3,3 56

9 32 47 37 10,8,7,6,6,5,5,5,4 93

32 48 38 9,8,7,6,6,5,5,5,4 93

10 32 63 52 15,12,11,9,9,8,7,7,7,6 143

32 64 53 15,12,10,9,9,8,7,7,7,6 143

32 65 54 15,12,10,9,8,8,7,7,7,6 143

32 66 55 15,12,10,9,8,8,7,7,6,6 143

32 67 56 14,12,10,9,8,8,7,7,6,6 143

In practice, we observe that the condition (ti + 1)|Bi| ≥ 2n − δ is not always
sufficient to get a matrix A of rank 2n−δ. We shall then start with ti = ψn,d(|Bi|)
and try to solve α · 2δ systems, for some constant α. In case of failure, we
increment ti and start again until a solvable system is found. The overall process
is summarized in Algorithm 1.

The execution time of Algorithm 1 is dominated by the calls to a linear-
solving procedure (Step 6). The number of trials is in o(nα 2δ), where the

On the Multiplicative Complexity 471

Algorithm 1. Improved method with exhaustive search
Input: An s-box S ≡ (f1, f2, . . . , fm), parameters s1 = |B1|, α, and δ
Output: A basis B1 and the functions {hi,j}i,j and {gi,j}i,j

1. i = 1; t1 = ψn,δ(s1)
2. do α · 2δ times:
3. if i = 1 then randomly generate B1 ⊇ B0 with |B1| = s1
4. randomly sample ti functions gi,j ∈ 〈Bi〉
5. compute the corresponding matrix A
6. if A · c = bfi has a solution then
7. store the corresponding functions {hi,j}j and {gi,j}j

8. if i = n then return B1, {hi,j}i,j , {gi,j}i,j

9. Bi+1 = Bi ∪ {hi,j · gi,j}j ; ti+1 = ψn,δ(|Bi+1|); i++
10. goto Step 2
11. endif
12. enddo
13. ti++; goto Step 2

constant in the o(·) is the average incrementation of ti (i.e. the average number
of times Step 13 is executed per i). In our experiments, we observed that the
optimal value of t1 = ψn,δ(s1) is rarely enough to get a solvable system for f1.
This is because we start with the minimal basis as in the single-Boolean-function
case. We hence have a few incrementations for i = 1. On the other hand, the
next optimal ti’s are often enough or incremented a single time.

We used Algorithm 1 to get the decomposition of various n × n s-boxes for
n ∈ [[4, 8]], namely the eight 4 × 4 s-boxes of Serpent [ABK98], the s-boxes S5

(5 × 5) and S6 (6 × 6) of SC2000 [SYY+02], the 8 × 8 s-boxes S0 and S1 of
CLEFIA [SSA+07], and the 8× 8 s-box of Khazad [BR00]. The obtained results
are summarized in Table 7. Note that we chose these s-boxes to serve as examples
for our decomposition method. Some of them may have a mathematical structure
allowing more efficient decomposition (e.g. the CLEFIA S0 s-box is based on
the inversion over F256 and can therefore be computed with a 32-multiplication
circuit as the AES).

We observe that Algorithm 1 achieves improved parameters compared to the
optimal ones with basis update and without the rank-drop improvement (see
Table 5) for n ∈ {4, 5, 6}. For n = 8, we only get parameters close to the optimal
ones for the basis update (C∗

n,n = 62 instead of 61). This can be explained by
the fact that when n increases the value of δ becomes small compared to 2n and
the impact of exhaustive search is lowered. Thus Algorithm 1 can close the gap
and (almost) achieve optimal parameters even in presence of a minimal starting
basis, however it does not go beyond.

4.4 Parallelization

The proposed decomposition method is highly parallelizable. In practice, most
SPN blockciphers have a nonlinear layer applying 16 or 32 s-boxes and most
processors are based on a 32-bit or a 64-bit architecture. Therefore we shall

472 D. Goudarzi and M. Rivain

Table 7. Achieved parameters for several s-boxes.

|B1| r t1, t2, . . . , tn C∗
n,n

n = 4

Serpent S1–S5 7 2 1, 1, 1, 1 6

Serpent S6, S7 7 2 1, 2, 1, 1 7

n = 5

SC2000 S5 11 5 2, 1, 1, 1, 1 11

12 6 1, 1, 1, 1, 1 11

n = 6

SC2000 S6 15 8 4, 2, 2, 2, 2, 1 21

16 9 3, 2, 2, 2, 2, 1 21

n = 8

Khazad & CLEFIA (S0, S1) 31 22 11, 6, 5, 4, 4, 4, 3, 3 62

33 24 9, 6, 5, 4, 4, 4, 3, 3 62

32 23 10, 6, 5, 4, 4, 4, 3, 3 62

focus our study on the k-parallel multiplicative complexity of our method for
k ∈ {2, 4}.

General Method. In the general method (without improvement) described
in Sect. 4.2, the multiplications between the gj ’s and the hi,j ’s can clearly
be processed in parallel. Specifically, they can be done with exactly �m·t

k � k-
multiplications. The multiplications involved in the minimal basis B0 = {x �→
xu, u ∈ U} can also be fully parallelized at degree k = 2 and k = 4 for every
n ≥ 4. In other words, the k-multiplicative complexity for deriving B0 equals
� r0

k � for k ∈ {2, 4} where r0 = C(B0) = |B0| − (n + 1) (see Sect. 4.1). One
just has to compute xu by increasing order of the Hamming weight of u ∈ U
(where U is the set defined in (19)), then taking the lexicographical order inside a
Hamming weight class. As an illustration, the 4-parallel evaluation of B0 is given
for n ∈ {4, 6, 8} in Table 8.

Once all the elements of B0 have been computed, and before getting to the mul-
tiplicative terms gj · hi,j , we have to update it to a basis B ⊇ B0 with target car-
dinality (see Table 4). This is done by feeding the basis with |B| − |B0| products of
random linear combinations of the current basis. In order to parallelize this step,
these new products are generated 4-by-4 from previous elements of the basis. We
could validate that, by following such an approach, we still obtain full-rank sys-
tems with the achievable parameters given in Table 8. This means that for every
n ∈ [[4, 10]], the k-multiplicative complexity of the general method is � r

k � + �m·t
k �.

The obtained results (achievable parameters) are summarized in Table 9.

Improved Method. The parallelization of the improved method is slightly
more tricky since all the multiplicative terms gi,j · hi,j cannot be computed in
parallel. Indeed, the resulting products are fed to the basis so that they are

On the Multiplicative Complexity 473

Table 8. Parallel evaluation of B0 for n ∈ {4, 6, 8}.

n = 4 n = 6

x1x2 ← x2 · x1 x1x2 ← x2 · x1 x4x6 ← x6 · x4

x3x4 ← x4 · x3 x1x3 ← x3 · x1 x5x6 ← x6 · x5

x2x3 ← x3 · x2 x1x2x3 ← x3 · x1x2

x4x5 ← x5 · x4 x4x5x6 ← x6 · x4x5

n = 8

x1x2 ← x2 · x1 x2x4 ← x4 · x2 x5x8 ← x8 · x5

x1x3 ← x3 · x1 x3x4 ← x4 · x3 x6x7 ← x7 · x6

x1x4 ← x4 · x1 x5x6 ← x6 · x5 x6x8 ← x8 · x6

x2x3 ← x3 · x2 x5x7 ← x7 · x5 x7x8 ← x8 · x7

x1x2x3 ← x3 · x1x2 x5x6x7 ← x7 · x5x6 x1x2x3x4 ← x4 · x1x2x2

x1x2x4 ← x4 · x1x2 x5x6x8 ← x8 · x5x6 x5x6x7x8 ← x8 · x5x6x7

x1x3x4 ← x4 · x1x3 x5x7x8 ← x8 · x5x7

x2x3x4 ← x4 · x2x3 x6x7x8 ← x8 · x6x7

Table 9. Parallel multiplicative complexity of our general method an n × n s-box.

n 4 5 6 7 8 9 10

(r, t) (4,1) (7,2) (13,3) (22,4) (37,5) (59,7) (90,10)

|B| 9 13 20 30 46 69 101

Cn,n 8 17 31 50 77 122 190

C
(2)
n,n 4 9 16 25 39 62 95

C
(4)
n,n 2 5 9 13 20 31 48

potentially involved in the linear combinations producing the next functions
gi+1,j , hi+1,j , . . . , gm,j , hm,j . In order to fully parallelize our improved method
we customize Algorithm 1 as follows. We keep a counter q of the number of
products added to the basis. Each time a new fi+1 is to be decomposed, if the
current counter q is not a multiple of k, then the first q0 products gi+1,j · hi+1,j

will be bundled with the last q1 products gi,j · hi,j in the parallel version of our
improved decomposition, where

{
q0 = (k − q) mod k
q1 = q mod k

(35)

We must then ensure that the functions {gi+1,j , hi+1,j}q0−1
j=0 are independent

of the few last products {gi,j · hi,j}ti−1
j=ti−q1

. This can be done at no cost for
the gi+1,j ’s which can be generated without the last q1 products, and this add a
constraint on the linear system for the first q0 searched hi+1,j functions. However,
we observed in our experiments that for small values of k such as k ∈ {2, 4},
this constraint has a negligible impact on Algorithm 1. We could actually obtain

474 D. Goudarzi and M. Rivain

the exact same parameters than in Table 7 for all the tested s-boxes (Serpent,
SC2000, CLEFIA, and Khazad) for a parallelization degree of k = 2, except for
the s-box S3 of Serpent that requires 1 more multiplication.

5 Implementations

This section describes our implementations of a bitsliced s-box layer protected
with higher-order masking based on our decomposition method. Our implemen-
tations evaluate 16 n × n s-boxes in parallel where n ∈ {4, 8}, and they are
developed in generic 32-bit ARM assembly. They take n input sharings [x 1],
[x 2], . . . , [xn] defined as

[x i] = (x i,1,x i,2, . . . ,x i,d) such that
d∑

j=1

x i,j = x i (36)

where x i is a 16-bit register containing the i-th bit of the 16 s-box inputs. Our
implementations then output n sharings [y0], [y1], . . . , [yn] corresponding to the
bitsliced output bits of the s-box. Since we are on a 32-bit architecture with 16-
bit bitsliced registers, we use a degree-2 parallelization for the multiplications.
Namely, the 16-bit ANDs are packed by pairs and replaced by 32-bit ANDs
which are applied on shares using the ISW scheme as explained in [GR16].

The computation is then done in three stages. First, we need to construct
the shares of the elements of the minimal basis B0, specifically [xu] for every
u ∈ U , where xu denote the bitsliced register for the bit xu, and where U is
the set defined in (19). This first stage requires r0/2 32-bit ISW-ANDs, where
r0 = 2 for n = 4 and r0 = 22 for n = 8 (see Table 8).

Once the first stage is completed, all the remaining multiplications are done
between linear combinations of the elements of the basis. Let us denote by [t i] the
sharings corresponding to the elements of the basis which are stored in memory.
After the first stage we have {[t i]} = {[xu] | u ∈ U}. Each new t i is defined as

(∑

j<i

ai,jtj

)
�

(∑

i<j

bi,jtj

)
(37)

where � denote the bitwise multiplication, and where {ai,j}j and {bi,j}j are the
binary coefficients obtained from the s-box decomposition (namely the coeffi-
cients of the functions gi,j and hi,j in the span of the basis). The second stage
hence consists in a loop on the remaining multiplications that

1. computes the linear-combination sharings [r i] =
∑

j<i ai,j [tj] and [si] =∑
j<i bi,j [tj]

2. refreshes the sharing [r i]
3. computes the sharing [t i] such that t i = r i � si

where the last step is performed for two successive values of i at the same time
by a call to a 32-bit ISW-AND. The sums in Step 1 are performed on each share

On the Multiplicative Complexity 475

independently. The necessity of the refreshing procedure in Step 2 is explained
in [GR16] since an ISW multiplication of two linear combinations of the same
sharings can introduce a security flaw (see for instance [CPRR14]). As in [GR16],
this refreshing is implemented from an ISW multiplication with (1, 0, 0, . . . , 0).

Once all the basis sharings [t i] have been computed, the third stage simply
consists in deriving each output sharing [y i] as a linear combination of the [t i],
which is refreshed before being returned.

We compare our results with the optimized implementations from [GR16]
of the CRV method [CRV14] and the algebraic decomposition (AD)
method [CPRR15]. These implementations compute four s-boxes in parallel for
n = 8 and eight s-boxes in parallel for n = 4 on a 32-bit ARM architecture.
Table 10 summarizes the obtained performances in clock cycles with respect to
the masking order d. It is worth noticing that packing and unpacking the bitslice
registers for the parallelization of the ISW-ANDs implies a linear overhead in
d. For d ∈ [[2, 20]], this overhead is between 4% and 6% of the overall s-box
computations for n = 8, and between 7% and 11% for n = 4 (and this ratio is
asymptotically negligible). For d = 2, the overhead slightly exceeds the gain, but
for every d ≥ 3, parallelizing the ISW-ANDs always results in an overall gain of
performances.

Table 10. Performances in clock cycles.

CRV [GR16] AD [GR16] Our implementations

4 × 4� s-boxes 4 × 4� s-boxes 16� s-boxes

n = 8 2576 d2 + 5476 d + 2528 2376 d2 + 3380 d + 5780 656 d2 + 19786 d + 5764

2 × 8� s-boxes 2 × 8� s-boxes 16� s-boxes

n = 4 337 d2 + 563 d + 434 564 d2 + 270 d + 660 59 d2 + 1068 d + 994

We observe that our implementations are asymptotically faster than the opti-
mized implementations of CRV and AD methods (3.6 times faster for n = 8 and
5.7 times faster for n = 4). However, we also see that the linear coefficient is
significantly greater for our implementations, which comes from the computa-
tion of the linear combinations in input of the ISW-ANDs (i.e. the sharings
[r i] and [si]). As an illustration, Figs. 1 and 2 plots the obtained timings with
respect to d. We see that for n = 4, our implementation is always faster than
the optimized AD and CRV. On the other hand, for n = 8, our implementation
is slightly slower for d ≤ 8. We stress that our implementations could probably
be improved by optimizing the computation of the linear combinations.

The RAM consumption and code size of our implementations are given in
Table 11 and compared to those of the CRV and AD implementations from
[GR16]. We believe these memory requirements to be affordable for not-too-
constrained embedded devices. In terms of code size, our implementations are
always the best. This is especially significant for n = 8 where CRV and AD needs

476 D. Goudarzi and M. Rivain

5 10 15 20

0.2

0.4

0.6

0.8

1

·106

d

cl
o
ck

cy
cl

es

Our implementation

CRV (4 × 4)

AD (4 × 4)

4

Fig. 1. Timings for n = 8.

5 10 15 20

0.5

1

1.5

2

·105

d

cl
o
ck

cy
cl

es

Our implementation

CRV (2 × 8)

AD (2 × 8)

8

Fig. 2. Timings for n = 4.

Table 11. Code sizes and RAM consumptions.

CRV [GR16] AD [GR16] Our implementations

n = 8 4 × 4� s-boxes 4 × 4� s-boxes 16� s-boxes

Code size 27.5 KB 11.2 KB 4.6 KB

RAM 80d bytes 188d bytes 644d bytes

n = 4 2 × 8� s-boxes 2 × 8� s-boxes 16� s-boxes

Code size 3.2 KB 2.6 KB 2.2 KB

RAM 24d bytes 64d bytes 132d bytes

a high amount of storage for the lookup tables of the linearized polynomials
(see [GR16]). On the other hand, we observe a big gap between our implemen-
tations and those from [GR16] regarding the RAM consumption. Our method
is indeed more consuming in RAM because of all the [t i] sharings that must be
stored while such a large basis is not required for the CRV and AD methods,
and because of some optimizations in the computation of the linear combinations
(see the full version).

References

[ABK98] Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the
advanced encryption standard. NIST AES Propos. (1998)

[BGRV15] Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing
and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 599–619. Springer, Heidelberg (2015)

[BMP13] Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with
applications to cryptology. J. Cryptol. 26(2), 280–312 (2013)

[BPP00] Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of
Boolean functions over the basis (∧, ⊕,1). Theor. Comput. Sci. 235(1),
43–57 (2000)

On the Multiplicative Complexity 477

[BR00] Barreto, P., Rijmen, V.: The Khazad legacy-level block cipher. In: First
Open NESSIE Workshop (2000)

[Can05] Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg
(2005)

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-
order masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

[CMH13] Courtois, N., Mourouzis, T., Hulme, D.: Exact logic minimization and
multiplicative complexity of concrete algebraic and cryptographic circuits.
Adv. Intell. Syst. 6(3–4), 43–57 (2013)

[Cou07] Courtois, N.T.: CTC2 and fast algebraic attacks on block ciphers revisited.
Cryptology ePrint Archive, Report 2007/152 (2007). http://eprint.iacr.
org/2007/152

[CPRR14] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014)

[CPRR15] Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for
probing security. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 742–763. Springer, Heidelberg (2015)

[CRV14] Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures. In:
Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–
187. Springer, Heidelberg (2014)

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from prob-
ing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

[DPV01] Daemen, J., Peeters, M., Van Assche, G.: Bitslice ciphers and power analy-
sis attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 134–149.
Springer, Heidelberg (2001)

[GLSV15] Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice
encryption for efficient masked software implementations. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer,
Heidelberg (2015)

[GR16] Goudarzi, D., Rivain, M.: How fast can higher-order masking be in soft-
ware? Cryptology ePrint Archive (2016). http://eprint.iacr.org/

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware
against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 463–481. Springer, Heidelberg (2003)

[MS92] Mirwald, R., Schnorr, C.P.: The multiplicative complexity of quadratic
Boolean forms. Theor. Comput. Sci. 102(2), 307–328 (1992)

[PLW10] Poschmann, A., Ling, S., Wang, H.: 256 bit standardized crypto for 650
GE – GOST revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 219–233. Springer, Heidelberg (2010)

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal
security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

http://eprint.iacr.org/2007/152
http://eprint.iacr.org/2007/152
http://eprint.iacr.org/

478 D. Goudarzi and M. Rivain

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010)

[SSA+07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-
bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE
2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

[Sto16] Stoffelen, K.: Optimizing S-box implementations for several criteria using
sat solvers. In: Fast Software Encryption (2016)

[SYY+02] Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K.,
Yajima, J., Torii, N., Tanaka, H.: The block cipher SC2000. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg
(2002)

[TP14] Turan Sönmez, M., Peralta, R.: The multiplicative complexity of Boolean
functions on four and five variables. In: Eisenbarth, T., Öztürk, E. (eds.)
LightSec 2014. LNCS, vol. 8898, pp. 21–33. Springer, Heidelberg (2015)

	On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions
	2.2 Higher-Order Masking
	2.3 Bitsliced Higher-Order Masking

	3 Multiplicative Complexity of Boolean Functions
	3.1 Multiplicative Complexity of S-Boxes
	3.2 Our Results
	3.3 Parallel Multiplicative Complexity

	4 A Heuristic Decomposition for S-Boxes
	4.1 Decomposition of a Single Boolean Function
	4.2 S-Box Decomposition
	4.3 Improvements
	4.4 Parallelization

	5 Implementations
	References

