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Abstract. A common countermeasure against side-channel attacks con-
sists in using the masking scheme originally introduced by Ishai, Sahai
and Wagner (ISW) at Crypto 2003, and further generalized by Rivain
and Prouff at CHES 2010. The countermeasure is provably secure in the
probing model, and it was showed by Duc, Dziembowski and Faust at
Eurocrypt 2014 that the proof can be extended to the more realistic
noisy leakage model. However the extension only applies if the leakage
noise σ increases at least linearly with the masking order n, which is not
necessarily possible in practice.

In this paper we investigate the security of an implementation when
the previous condition is not satisfied, for example when the masking
order n increases for a constant noise σ. We exhibit two (template) hori-
zontal side-channel attacks against the Rivain-Prouff’s secure multiplica-
tion scheme and we analyze their efficiency thanks to several simulations
and experiments.

Eventually, we describe a variant of Rivain-Prouff’s multiplication
that is still provably secure in the original ISW model, and also heuris-
tically secure against our new attacks.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. To
secure implementations against this threat, security developers usually apply
techniques inspired from secret sharing [Bla79,Sha79] or multi-party computation
[CCD88]. The idea is to randomly split a secret into several shares such that the
adversary needs all of them to reconstruct the secret. For these schemes, the
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number of shares n in which the key-dependent data are split plays the role of
a security parameter.

A common countermeasure against side-channel attacks consists in using
the masking scheme originally introduced by Ishai, Sahai and Wagner (ISW)
[ISW03]. The countermeasure achieves provable security in the so-called probing
security model [ISW03], in which the adversary can recover a limited number of
intermediate variables of the computation. This model has been argued to be
practically relevant to address so-called higher-order side-channel attacks and it
has been the basis of several efficient schemes to protect block ciphers.

More recently, it has been shown in [DDF14] that the probing security of an
implementation actually implies its security in the more realistic noisy leakage
model introduced in [PR13]. More precisely, if an implementation obtained by
applying the compiler in [ISW03] is secure at order n in the probing model,
then [DFS15, Theorem3] shows that the success probability of distinguishing
the correct key among |K| candidates is bounded above by |K| · 2−n/9 if the
leakage Li on each intermediate variable Xi satisfies:

I(Xi;Li) � 2 · (|K| · (28n + 16))−2,

where I(·; ·) denotes the mutual information and where the index i ranges from
1 to the total number of intermediate variables.

In this paper we investigate what happens when the above condition is not
satisfied. Since the above mutual information I(Xi;Li) can be approximated
by k/(8σ2) in the Hamming weight model in F2k , where σ is the noise in the
measurement (see the full version of this paper [BCPZ16]), this amounts to
investigating the security of Ishai-Sahai-Wagner’s (ISW) implementations when
the number of shares n satisfies:

n > c · σ

As already observed in previous works [VGS14,CFG+10], the fact that the same
share (or more generally several data depending on the same sensitive value) is
manipulated several times may open the door to new attacks which are not
taken into account in the probing model. Those attacks, sometimes called hori-
zontal [CFG+10] or (Template) algebraic [ORSW12,VGS14] exploit the algebraic
dependency between several intermediate results to discriminate key hypotheses.

In this paper, we exhibit two (horizontal) side channel attacks against the
ISW multiplication algorithm. These attacks show that the use of this algorithm
(and its extension proposed by Rivain and Prouff in [RP10]) may introduce a
weakness with respect to horizontal side channel attacks if the sharing order n
is such that n > c · σ2, where σ is the measurement noise. While the first attack
is too costly (even for low noise contexts) to make it applicable in practice, the
second attack, which essentially iterates the first one until achieving a satisfying
likelihood, shows very good performances. For instance, when the leakages are
simulated by noisy Hamming weights computed over F28 with σ = 1, it recovers
all the shares of a 21-sharing. We also confirm the practicality of our attack with
a real life experiment on a development platform embedding the ATMega328
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processor (see the full version of this paper [BCPZ16]). Actually, in this context
where the leakages are multivariate and not univariate as in our theoretical
analyses and simulations, the attack appears to be more efficient than expected
and recovers all the shares of a n-sharing when n � 40.

Eventually, we describe a variant of Rivain-Prouff’s multiplication that is still
provably secure in the original ISW model, and also heuristically secure against
our new attacks. Our new countermeasure is similar to the countermeasure in
[FRR+10], in that it can be divided in two steps: a “matrix” step in which start-
ing from the input shares xi and yj , one obtains a matrix xi ·yj with n2 elements,
and a “compression” step in which one uses some randomness to get back to a
n-sharing ci. Assuming a leak-free component, the countermeasure in [FRR+10]
is proven secure in the noisy leakage model, in which the leakage function reveals
all the bits of the internal state of the circuit, perturbed by independent bino-
mial noise. Our countermeasure does not use any leak-free component, but is
only heuristically secure in the noisy leakage model (see Sect. 8.2 for our security
analysis).

2 Preliminaries

For two positive integers n and d, a (n, d)-sharing of a variable x defined over
some finite field F2k is a random vector (x1, x2, . . . , xn) over F2k such that x =∑n

i=1 xi holds (completeness equality) and any tuple of d−1 shares xi is a uniform
random vector over (F2k)d−1. If n = d, the terminology simplifies to n-sharing.
An algorithm with domain (F2k)n is said to be (n − 1)th-order secure in the
probing model if on input an n-sharing (x1, x2, . . . , xn) of some variable x, it
admits no tuple of n − 1 or fewer intermediate variables that depends on x.

We refer to the full version of this paper [BCPZ16] for the definitions of Signal
to Noise Ratio (SNR), Gaussian distribution, entropy and differential entropy.

3 Secure Multiplication Schemes

In this section, we recall the secure multiplication scheme over F2 introduced in
[ISW03] and its extension to any field F2k proposed in [RP10].

Ishai-Sahai-Wagner’s Scheme [ISW03]. Let x� and y� be binary values from
F2 and let (xi)1≤i≤n and (yi)1≤i≤n be n-sharings of x� and y� respectively. To
securely compute a sharing of c = x� ·y� from (xi)1≤i≤n and (yi)1≤i≤n, the ISW
method works as follows:

1. For every 1 ≤ i < j ≤ n, pick up a random bit ri,j .
2. For every 1 ≤ i < j ≤ n, compute rj,i = (ri,j + xi · yj) + xj · yi.
3. For every 1 ≤ i ≤ n, compute ci = xi · yi +

∑
j �=i ri,j .

The above multiplication scheme achieves security at order �n/2� in the probing
security model [ISW03].
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The Rivain-Prouff Scheme. The ISW countermeasure was extended to F2k

by Rivain and Prouff in [RP10]. As showed in [BBD+15], the SecMult algorithm
below is secure in the ISW probing model against t probes for n ≥ t + 1 shares;
the authors also show that with some additional mask refreshing, the Rivain-
Prouff countermeasure for the full AES can be made secure with n ≥ t + 1
shares.

Algorithm 1. SecMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively
Output: the n-sharing (ci)i∈[1..n] of x� · y�

1: for i = 1 to n do
2: for j = i + 1 to n do
3: ri,j ←$

F2k

4: rj,i ← (ri,j + xi · yj) + xj · yi

5: end for
6: end for
7: for i = 1 to n do
8: ci ← xi · yi

9: for j = 1 to n, j �= i do ci ← ci + ri,j

10: end for
11: return (c1, c1, . . . , cn)

In Algorithm 1, one can check that each share xi or yj is manipulated n times,
whereas each product xiyj is manipulated a single time. This gives a total of
3n2 manipulations that can be observed through side channels.

4 Horizontal DPA Attack

4.1 Problem Description

Let (xi)i∈[1..n] and (yi)i∈[1..n] be respectively the n-sharings of x� and y� (namely,
we have x� = x1+ · · ·+xn and y� = y1+ · · ·+yn). We assume that an adversary
gets, during the processing of Algorithm 1, a single observation of each of the
following random variables for 1 ≤ i, j ≤ n:

Li = ϕ(xi) + Bi (1)
L′

j = ϕ(yj) + B′
j (2)

L′′
ij = ϕ(xi · yj) + B′′

ij (3)

where ϕ is an unknown function which depends on the device architecture, where
Bi, B′

j are Gaussian noise of standard deviation σ/
√

n, and B′′
ij is Gaussian noise

with standard deviation σ. Namely we assume that each xi and yj is processed
n times, so by averaging the standard deviation is divided by a factor

√
n,

which gives σ/
√

n if we assume that the initial noise standard deviation is σ.
The random variables associated to the ith share xi and the jth share yj are
respectively denoted by Xi and Yj . Our goal is to recover the secret variable x�

(and/or y�).
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4.2 Complexity Lower Bound: Entropy Analysis of Noisy Hamming
Weight Leakage

For simplicity, we first restrict ourselves to a leakage function ϕ equal to the
Hamming weight of the variable being manipulated. In that case, the mutual
information I(X;L) between the Hamming weight of a uniform random variable
X defined over F2k and a noisy observation L of this Hamming weight can be
approximated as:

I(X;L) � k

8σ2
, (4)

if the noise being modeled by a Gaussian random variable has standard deviation
σ. This approximation, whose derivation is given in the full version of this paper
[BCPZ16], is only true for large σ.

To recover a total of 2n shares (n shares of x� and y� respectively) from 3n2

Hamming weight leakages (namely each manipulation leaks according to (1)-(3)
with ϕ = HW), the total amount of information to be recovered is 2n · k if we
assume that the shares are i.i.d. with uniform distribution over F2k . Therefore,
since we have a total of 3n2 observations during the execution of Algorithm 1,
we obtain from (4) that the noise standard deviation σ and the sharing order n
must satisfy the following inequality for a side channel attack to be feasible:

3 · n2 · k

8σ2
> 2n · k. (5)

We obtain an equality of the form n > c · σ2 for some constant c, as in a clas-
sical (vertical) side channel attack trying to recover x� from n observations of
intermediate variables depending on x� [CJRR99]. This analogy between hor-
izontal and vertical attacks has already been noticed in previous papers like
[CFG+10] or [BJPW13]. Note that in principle the constant c is independent
of the field degree k (which has also been observed in previous papers, see for
instance [SVO+10]).

4.3 Attack with Perfect Hamming Weight Observations

In the full version of this paper [BCPZ16], we consider the particular case of
perfect Hamming weight measurements (no noise), using a maximum likelihood
approach. We show that even with perfect observations of the Hamming weight,
depending on the finite-field representation, we are not always guaranteed to
recover the secret variable x�; however for the finite field representation used in
AES the attack enables to recover the secret x� for a large enough number of
observations.

4.4 Maximum Likelihood Attack: Theoretical Attack with the Full
ISW State

For most field representations and leakage functions, the maximum likelihood
approach used in the previous section recovers the i-th share of x� from an
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observation of Li and an observation of (L′
j , L

′′
ij) for every j ∈ [1..n]. It extends

straightforwardly to noisy scenarios and we shall detail this extension in Sect. 5.1.
However, the disadvantage of this approach is that it recovers each share sepa-
rately, before rebuilding x� and y� from them. From a pure information theoretic
point of view this is suboptimal since (1) the final purpose is not to recover all
the shares perfectly but only the shared values and (2) only 3n observations are
used to recover each share whereas the full tuple of 3n2 observations brings more
information. Actually, the most efficient attack in terms of leakage exploitation
consists in using the joint distribution of (Li, L

′
j , L

′′
ij)i,j∈[1..n] to distinguish the

correct hypothesis about x� = x1 + x2 + · · · + xn and y� = y1 + y2 + · · · + yn.
As already observed in Sect. 3, during the processing of Algorithm 1, the

adversary may get a tuple (�ij)j∈[1..n] (resp. (�′
ij)i∈[1..n]) of n observations for

each Li (resp. each L′
j) and one observation �′′

ij for each L′′
ij . The full tuple of

observations (�ij , �
′
ij , �

′′
ij)i,j is denoted by �, and we denote by L the correspond-

ing random variable1. Then, to recover (x�, y�) from �, the maximum likelihood
approach starts by estimating the pdfs fL|X�=x�,Y �=y� for every possible (x�, y�),
and then estimates the following vector of distinguisher values for every hypoth-
esis (x, y):

d�
ML(�) .=

(
fL|(X�,Y �)(�, (x, y))

)
(x,y)∈F

2
2k

(6)

The pair (x, y) maximizing the above probability is eventually chosen.
At a first glance, the estimation of the pdfs fL|X�=x�,Y �=y� seems to be chal-

lenging. However, it can be deduced from the estimations of the pdfs associated
to the manipulations of the shares. Indeed, after denoting by px,y each probabil-
ity value in the right-hand side of (6), and by using the law of total probability
together with the fact that the noises are independent, we get:

22kn · px,y =
∑

x1,··· ,xn∈F
2k

x=x1+···+xn

∑

y1,··· ,yn∈F
2k

y=y1+···+yn

n∏

i,j=1

fLi|Xi
(�ij , xi) · fL′

j |Yj
(�′

ij , yj) · fL′′
ij |XiYj

(�′′
ij , xiyj).

Unfortunately, even if the equation above shows how to deduce the pdfs
fL|(X�,Y �)(·, (x�, y�)) from characterizations of the shares’ manipulations, a
direct processing of the probability has complexity O(22nk). By representing the
sum over the xi’s as a sequence of convolution products, and thanks to Walsh
transforms processing, the complexity can be easily reduced to O(n2n(k+1)). The
latter complexity stays however too high, even for small values of n and k, which
led us to look at alternatives to this attack.

1 In (1)–(3), it is assumed that the observations (�ij)j∈[1..n] and (�′
ij)i∈[1..n] are aver-

aged to build a single observation with noise divided by
√

n. This assumption is not
done here in order to stay as general as possible.
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5 First Attack: Maximum Likelihood Attack on a Single
Matrix Row

5.1 Attack Description

In this section, we explain how to recover each share xi of x� separately, by
observing the processing of Algorithm 1. Applying this attack against all the
shares leads to the full recovery of the sensitive value x� with some success
probability, which is essentially the product of the success probabilities of the
attack on each share separately.

Given a share xi, the attack consists in collecting the leakages on (yj , xi · yj)
for every j ∈ [1..n]. Therefore the attack is essentially a horizontal version of
the classical (vertical) second-order side-channel attack, where each share xi is
multiplicatively masked over F2k by a random yj for j ∈ [1..n].

The most efficient attack to maximize the amount of information recovered on
Xi from a tuple of observations �

.= �i, (�′
j , �

′′
ij)j∈[1..n] ←↩ L

.= Li, (L′
j , L

′′
ij)j∈[1..n]

consists in applying a maximum likelihood approach [CJRR99,GHR15], which
amounts to computing the following vector of distinguisher values:

dML(�) .=
(
fL|Xi

(�, x̂i)
)
x̂i∈F2k

(7)

and in choosing the candidate x̂i which maximizes the probability. We refer to
the full version of this paper [BCPZ16] for the derivation of each score fL|Xi

(�, x̂i)
in (7); we obtain:

f(L′
j ,L′′

ij)|Xi
((�′

j , �
′′
ij), x̂i) =

∑

y∈F2k

f(L′
j ,L′′

ij)|(Xi,Yj)((�
′
j , �

′′
ij), (x̂i, y)) · pYj

(y) , (8)

and similarly:

f(Li,L′′
ij)|Yj

((�i, �
′′
ij), ŷj) =

∑

x∈F2k

f(Li,L′′
ij)|(Xi,Yj)((�i, �

′′
ij), (x, ŷj)) · pXi

(x) . (9)

5.2 Complexity Analysis

As mentioned previously, given a share xi, the attack consists in collecting the
leakages on (yj , xi · yj) for every j ∈ [1..n]. Therefore the attack is essentially
an horizontal version of the classical (vertical) second-order side-channel attack.
In principle the number n of leakage samples needed to recover xi with good
probability (aka the attack complexity) should consequently be n = O(σ4)
[CJRR99,GHR15,SVO+10]. This holds when multiplying two leakages both
with noise having σ as standard deviation. However here the leakage on yj has
a noise with a standard deviation σ/

√
n instead of σ (thanks to the averaging

step). Therefore the noise of the product becomes σ2/
√

n (instead of σ2), which
gives after averaging with n measurements a standard deviation of σ2/n, and
therefore an attack complexity satisfying n = O(σ2), as in a classical first-order
side-channel attack.
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5.3 Numerical Experiments

The attack presented in Sect. 5.1 has been implemented against each share xi of
a value x, with the leakages being simulated according to (1)–(3) with ϕ = HW.
For the noise standard deviation σ and the sharing order n, different values
have been tested to enlighten the relation between these two parameters. We
stated that an attack succeeds iff the totality of the n shares xi have been
recovered, which leads to the full recovery of x�. We recall that, since the shares
xi are manipulated n times, measurements for the leakages Li and L′

j have noise
standard deviations σ/

√
n instead of σ. For efficiency reasons, we have chosen

to work in the finite field F24 (namely k = 4 in previous analyses).
For various noise standard deviations σ with SNR = k(2σ)−2 (i.e. SNR =

σ−2 for k = 4), Table 1 gives the average minimum number n of shares required
for the attack to succeed with probability strictly greater than 0.5 (the averaging
being computed over 300 attack iterations). The attack complexity n = O(σ2)
argued in Sect. 5.2 is confirmed by the trend of these numerical experiments.
Undeniably, this efficiency is quickly too poor for practical applications where n
is small (clearly lower than 10) and the SNR is high (smaller than 1).

Table 1. First attack: number of shares n as a function of the noise σ to succeed with
probability > 0.5

σ (SNR) 0 (+∞) 0.2 (25) 0.4 (6.25) 0.6 (2.77) 0.8 (1.56) 1 (1)

n 12 14 30 73 160 284

6 Second Attack: Iterative Attack

6.1 Attack Description

From the discussions in Sect. 4.4, and in view of the poor efficiency of the previ-
ous attack, we investigated another strategy which targets all the shares simul-
taneously. Essentially, the core idea of our second attack described below is to
apply several attacks recursively on the xi’s and yj ’s, and to refine step by step
the likelihood of each candidate for the tuple of shares. Namely, we start by
applying the attack described in Sect. 5.1 in order to compute, for every i, a
likelihood probability for each hypothesis Xi = x (x ranging over F2k); then we
apply the same attack in order to compute, for every j, a likelihood probability
for each hypothesis Yj = y (y ranging over F2k) with the single difference that
the probability pXi

(x) in (9) is replaced by the likelihood probability which was
just computed2. Then, one reiterates the attack to refine the likelihood prob-
abilities (pXi

(x))x∈F2k
, by evaluating (8) with the uniform distribution pYj

(y)

2 Actually to get the probability of Xi | L instead of L | Xi, Bayes’ Formula is applied
which explains the division by the sum of probabilities in the lines 14 and 19 in
Algorithm 2.
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being replaced by the likelihood probability new-pYj
(y) which has been previ-

ously computed. The scheme is afterwards repeated until the maximum taken
by the pdfs of each share Xi and Yj is greater than some threshold β. In order
to have better results, we perform the whole attack a second time, by starting
with the computation of the likelihood probability for each hypothesis Yj = y
instead of starting by Xi = x.

We give the formal description of the attack processing in Algorithm2
(in order to have the complete attack, one should perform the while loop a
second time, by rather starting with the computation of new-pYj

(y) instead of
new-pXi

(x)).

6.2 Numerical Experiments

The iterative attack described in Algorithm 2 has been tested against leakages
simulations defined exactly as in Sect. 5.3. As previously we stated that an attack
succeeds if the totality of the n shares xi have been recovered, which leads to the
full recovery of x�. For various noise standard deviations σ with SNR = k(2σ)−2,
Table 2 gives the average minimum number of shares n required for the attack to
succeed with probability strictly greater than 0.5 (the averaging being computed
over 300 attack iterations). The first row corresponds to k = 4, and the second
row to k = 8 (the corresponding SNRs are SNR4 = σ−2 and SNR8 = (

√
2σ2)−1).

Numerical experiments yield greatly improved results in comparison to those
obtained by running the basic attack. Namely, in F24 , for a noise σ = 0, the
number of shares required is 2, while 12 shares were needed for the basic attack,
and the improvement is even more confirmed with a growing σ: for a noise
σ = 1, the number of shares required is 25, while 284 shares were needed for the
basic attack. It can also be observed that the results for shares in F24 and F28

are relatively close, the number of shares being most likely slightly smaller for
shares in F24 than in F28 . This observation is in-line with the lower bound in
(5), where the cardinality 2k of the finite field plays no role.

Table 2. Iterative attack: number of shares n as a function of the noise σ to succeed
with probability > 0.5 in F24 (first row) and in F28 (second row).

σ

(SNR4, SNR8)

0

(+∞, +∞)

0.2

(25, 17.67)

0.4 (6.25, 4.41) 0.6 (2.77, 1.96) 0.8 (1.56, 1.10) 1 (1, 0.7071)

n (for F24 ) 2 2 3 6 13 25

n (for F28 ) 5 6 8 11 16 21

7 Practical Results

In the full version of this paper [BCPZ16], we describe the result of practi-
cal experiments of our attack against a development platform embedding the
ATMega328 processor.
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Algorithm 2. Iterative Maximum Likelihood Attack
Input: a threshold β, an observation �i of each Li, an observation �′

j of each L′
j and

one observation �′′
ij of each L′′

ij (the random variables being defined as in (1)-(3))
Output: a n-tuple of pdfs (pXi)i (resp. (pYi)i) such that, for every i ∈ [1..n],

at least one x̂i (resp. ŷj) satisfies pXi(x̂i) � β (resp. pYi(ŷj) � β)

1: for i = 1 to n do
2: for x ∈ F2k do # Initialize the likelihood of each candidate for Xi

3: pXi(x) = fLi|Xi
(�i, x)

4: end for
5: for y ∈ F2k do # Initialize the likelihood of each candidate for Yi

6: pYi(y) = fL′
i|Yi

(�′
i, yi)

7: new-pYi(y) = pYi(y)
8: end for
9: end for

10: while end �= n do
11: end ← 0
12: for i = 1 to n do
13: for x ∈ F2k do # Compute/Update the likelihood of each candidate for Xi

14: new-pXi(x) = 2−(2n+1)k pXi
(x)

∑
x′∈F

2k
pXi

(x′)
∏n

j=1

∑
y∈F2k

new-pYj
(y)

∑
y′∈F

2k
new-pYj

(y′) ·
fL′′

ij |XiYj
(�′′

ij , x · y)

15: end for
16: end for
17: for i = 1 to n do
18: for y ∈ F2k do # Compute/Update the likelihood of each candidate for Yi

19: new-pYi(y) = 2−(2n+1)k pYi
(y)

∑
y′∈F

2k
pYi

(y′)
∏n

j=1

∑
x∈F2k

new-pXj
(x)

∑
x′∈F

2k
new-pXj

(x′) ·
fL′′

ij |XiYj
(�′′

ij , x · y)

20: end for
21: end for
22: for i = 1 to n do
23: if maxx(new-pXi(x)) � β and maxy(new-pYi(y)) � β then
24: end + +
25: end if
26: end for
27: end while

8 A Countermeasure Against the Previous Attacks

8.1 Description

In the following, we describe a countermeasure against the previous attack against
the Rivain-Prouff algorithm. More precisely, we describe a variant of Algorithm1,
called RefSecMult, to compute an n-sharing of c = x� · y� from (xi)i∈[1..n]

and (yi)i∈[1..n]. Our new algorithm is still provably secure in the original ISW
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Algorithm 3. RefSecMult

Input: n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively
Output: an n-sharing (ci)i∈[1..n] of x� · y�

1: Mij ← MatMult((x1, . . . , xn), (y1, . . . , yn))
2: for i = 1 to n do
3: for j = i + 1 to n do
4: ri,j ←$

F2k

5: rj,i ← (ri,j + Mij) + Mji

6: end for
7: end for
8: for i = 1 to n do
9: ci ← Mii

10: for j = 1 to n, j �= i do ci ← ci + ri,j

11: end for
12: return (c1, c1, . . . , cn)

probing model, and heuristically secure against the horizontal side-channel attacks
described the in previous sections.

As observed in [FRR+10], the ISW and Rivain-Prouff countermeasures can
be divided in two steps: a “matrix” step in which starting from the input shares
xi and yj , one obtains a matrix xi · yj with n2 elements, and a “compression”
step in which one uses some randomness to get back to a n-sharing ci. Namely
the matrix elements (xi · yj)1≤i,j≤n form a n2-sharing of x� · y�:

x� · y� =

(
n∑

i=1

xi

)

·
⎛

⎝
n∑

j=1

yj

⎞

⎠ =
∑

1≤i,j≤n

xi · yj (10)

and the goal of the compression step is to securely go from such n2-sharing of
x� · y� to a n-sharing of x� · y�.

Our new countermeasure (Algorithm 3) uses the same compression step as
Rivain-Prouff, but with a different matrix step, called MatMult (Algorithm 4),
so that the shares xi and yj are not used multiple times (as when computing
the matrix elements xi · yj in Rivain-Prouff). Eventually the MatMult algorithm
outputs a matrix (Mij)1≤i,j≤n which is still a n2-sharing of x� · y�, as in (10);
therefore using the same compression step as Rivain-Prouff, Algorithm 3 outputs
a n-sharing of x� · y�, as required.

As illustrated in Fig. 1, the MatMult algorithm is recursive and computes the
n×n matrix in four sub-matrix blocs. This is done by splitting the input shares xi

and yj in two parts, namely X (1) = (x1, . . . , xn/2) and X (2) = (xn/2+1, . . . , xn),
and similarly Y (1) = (y1, . . . , yn/2) and Y (2) = (yn/2+1, . . . , yn), and recursively
processing the four sub-matrix blocs corresponding to X (u)×Y (v) for 1 ≤ u, v ≤
2. To prevent the same share xi from being used twice, each input block X (u)

and Y (v) is refreshed before being used a second time, using a mask refreshing
algorithm. An example of such mask refreshing, hereafter called RefreshMasks,
can for instance be found in [DDF14]; see Algorithm 5. Since the mask refreshing
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Algorithm 4. MatMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively
Output: the n2-sharing (Mij)i∈[1..n],j∈[1..n] of x� · y�

1: if n = 1 then
2: M ← [x1 · y1]
3: else
4: X (1) ← (x1, . . . , xn/2), X (2) ← (xn/2+1, . . . , xn)

5: Y (1) ← (y1, . . . , yn/2), Y (2) ← (yn/2+1, . . . , yn)

6: M (1,1) ← MatMult(X (1),Y (1))
7: X (1) ← RefreshMasks(X (1)), Y (1) ← RefreshMasks(Y (1))
8: M (1,2) ← MatMult(X (1),Y (2))
9: M (2,1) ← MatMult(X (2),Y (1))

10: X (2) ← RefreshMasks(X (2)), Y (2) ← RefreshMasks(Y (2))
11: M (2,2) ← MatMult(X (2),Y (2))

12: M ←
[
M (1,1) M (1,2)

M (2,1) M (2,2)

]

13: end if
14: return M

does not modify the xor of the input n/2-vectors X (u) and Y (v), each sub-matrix
block M (u,v) is still a n2/4-sharing of (⊕X (u)) · (⊕X (v)), and therefore the
output matrix M is still a n2-sharing of x� · y�, as required. Note that without
the RefreshMasks, we would have Mij = xi · yj as in Rivain-Prouff.

Algorithm 5. RefreshMasks
Input: a1, . . . , an

Output: c1, . . . , cn such that
∑n

i=1 ci =
∑n

i=1 ai

1: For i = 1 to n do ci ← ai

2: for i = 1 to n do do
3: for j = i + 1 to n do do
4: r ← {0, 1}k

5: ci ← ci + r
6: cj ← cj + r
7: end for
8: end for
9: return c1, . . . , cn

Since the RefreshMask algorithm has complexity O(n2), it is easy to see that
the complexity of our RefSecMult algorithm is O(n2 log n) (instead of O(n2)
for the original Rivain-Prouff countermeasure in Algorithm1). Therefore for
a circuit of size |C| the complexity is O(|C| · n2 log n), instead of O(|C| · n2)
for Rivain-Prouff. The following lemma shows the soundness of our RefSecMult
countermeasure.
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Lemma 1 (Soundness of RefSecMult). The RefSecMult algorithm, on input
n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively, outputs an n-
sharing (ci)i∈[1..n] of x� · y�.

Proof. We prove recursively that the MatMult algorithm, taking as input n-
sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively, outputs an n2-
sharing Mij of x� · y�. The lemma for RefSecMult will follow, since as in Rivain-
Prouff the lines 2 to 12 of Algorithm 3 transform a n2-sharing Mij of x� · y� into
a n-sharing of x� · y�.

The property clearly holds for n = 1. Assuming that it holds for n/2, since the
RefreshMasks does not change the xor of the input n/2-vectors X (u) and Y (v),
each sub-matrix block M (u,v) is still an n2/4-sharing of (⊕X (u)) · (⊕X (v)), and
therefore the output matrix M is still an n2-sharing of x� · y�, as required. This
proves the lemma. ��

x1
...

xn
2

xn
2 +1

...
xn

y1 . . . yn
2

yn
2 +1 . . . yn

⊗ ⊗R

R R

⊗ ⊗R

Fig. 1. The recursive MatMult algorithm, where R represents the RefreshMasks Algo-
rithm, and ⊗ represents a recursive call to the MatMult algorithm.

Remark 1. The description of our countermeasure requires that n is a power
of two, but it is easy to modify the countermeasure to handle any value of n.
Namely in Algorithm 4, for odd n it suffices to split the inputs xi and yj in two
parts of size (n − 1)/2 and (n + 1)/2 respectively, instead of n/2.

8.2 Security Analysis

Proven Security in the ISW Probing Model. We prove that our RefSecMult
algorithm achieves at least the same level of security of Rivain-Prouff, namely it
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is secure in the ISW probing model against t probes for n ≥ t+1 shares. For this
we use the refined security model against probing attacks recently introduced
in [BBD+15], called t-SNI security. This stronger definition of t-SNI security
enables to prove that a gadget can be used in a full construction with n ≥
t + 1 shares, instead of n ≥ 2t + 1 for the weaker definition of t-NI security
(corresponding to the original ISW security proof). The authors of [BBD+15]
show that the ISW (and Rivain-Prouff) multiplication gadget does satisfy this
stronger t-SNI security definition. They also show that with some additional
mask refreshing satisfying the t-SNI property (such as RefreshMasks), the Rivain-
Prouff countermeasure for the full AES can be made secure with n ≥ t+1 shares.

The following lemma shows that our RefSecMult countermeasure achieves
the t-SNI property; we provide the proof in AppendixA. The proof is essentially
the same as in [BBD+15] for the Rivain-Prouff countermeasure; namely the
compression step is the same, and for the matrix step, in the simulation we can
assume that all the randoms in RefreshMasks are given to the adversary. The
t-SNI security implies that our RefSecMult algorithm is also composable, with
n ≥ t + 1 shares.

Lemma 2 (t-SNI of RefSecMult). Let (xi)1≤i≤n and (yi)1≤i≤n be the input
shares of the SecMult operation, and let (ci)1≤i<n be the output shares. For any
set of t1 intermediate variables and any subset |O| ≤ t2 of output shares such
that t1 + t2 < n, there exists two subsets I and J of indices with |I| ≤ t1 and
|J | ≤ t1, such that those t1 intermediate variables as well as the output shares
c|O can be perfectly simulated from x|I and y|J .

Heuristic Security Against Horizontal-DPA Attacks. We stress that the
previous lemma only proves the security of our countermeasure against t probes
for n ≥ t + 1, so it does not prove that our countermeasure is secure against the
horizontal-DPA attacks described in the previous sections, since such attacks use
information about n2 intermediate variables instead of only n − 1.

As illustrated in Fig. 1, the main difference between the new RefSecMult algo-
rithm and the original SecMult algorithm (Algorithm 1) is that we keep refreshing
the xi shares and the yj shares blockwise between the processing of the finite
field multiplications xi · yj . Therefore, as opposed to what happens in SecMult,
we never have the same xi being multiplied by all yj ’s for 1 ≤ j ≤ n. There-
fore an attacker cannot accumulate information about a specific share xi, which
heuristically prevents the attacks described in this paper.

Acknowledgments. We are very grateful to the anonymous CHES reviewers for
pointing a flaw in a previous version of our countermeasure in Sect. 8.

A Proof of Lemma 2

Our proof is essentially the same as in [BBD+15]. We construct two sets I and
J corresponding to the input shares of x� and y� respectively. We denote by
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Mij the result of the subroutine MatMult((x1, . . . , xn), (y1, . . . , yn)). From the
definition of MatMult and RefreshMasks, it is easy to see that each Mij can be
perfectly simulated from xi and yj ; more generally any internal variable within
MatMult can be perfectly simulated from xi and/or yj for some i and j; for this
it suffices to simulate the randoms in RefreshMasks exactly as they are generated
in RefreshMasks.

We divide the internal probes in 4 groups. The four groups are processed
separately and sequentially, that is we start with all probes in Group 1, and
finish with all probes in Group 4.

• Group 1: If Mii is probed, add i to I and J .
• Group 2: If ri,j or ci,j is probed (for any i 
= j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we
denote by U the common value of I and J after the processing of Group 1 and
2 probes.

• Group 3: If Mij ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .
• Group 4: If Mij is probed (for any i 
= j), then add i to I and j to J . If some

probe in MatMult requires the knowledge of xi and/or yj , add i to I and/or j
to J .

We have |I| ≤ t1 and |J | ≤ t1, since for every probe we add at most one index
in I and J . The simulation of probed variables in groups 1 and 4 is straight-
forward. Note that for i < j, the variable rij is used in all partial sums cik for
k ≥ j; moreover rij is used in rij ⊕Mij , which is used in rji, which is used in all
partial sums cjk for k ≥ i. Therefore if i /∈ U , then rij is not probed and does
not enter in the computation of any probed cik; symmetrically if j /∈ U , then rji

is not probed and does not enter in the computation of any probed cjk.
For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij ,
Mij , Mij ⊕ rij , Mji and rji. In particular, we let rij ← F2k , as in the real
circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real
circuit. If Mij ⊕ ri,j is probed (Group 3), we can also simulate it since i ∈ U
and j ∈ J by definition of the processing of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable
cik, since otherwise i ∈ U . Therefore rij is not used in the computation of any
probed variable (except rji, and possibly Mij⊕ri,j). Therefore we can simulate
rji ← F2k ; moreover if Mij ⊕ rij is probed, we can perfectly simulate it using
Mij ⊕ rij = Mji ⊕ rji, since j ∈ U and i ∈ J by definition of the processing of
Group 3 variables.

• Case 4: i /∈ U and j /∈ U . If Mij ⊕ ri,j is probed, since rij is not probed
and does not enter into the computation of any other probed variable, we can
perfectly simulate such probe with a random value.
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From cases 1, 2 and 3, we obtain that for any i 
= j, we can perfectly simulate
any variable rij such that i ∈ U . This implies that we can also perfectly simulate
all partial sums cik when i ∈ U , including the output variables ci. Finally, all
probed variables are perfectly simulated.

We now consider the simulation of the output variables ci. We must show
how to simulate ci for all i ∈ O, where O is an arbitrary subset of [1, n] such
that t1 + |O| < n. For i ∈ U , such variables are already perfectly simulated,
as explained above. We now consider the output variables ci with i /∈ U . We
construct a subset of indices V as follows: for any probed Group 3 variable
Mij ⊕ rij such that i /∈ U and j /∈ U (this corresponds to Case 4), we put j in V
if i ∈ O, otherwise we put i in V . Since we have only considered Group 3 probes,
we must have |U | + |V | ≤ t1, which implies |U | + |V | + |O| < n. Therefore there
exists an index j� ∈ [1, n] such that j� /∈ U ∪ V ∪ O. For any i ∈ O, we can
write:

ci = Mii ⊕
⊕

j �=i

rij = ri,j� ⊕
⎛

⎝Mii ⊕
⊕

j �=i,j�

rij

⎞

⎠

We claim that neither ri,j� nor rj�,i do enter into the computation of any
probed variable or other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j� nor any
partial sum cik was probed; similarly j� /∈ U so neither rj�,i nor any partial
sum cj�,k was probed, and the output cj� does not have to be simulated since
by definition j� /∈ O. Finally if i < j� then Mi,j� ⊕ ri,j� was not probed since
otherwise j� ∈ V (since i ∈ O); similarly if j� < i then Mj�,i ⊕ rj�,i was
not probed since otherwise we would have j� ∈ V since j� /∈ O. Therefore,
since neither ri,j� nor rj�,i are used elsewhere, we can perfectly simulate ci by
generating a random value. This proves the Lemma.
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