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Abstract. Motivated by cryptographic applications, we study the
notion of bounded indistinguishability, a natural relaxation of the well
studied notion of bounded independence.

We say that two distributions μ and ν over Σn are k-wise indistin-
guishable if their projections to any k symbols are identical. We say that
a function f :Σn → {0, 1} is ε-fooled by k-wise indistinguishability if f
cannot distinguish with advantage ε between any two k-wise indistin-
guishable distributions μ and ν over Σn.

We are interested in characterizing the class of functions that are
fooled by k-wise indistinguishability. While the case of k-wise indepen-
dence (corresponding to one of the distributions being uniform) is fairly
well understood, the more general case remained unexplored.

When Σ = {0, 1}, we observe that whether f is fooled is closely
related to its approximate degree. For larger alphabets Σ, we obtain
several positive and negative results. Our results imply the first efficient
secret sharing schemes with a high secrecy threshold in which the secret
can be reconstructed in AC0. More concretely, we show that for every
0 < σ < ρ ≤ 1 it is possible to share a secret among n parties so that
any set of fewer than σn parties can learn nothing about the secret, any
set of at least ρn parties can reconstruct the secret, and where both the
sharing and the reconstruction are done by constant-depth circuits of size
poly(n). We present additional cryptographic applications of our results
to low-complexity secret sharing, visual secret sharing, leakage-resilient
cryptography, and eliminating “selective failure” attacks.

1 Introduction

For a finite alphabet Σ, a distribution μ over Σn is k-wise independent if its
projection to every k coordinates is uniform. There is a large body of work
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studying bounded independence, namely, the conditions under which a given
function f :Σn → {0, 1} cannot distinguish between any distribution on n bits
that is k-wise independent and the uniform distribution with advantage ε, for
various choices of ε and k. Classes of functions that are fooled by bounded
independence include combinatorial rectangles [23], small-depth circuits [7,9,32,
40,45], and sign polynomials [19,20], to name a few.

In this work we consider a relaxation of bounded independence that we call
bounded indistinguishability. Two distributions μ and ν over Σn are k-wise indis-
tinguishable if for all subsets S ⊆ [n] of size k, the projections μ|S and ν|S of μ
and ν to the coordinates in S are identical. For instance, if μ (resp., ν) is uniform
over n-bit strings whose parity is 0 (resp., 1), then μ and ν are both (n−1)-wise
independent and hence are also (n − 1)-wise indistinguishable. However, if we
let μ′ = μ ◦ μ (i.e., a concatenation of two identical copies of μ) and similarly
ν′ = ν ◦ν, then μ′ and ν′ are still (n−1)-wise indistinguishable but are not even
2-independent.

Bounded indistinguishability arises naturally in cryptographic applications
that involve secret sharing or secure multiparty computation. We will be inter-
ested in the complexity of distinguishing between two k-wise indistinguishable
distributions.

Definition 1. For ε ∈ (0, 1), we say that a function f :Σn → {0, 1} is ε-fooled by
k-wise indistinguishability if for any two k-wise indistinguishable distributions
μ and ν over Σn, |Pr[f(μ) = 1] − Pr[f(ν) = 1]| ≤ ε.

Our goal is to understand which functions f are fooled by k-wise indistin-
guishability. For instance, polylogarithmic independence fools all AC0 circuits
[9]. Is this also the case for polylogarithmic indistinguishability?

We start by observing that over the binary alphabet Σ = {0, 1}, whether f is
fooled by k-wise indistinguishability is closely related to the approximate degree
of f , a notion introduced in the seminal work of Nisan and Szegedy [35]. This
connection is central to our work so we formalize it next. The ε-approximate
degree of a function f :{0, 1}n → {0, 1} is defined to be the smallest degree of
a real-valued polynomial p:{0, 1}n → R such that |f(x) − p(x)| ≤ ε for every
x ∈ {0, 1}n.

Theorem 1. For every n, k, ε ∈ (0, 1), and f :{0, 1}n → {0, 1}, the following
are equivalent:

1. f is not ε-fooled by k-wise indistinguishability.
2. The ε/2-approximate degree of f is bigger than k.

Proof. It follows from linear programming duality (see for example Sect. 3 in [42]
or Theorem 1 in [11]) that 2. is equivalent to the following statement:

3. There exists a function g:{0, 1}n → R such that (i)
∑

x ∈ {0,1}n g(x)f(x) >

ε/2, (ii)
∑

x |g(x)| = 1, and (iii)
∑

x g(x)
∏

i ∈ S xi = 0 for every set S ⊆ [n]
of size at most k (including the empty set).
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We now show that 1. and 3. are equivalent. To see that 1. implies 3., we
assume without loss of generality that Pr[f(μ) = 1] − Pr[f(ν) = 1] > ε and set
g(x) = 1

2C (μ(x) − ν(x)), where C is the statistical distance between μ and ν.
The first two requirements for g are immediate. The third requirement follows
from k-wise indistinguishability of μ and ν.

To see that 3. implies 1., set μ(x) = 2max{g(x), 0} and ν(x) =
2max{−g(x), 0}. Since

∑
g(x) = 0 and

∑
|g(x)| = 1, we have

∑
μ(x) =∑

ν(x) = 1 and so μ and ν are probability distributions. Condition (i) implies
that Pr[f(μ) = 1]−Pr[f(ν) = 1] > ε. Finally, by linearity we have that condition
(iii) implies that μ and ν are indistinguishable by k-juntas so they are k-wise
indistinguishable. ��

As a corollary, we get a similar connection between being non-trivially fooled
by bounded indistinguishability and threshold degree, a notion introduced in the
classical work of Minsky and Papert [33]. Recall that the threshold degree of a
function f :{0, 1}n → {0, 1} is the smallest degree of a real-valued polynomial
pz{0, 1}n → R such that the sign of p(x) corresponds to f(x) for every x ∈
{0, 1}n.

Corollary 1. For every n, k and f :{0, 1}n → {0, 1}, the following are equiva-
lent:

1. There is a pair of k-wise indistinguishable distributions μ, ν that are perfectly
distinguished by f , namely |Pr[f(μ) = 1] − Pr[f(ν) = 1]| = 1.

2. The threshold degree of f is bigger than k.

Combining the above with known results on approximate degree, we conclude
that bounded indistinguishability over Σ = {0, 1} behaves very differently from
bounded independence. For example, O(1)-wise independence suffices to 1/3-
fool the OR function on n bits, but Ω(

√
n)-wise indistinguishability is required,

due to the corresponding lower bound on the approximate degree of OR [35].
This answers the aforementioned question of whether polylogarithmic indistin-
guishability fools AC0 in the negative. A separation of Ω(n) is achieved by the
Majority function: O(1)-wise independence suffices to 1/3-fool this function [19],
but Ω(n)-wise indistinguishability is required by Paturi’s lower bound [38].

We turn to study the case of larger alphabets Σ. Here the equivalence with
previously studied notions seems to break down. We restrict the attention to
alphabets of the form Σ = {0, 1}s, viewing the function f as being computed by
a circuit with sn input bits. This setting comes up naturally in cryptographic
applications, as explained below. But first we remark that, over such larger alpha-
bets, we construct “simple” functions f that are not fooled by k-wise indistin-
guishability for much larger values of k than what is known for Σ = {0, 1}. For
example, over Σ = {0, 1}poly(n) we show that (n − n/poly log n)-wise indistin-
guishability does not (1−2−n)-fool AC0 (Theorem 2), and that 0.99n-wise indis-
tinguishability does not 0.99-fool DNF (Corollary 10). In contrast, over alphabet
Σ = {0, 1} it is only known that Ω̃

(
n2/3

)
-wise indistinguishability does not fool

AC0 (by work of Aaronson and Shi [2] and Theorem 1).
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1.1 Secret Sharing Schemes

A secret sharing scheme allows a dealer to share a secret between n parties, so
that any k parties learn nothing about the secret from their shares whereas any r
parties can reconstruct the secret from their shares. Unlike the case of threshold
secret sharing, where r = k + 1, we allow a bigger gap between r and k. Such
secret sharing schemes are often referred to as ramp schemes.

We are interested in the computational complexity of sharing and (especially)
reconstructing secrets. A simple secret sharing scheme for k = n − 1 and r = n
shares a bit s into n bits s1, . . . , sn that are random subject to the restriction
that their parity is s. This scheme cannot be implemented by constant depth
circuits (in the class AC0) as reconstruction requires computing the parity of n
bits. Other secret sharing schemes, such as Shamir’s [41], employ linear functions
over finite fields and suffer from the same limitation.

A pair of k-wise indistinguishable distributions (μ, ν), together with a func-
tion f that can tell the two distributions apart, can be viewed as a secret sharing
scheme for a one-bit secret: Shares of 0 and 1 are samples of μ and ν, respec-
tively, and f is the reconstruction algorithm. Applying this connection together
with techniques for sampling by constant-depth circuits, we obtain the following
secret sharing scheme in the class AC0.

Theorem 2 (Secret sharing in AC0). Let d be a constant. For every n and
δ there exist:

– Sharing in AC0: circuits S0, S1 of constant depth and size poly(n, log 1/δ)
that sample (n−n/(log n)d)-wise indistinguishable distributions μ, ν over Σn,
Σ = {0, 1}poly(n),

– Reconstruction in AC0: a circuit R of size poly(n) and depth d + O(1) such
that Pr[R(μ) = 0] ≥ 1 − δ and Pr[R(ν) = 1] ≥ 1 − δ.

Moreover, the circuits S0, S1, and R can be constructed deterministically in time
polynomial in n and log 1/δ.

Theorem 2 gives an explicit construction, but requires that all n parties par-
ticipate in reconstruction. If one does not insist on a fully explicit construction
and settles for a probabilistic construction that fails with negligible probability,
the secrecy-recovery gap can be moved to an arbitrary location: In Theorem13
we obtain an AC0 secret sharing scheme that provides secrecy against any σn
parties and allows reconstruction by any ρn parties for any pair of constants
0 ≤ σ < ρ ≤ 1 and sufficiently large n.

We obtain several other schemes with incomparable features. If we do not
insist on sharing in AC0 and only require that reconstruction be done in AC0,
then we can achieve similar results with perfect reconstruction (δ = 0). This vari-
ant builds on Corollary 1 and known results on the threshold degree of DNF [33].
Alternatively, we can strengthen Theorem2 by allowing an AC0 sharing algo-
rithm that indicates failure with probability δ, but otherwise supports perfect
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reconstruction. In Corollary 10, we improve the reconstruction function complex-
ity to a polynomial-size DNF formula (with terms of size O(log n)), at the cost
of a small constant reconstruction error and a slightly worse secrecy threshold.

Finally, we complement the above positive results with some negative results,
showing limitations of secret reconstruction by disjunctions of juntas (Theo-
rem 17) or small decision trees (Theorem 19). In particular, the negative results
imply that the positive result of Corollary 10 for DNF reconstruction does not
hold if the secrecy threshold is much closer to n or if the DNF is restricted to
have a polynomial-size decision tree.

Techniques. In Sect. 2 we rephrase known results on approximate degree in the
language of secret sharing using the connection in Theorem1. The resulting
schemes have AC0 reconstruction, but achieve somewhat poor secrecy (k ≤ n2/3)
and do not come with algorithms for sampling the shares. In Sect. 2.1 we show
that the distributions of the shares can be sampled in AC0. Then, in Sect. 2.2 we
give a reduction that trades alphabet size for secrecy, allowing us to derive our
main positive results. This reduction makes use of unbalanced disperser graphs.
Our negative results, presented in Sect. 2.4, are obtained by reducing the large
alphabet to a binary alphabet using a suitable set system, and then using Fourier
analysis for obtaining the negative result in the binary case.

Related work. The randomized encoding technique of Applebaum et al. [6] can
transform any secret sharing scheme into one where the shares are sampled
by circuits in which each output depends on a fixed number of random bits
(i.e., in the class NC0), but at the cost of further increasing the complexity of
reconstruction. Druk and Ishai [21] and Cramer et al. [16] consider the question
of minimizing the circuit size of secret sharing. They construct near-threshold
schemes (i.e., with r = (1 + ε) · k) in which sharing and reconstruction can be
performed by circuits of size O(n); however, the depth of these circuits is loga-
rithmic in n. The above results left open the existence of nontrivial secret sharing
schemes in which reconstruction can be done by constant depth circuits or by
other “simple” nonlinear functions, even when the computational complexity of
sharing the secret is unbounded.

1.2 Visual Cryptography

Naor and Shamir [34] initiated the study of “visual cryptography” — a method
for sharing secrets which allows for a physical implementation using transparen-
cies. It can be phrased as a secret sharing scheme with 	-bit shares, where
reconstruction proceeds by first applying bitwise-OR to the shares and then
applying an approximate threshold function (with constant fractional threshold
gap). The bitwise-OR is implemented by physically stacking transparencies, and
the approximate threshold function is implemented by visually distinguishing
between 	-tuples of bits (pixels) that have a low Hamming weight and those
that have a high Hamming weight. The ratio between the threshold gap and 	
is referred to as the contrast.
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It is known that the optimal contrast of such visual schemes vanishes expo-
nentially with the secrecy parameter k [30,34], assuming that one requires sharp
threshold reconstruction by any subset of r = k + 1 parties. The latter assump-
tion has been made in all works on visual cryptography we are aware of.

In Sect. 2.3 we give a visual “ramp scheme” that allows a quadratic gap
between the secrecy and reconstruction thresholds:

Theorem 3 (Visual Secret Sharing). For every n and r there exists a pair
of distributions μ, ν over {0, 1}n that are Ω(

√
r)-wise indistinguishable so that

for every subset S ⊆ [n] of size r,

|Pr[OR(μ|S) = 1] − Pr[OR(ν|S) = 1]| ≥ 0.2.

Moreover, μ and ν are samplable by explicit circuits S0, S1 of constant depth and
size polynomial in n.

The benefits are a dramatic improvement in contrast, making it independent
of k and visually noticeable even for large k, as well as shorter (1-bit) shares
and simpler reconstruction. The latter two properties are also achieved by other
probabilistic visual schemes from the literature [15,31]. However, this is the first
visual scheme whose (probabilistic) contrast does not vanish exponentially with
k. To give a better sense of the achievable parameters, in AppendixA we give
some specific parameter choices along with an image demonstrating the level of
contrast we achieve.

1.3 Additional Cryptographic Applications

The above positive results for secret sharing rely on functions f that are not
fooled by bounded indistinguishability. Such functions can be used to recover
a secret from its shares. We observe that when f is fooled by bounded indis-
tinguishability, this has positive consequences for leakage-resilient cryptography.
Concretely, in every implementation of a cryptographic primitive that guaran-
tees local secrecy, in the sense that different values of the underlying secrets
induce k-wise indistinguishable distributions of the internal state, leaking the
output of f on the internal state does not compromise the secrets.

Therefore all secret sharing schemes with a sufficiently high secrecy parameter
k protect the secret against global leakage functions that output few bits, where
each output bit has a low approximate degree (significantly smaller than k).
More concretely:

Theorem 4. There exists a universal constant C such that the following holds.
Let μ, ν be k-wise indistinguishable distributions over {0, 1}n. Let L:{0, 1}n →
{0, 1}t be a leakage function such that the 1/3-approximate degree of each of its
t outputs is at most d. Then the statistical distance between L(μ) and L(ν) is
bounded by δ, provided that k ≥ Cdt(t + log 1

δ ).
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This theorem can be applied to leakage functions whose outputs are com-
puted by small decision trees or disjunctions of small juntas. It can also be
applied to establish leakage resilience of protocols for secure multiparty compu-
tation and the related object of “private circuits.” See Sects. 3.1 and 3.2 for more
details and concrete applications.

Eliminating Selective Failure Attacks. The above applications can be rel-
evant to any f :Σn → {0, 1} that is fooled by bounded indistinguishability. We
show that the special case where f = OR can be useful for eliminating so-called
“selective failure” attacks. A selective failure attack is an attack that makes a
computation fail only if the input satisfies some predicate. Such attacks enable
an adversary to tamper with the computation and learn a bit of information
about the secret input even when the tampering is detected and the output is
replaced by an indication of failure. Selective failure attacks arise in different
areas of cryptography and are often difficult to protect against.

We propose the following natural methodology for protecting against such
attacks. Suppose that the computation of g(w) can be reduced to n sub-
computations g1(w1), . . . , gn(wn), where each k of the wi jointly hide w. The
computation of g via this reduction fails if at least one of the sub-computations
fails. Assume further that an adversary tampers with each sub-computation gi

by choosing an arbitrary function of Fi(wi) that determines whether this sub-
computation fails. Then, a corollary of Theorem4 (with t = 1 and L = OR)
is that if k � √

n (the approximate degree of OR), then no tampering strat-
egy can significantly correlate the event of failure with w. In the full version
[8] we describe a simple concrete application of this methodology to eliminating
selective failure attacks in error-detecting coding schemes.

Organization. In Sect. 2 we present our results on secret sharing. In Sect. 2.4
we prove our negative results and in Sect. 3 we give the details of some of the
additional cryptographic applications described above. In AppendixD we discuss
an approximate notion of bounded indistinguishability.

2 Secret Sharing

In this section we prove our results on secret sharing. Our starting observation
is that bounded indistinguishability is closely related to the complexity of secret
sharing. Specifically, the distributions μ and ν over Σn capture the joint dis-
tributions of shares obtained by sharing the secrets 0 and 1, respectively. The
k-wise indistinguishability of the distributions corresponds to the parties gaining
no information from any k shares. However, if bounded indistinguishability does
not fool some function f :Σn → {0, 1} we can think of f as the reconstruction
function that maps the shares back to the secret.

In this setting it is natural to think of the distinguishing advantage as being
close to (and ideally equal to) one. We will be interested in the complexity of
the function f as well as the complexity of sampling μ and ν.
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A different connection between secret sharing and approximation theory is
obtained in the visual cryptography literature [34] (see also [30] and the citations
therein). However, it was confined to analyzing the so-called contrast of visual
cryptography schemes.

We give next a formal definition of secret sharing for a one-bit secret.1

Definition 2. An (n, k, r) bit secret sharing scheme with alphabet Σ, recon-
struction function f :Σr → {0, 1} and reconstruction advantage α is a pair
of k-wise indistinguishable distributions μ and ν over Σn such that μ and ν
are k-wise indistinguishable but for every set S of size r we have Pr[f(μ|S) =
1]−Pr[f(ν|S) = 1] ≥ α. Here μ|S is the projection of μ to the symbols in S, and
similarly for ν. The secret sharing scheme has perfect reconstruction if α = 1.
The scheme is explicit if f is explicit and there are explicit algorithms to sample
μ and ν.

As mentioned earlier, the distributions μ and ν are the joint distributions of
shares obtained by sharing the secret 0 and 1, respectively. We sometimes omit
reference to the alphabet when Σ = {0, 1} and omit r from the notation when
r = n.

We note that Item 1. in Theorem 1 is equivalent to the assertion that there
exists an (n, k) bit secret sharing scheme (with r = n and one-bit shares) with
reconstruction function f having reconstruction advantage ε. Item 1. in Corol-
lary 1 is equivalent to the assertion that there exists a similar scheme with perfect
reconstruction.

Theorem 1, combined with the body of works on approximate and threshold
degree immediately gives the following consequences.

Corollary 2. The following secret sharing schemes over Σ = {0, 1} exist:

1. An (n,Ω(
√

δn)) bit secret sharing scheme with reconstruction by OR with
advantage 1 − δ, for any δ.

2. An (n,Ω(n)) bit secret sharing scheme with reconstruction by majority with
constant advantage.

3. An (n,Ω((n/ log n)2/3) bit secret sharing scheme with reconstruction by the
element distinctness DNF and constant reconstruction advantage.

4. An (n,Ω(n1/3)) bit secret sharing scheme with perfect reconstruction by the
DNF ANDn1/3 ◦ ORn2/3 .

5. An (n,Ω(
√

n)) bit secret sharing scheme with perfect reconstruction by some
AC0 function.

Proof. The schemes follows by Theorem 1 and the following works: 1. by Nisan
and Szegedy [35] and refinements by Bun and Thaler [11] (Proposition 14); 2.
by Paturi [38]; 3. by Aaronson and Shi [2]; 4. by Minsky and Papert [33]; and 5.
by Sherstov [43].

1 Restricting the attention to a one-bit secret is without loss of generality; an �-bit
secret can be shared by invoking a scheme for a one-bit secret � times in parallel.
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These results show that for an interesting range of parameters, the recon-
struction procedure of a secret sharing scheme can be implemented by simple
functions, and in particular by constant depth circuits.

Bounded Independence Versus Bounded Indistinguishability. In many secret
sharing schemes (e.g., Shamir’s scheme [41] over a field of characteristic 2), the
distributions μ and ν are not only k-wise indistinguishable but also k-wise inde-
pendent. Such distributions cannot be distinguished by AC0 functions and sign
polynomials of degree 2 unless k is at most polylogarithmic in n. In contrast,
the above examples give examples of k-wise indistinguishable distributions that
are distinguishable by such function even when k grows polynomially with n.

Remark 5. Aaronson [1] considers a different relaxation of bounded indepen-
dence that has a dramatic effect on distinguishability by AC0 functions. He con-
siders distributions where for any k bits the probability that those bits take any
fixed value is within ε2−k of 2−k and gives a family of depth 3 polynomial-size
circuit that distinguishes such a distribution from a uniform one with constant
advantage for any k and ε = k · poly log(n)/n.

2.1 Sampling the Shares in AC0

In this section we show the existence of secret sharing schemes in which sharing
the secret can be performed by constant-depth circuits, i.e., in the class AC0,
and reconstructing the secret can be done by a “simple” function. (As discussed
in Sect. 1.1, the problem of minimizing the complexity of sharing alone is much
simpler and can be solved via the techniques of [6].)

We start by showing how to sample distributions that are exponentially close
to the k-wise indistinguishable distributions corresponding to the schemes we
described. In AppendixC we give a refinement that gives distributions that are
(exactly) k-wise indistinguishable, i.e., we achieve perfect secrecy.

Theorem 6. For schemes 1. to 4. in Corollary 2 there exist pairs of circuit
families of constant depth and size polynomial in n and log(1/ε) that sample
distributions within statistical distance ε of μ and ν, respectively.

We leave the existence of efficient samplers for scheme 5. as an open question.
Note that we can achieve statistical distance ε = 2−nc

for any constant c
with circuits of size poly(n). The reason for this loss in statistical distance is
that our distributions over the shares have probability masses that may not be
powers of two, and so if we want to sample them using random bits we have to
incur some slight error.

We now give the proof of this theorem. Our analysis relies on known explicit
constructions of “dual polynomials,” i.e., of the function g in Item 3. in Theo-
rem 1. This area of research has been quite active since Špalek [44] gave the first
explicit dual polynomial for OR.

Let Γ be a group of permutations acting on [n]. Then Γ also acts on {0, 1}n

by permuting the coordinates. The next claim is immediate.
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Claim 7. Let Γ be a group of permutations on [n]. Assume f(x) = f(σx) for
all x ∈ {0, 1}n and all σ ∈ Γ . If (μ, ν) is an (n, k, r) bit secret sharing scheme
with reconstruction function f and advantage α, then so is (μ, ν) where

μ(x) = Eσ∼Γ [μ(σx)] and ν(x) = Eσ∼Γ [ν(σx)].

In particular, if f is symmetric under permutation of its input coordinates,
then the distributions μ and ν can be assumed to assign the same probability to
all strings of the same Hamming weight. These n + 1 probabilities can be found
in polynomial time by solving a linear program.

Moreover, we argue that in such a case μ is AC0-samplable; the same argu-
ment applies to ν. Let μ′ be the distribution on Hamming weights induced by
μ. To sample from μ, we first sample a weight w ∈ {0, . . . , n} from μ′, then
output a random permutation of the string 1w0n−w. Both of these steps can be
implemented in AC0; cf. [47].

Therefore secret sharing with reconstruction by OR and majority can both
be implemented in AC0.

A description of the bit sharing scheme for element distinctness can be
extracted from the work of Bun and Thaler [12]. They first construct a bit
secret sharing scheme for a partial function f whose inputs are strings of length
N over an alphabet Σ of size O(N). In the yes inputs of f all symbols are dis-
tinct, while in the no inputs all symbols occur exactly twice. Their distributions
μ and ν are supported on strings where m/a symbols occur exactly a times and
(N − m)/b symbols occur exactly b times for various choices of m,a, b.

We can represent the input to f as a binary string x1 . . . xN ∈ ({0, 1}Σ)N ,
where xi is an indicator vector for the i-th input symbol of f . Under this repre-
sentation, f is a partial boolean function from {0, 1}|Σ|·N to {0, 1}. By Claim 7
we may assume μ and ν are invariant over both permutations of the alphabet and
permutations of the input positions. Now μ and ν can be sampled by first sam-
pling (m,a, b) from the marginal distribution, then writing down an arbitrary
string with the correct counts, and applying random permutations to both the
alphabet and the input positions. All of these steps can be implemented in AC0.
The bit secret sharing scheme for OR is obtained by projecting the entries of μ
and ν on random subsets of size n, which can also be implemented by sampling
a random permutation.

An explicit description of the bit sharing scheme for the Minsky-Papert func-
tion can be extracted from the work of O’Donnell and Servedio [37] (Appendix
A). They first sample an integer t of magnitude at most n1/3 (even for μ, odd
for ν) then choose an independent random string of Hamming weight (t − i)2 in
the i-th block. Both steps can be implemented in AC0.

2.2 Trading Alphabet Size for Secrecy

We now give a general method of composing secret sharing schemes. We will
apply this method to improve the secrecy of the above schemes at the cost of
an increase in alphabet size and a slight increase in depth of the reconstruction.
Our construction makes use of disperser graphs.
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Definition 3. A n × m bipartite graph G with left degree d is a (k, ε) disperser
if any subset of [n] of size k has at least (1 − ε)n neighbors in [m].

The loss in reconstruction efficiency is related to the degree d of the disperser.
So we obtain the best results with Zuckerman’s construction of dispersers with
degree linear in log n/ε.

Theorem 8 (Theorem 1.9 of [48] with α = 1/2). For every constant δ, and
for every n and ε there is an explicit (nδ, ε) disperser G with d = O(log n/ε) and
m = δn/2.

We now show how to turn an (n, k) secret sharing scheme L over alphabet
{0, 1} into a (m,m − εm) secret sharing scheme R over alphabet {0, 1}n. The
alphabet is actually {0, 1}d′

where d′ is the maximum right-hand side degree of
the disperser graph. It is possible to obtain d′ close to the average degree nd/m,
but in our settings this will always be nΩ(1) and so for simplicity we do not
optimize this parameter.

The parties of L and R are associated to the left and right vertices of the
bipartite graph respectively. To share a bit in R, first sample shares for L and
label each left vertex v ∈ [n] by its corresponding share s(r) ∈ {0, 1}. Now
for each of the d edges e1, . . . , ed incident to r, choose a bit s(ei) at random
conditioned on s(e1) ⊕ · · · ⊕ s(ed) = s(r). The share s(w) of each right vertex
w ∈ [m] is the concatenation of the edge-shares s(e) over all its ≤ n incident
edges e.

To reconstruct, apply the process in reverse: First distribute s(w) for w ∈ [m]
to its incident edges, then calculate s(v), v ∈ [n] as s(e1)⊕· · ·⊕s(ed) and output
f(s(1), . . . , s(n)), where f is the reconstruction function of L.

Lemma 1. If G is a (k, ε) disperser graph and L is a (n, k) secret sharing
scheme then R is a (m,m − εm) secret sharing scheme with the same recon-
struction advantage.

Proof. It is easy to see that the reconstruction advantage is preserved. Next we
argue secrecy.

For contradiction, assume that L is k-secret but R is not (n − εn)-secret.
Then there exists a subset S ⊆ [m] of size ≤ m − εm such that the parties in
S can distinguish shares of 0 from shares of 1. Consider the joint distribution
of the shares assigned to all the edges incident to S. If any vertex v ∈ [n] has
a neighbor outside S, then the edge-shares associated to v’s neighbors inside
S are uniformly random and independent of all the other edge-shares incident
to S (even conditioned on all the values s(v)). Therefore, the two distributions
must be distinguishable even when restricted to those edges whose right vertices
have all their neighbors in S. Let T be the set of all such right vertices. Then
the shares of S in L are determined by the shares of T in R. By the disperser
property of G, T has size at most k, so the shares in T are indistinguishable,
contradicting our assumption.
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We note that Alon et al. [4] applied a similar construction to amplify the
distance of linear error-correcting codes, while Damg̊ard et al. [18] used it (in
more general form) for improving the tolerance of multiparty computations.
Both these applications make use of dispersers (in fact, expanders) G that are
balanced (with m = n) and of constant degree d. In contrast, we apply it to
unbalanced graphs whose left degree is logarithmic in the number of vertices.

If we set k = nα for some constant α > 0, we obtain the following conse-
quence. Here f ◦ XORd denotes a function that can be computed by composing
f by XORs over d inputs.

Theorem 9. Let α > 0 be a constant. Suppose that there exists a (n, nα) secret
sharing scheme with reconstruction function f :{0, 1}n → {0, 1} over alphabet
{0, 1}. Then there exists a (m, (1 − ε)m) secret sharing scheme over alphabet
{0, 1}n with reconstruction function of the type f ◦ XORd with d = O((log n)/ε)
and m = Ω(nα).

We now have all the pieces to prove Theorem 2.

Proof (of Theorem 2). Instantiate Theorem 9 with Item 4 in Corollary 2. The
reconstruction function involves computing parities on poly log n bits which can
be done in AC0. To sample the shares efficiently use Theorem 24.

Several other schemes are possible. We highlight the following one in which
reconstruction is done by a DNF, although it is not perfect.

Corollary 10. For every constant ε > 0, there is an explicit (n, (1− ε)n)-secret
sharing scheme with reconstruction error ε over the alphabet {0, 1}poly(n) with
reconstruction by a poly(n)-size DNF with terms of size O(log n).

Proof. Instantiate Theorem 9 with Item 1 in Corollary 2. The reconstruction
function is an OR of O((n/ log n)2) XORs of size O((log n)/ε), which can be
computed by a polynomial-size DNF. The shares can be sampled in AC0 by
Theorem 6.

2.3 Reconstruction by a Subset of the Parties

In this section we give several secret sharing schemes that allow for reconstruction
by a subset of the parties. Our starting point is the secret sharing scheme with
reconstruction by the OR function.

Claim 11. For every r, δ, and n there is an explicit (n,Ω(
√

δn), r) bit secret
sharing scheme with reconstruction by OR with advantage at least r/n − δ.

Here, by OR we mean the class of OR functions on subsets of r input bits.
We will need the following fact which is implicit in the proof of Theorem1.

Remark 12. Without loss of generality, the distributions μ and ν can be
assumed to have disjoint support.
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Proof (of Claim 11). Let (μ, ν) be any (n, k) bit sharing scheme for OR with
reconstruction advantage 1−δ. By Remark 12 and Claim 7 we may assume μ and
ν are disjoint and symmetric, so ν(0n) = 1−δ and all strings in the support of μ
have nonzero Hamming weight. For any subset of r parties, the probability that
they jointly observe a nonzero entry under ν is then at most δ. By symmetry
of μ, the probability that they observe nonzero entry under μ is at least r/n.
Therefore Pr[f(μ) = 1] − Pr[f(ν) = 1] ≥ r/n − δ.

If we set δ = r/2n we obtain an (n,Ω(
√

r), r) bit secret sharing scheme with
reconstruction by OR with advantage δ = r/2n. In the next result we make this
advantage constant.

We now prove Theorem 3, namely the existence of a (n,Ω(
√

r), r) bit secret
sharing scheme with reconstruction by OR with constant advantage.

Proof (of Theorem 3). First we construct a scheme over alphabet {0, 1}1/δ for
δ = 2n/r which we assume to be an integer. To share a zero and a one respec-
tively, sample 1/δ independent shares using the scheme in Claim 11 and give the
i-th party the i-th bit from each copy. By the proof of Claim 11 for any Ω(

√
r)

parties the OR of their i-th copies of their shares of one and zero evaluate to
1 with probability at least 1 − (1 − 2δ)1/δ and at most 1 − (1 − δ)1/δ, respec-
tively. The difference between these two numbers is always positive and tends to
1/e − 1/e2 as 1/δ increases.

To reduce the alphabet to binary, we replace each party’s share by the OR
of its constituent bits.

If we allow for more complexity in reconstruction and larger shares, the gap
between the secrecy and reconstruction parameters can be improved and the
reconstruction error can be made negligible.

Theorem 13. For every pair of constants 0 ≤ σ < ρ ≤ 1 and sufficiently large
m there exists a (m,σm, ρm) bit secret sharing scheme with reconstruction by
circuits of size polynomial in m and depth 4 and advantage 1 − 2−mc

for any
constant c over alphabet Σ = {0, 1}poly(m).

To prove Theorem 13, we apply the composition method from Sect. 2.2 using
a bipartite graph with the following dispersion properties.

Claim 14. For all constants δ > 0 and 0 ≤ σ < ρ ≤ 1, and every sufficiently
large n there exist numbers m = nΩ(1), r ≤ n, and d = O(log n) and an n × m
bipartite graph G with left degree d such that

1. For every subset S ⊆ [m] of size at most σm, the set of vertices in [n] all of
whose neighbors are in S has size at most rδ (i.e., G is a (rδ, 1−σ)-disperser),
and

2. For every subset R ⊆ [m] of size at least ρm, the set of vertices in [n] all of
whose neighbors are in R has size at least r.

We then amplify the reconstruction error in Theorem3 using the following
claim.
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Claim 15. For every integer t, if there exists a (m, k, r) bit secret sharing
scheme with reconstruction by size s and depth d circuits and constant advantage
over alphabet Σ then there exists a (m, k, r) bit secret scheme with reconstruction
by circuits of size st + poly(t) and depth d + 2 and advantage 1 − 2−Ω(t) over
alphabet Σt.

Proof (of Theorem 13). We apply the construction described in Sect. 2.2 to the
(n,Ω(

√
r), r) scheme from Theorem 3 and the graph from Claim14 with δ = 0.49.

Secrecy follows from Theorem 9. Reconstruction proceeds as in Sect. 2.2, except
that only those parties in [n] that have received all of their shares participate
in the process. By property 2 of Claim 14, if at least ρm parties on the right
participate in the reconstruction then at least r parties on the left receive all
their share and the secret is reconstructed with constant advantage. By Claim15
with t = mc, the advantage can be amplified to 1 − 2−mc

as desired.

Proof (of Claim 14). We show that a random graph has both properties with
nonzero probability. Choose each of the d neighbors of each left vertex indepen-
dently and uniformly at random. For a fixed set S ⊆ [m] of size σm, the expected
number of left vertices all of whose neighbors are in S equals nσd. By the mul-
tiplicative Chernoff-Hoeffding bound and a union bound, the probability that
there exists a set S and a set of left vertices of size 2nσd all of whose neighbors
are in S is at most 2m exp(−nσd/8). By a similar argument, the probability that
there exists a set R ⊆ [m] of size ρm such that fewer than nρd/2 vertices have
all their neighbors in R is at most 2m exp(−nρd/3).

We set d = logρδ/σ(21+δn1−δ), r = (ρ/σ)d/(1−δ), and m = 
rδ/2�. This choice
of parameters ensures that nρd/2 = r, 2nσd = rδ, and r,m = nΩ(1). Moreover,
both probabilities of interest tend to zero at the rate exp(−Ω(rδ)) = exp(−nΩ(1))
so a graph with the desired properties exists for sufficiently large n.

Proof (of Claim 15). For every pair of constants 0 ≤ 	 < h ≤ 1, Ajtai [3] shows
the existence of a Boolean function family ApxMaj of depth 3 and size poly-
nomial in its input such that ApxMaj accepts all strings of relative Hamming
weight at least h and rejects all strings of relative Hamming weight at most 	.
These circuits are made explicit in [46].

Let S be the assumed secret sharing scheme. Choose h and 	 so that the
success probability of reconstructing a one from its shares in S bounds h strictly
from above and the failure probability of reconstructing a zero in S bounds 	
strictly from below. To share a bit, sample k independent copies of shares of S
and give the i-th party the i-th bit of each copy. To perform the reconstruction,
first apply the reconstruction algorithm for S for each copy, then apply ApxMaj
to all k reconstructed bits.

The secrecy of S is inherited by construction. We now analyze the probability
of correct reconstruction by r parties. By the multiplicative Chernoff bound, the
probability that fewer than hk copies of S reconstruct a one correctly, or that
more than 	k copies of S reconstruct a zero incorrectly, is 2−Ω(k). If this does
not happen, ApxMaj correctly recovers the secret bit.
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2.4 Limitations

In this section we prove negative results on the existence of secret sharing
schemes, or equivalently positive results on functions being fooled by bounded
indistinguishability. Our main technical contribution consists of proving negative
results that hold even over large alphabets Σ. However, we first start with the
case Σ = {0, 1} because this provides motivation and is useful for larger Σ.

In the case Σ = {0, 1} we note an upper bound of n(1 − 1/poly log n) on
the approximate-degree of AC0. While it follows from standard Fourier-analytic
techniques, we are not aware that it has been observed before. In terms of secret
sharing schemes it shows that the secrecy is at most n(1−1/poly log n) if recon-
struction is to be done in AC0.

Claim 16. Every function f :{0, 1}n → {0, 1} that has a size s depth d circuit
has n−h/2-approximate degree n − h for h = Ωd(n/(log s)d−1(log n)).

Proof. We will work with the function F :{−1, 1}n → {−1, 1} given by F (X) =
1−2f((1+X)/2). We construct a polynomial P :{−1, 1}n → R that approximates
F pointwise within 2n−h/2. Let

P (X) =
∑

S⊆[n],|S|≤n−h
F̂ (S)

∏

i∈S
Xi,

where F̂ (S) = E[F (X)
∏

i∈S Xi] are the Fourier coefficients of F , see e.g.
O’Donnell’s book [36] for background.

H̊astad [24] shows that |F̂ (S)| ≤ 2−c|S|/(log s)d−1
, where c is some constant

that depends only on d. For every X ∈ {−1, 1}n,

|F (X) − P (X)| =
∣
∣
∣
∑

S:|S|>n−h
f̂(S)

∏

i∈S
Xi

∣
∣
∣

≤
∑

S:|S|>n−h
|f̂(S)| ≤ nh · 2−c(n−h+1)/(log s)d−1

,

which is at most 2n−h/2 for h = min{n/2, cn/4(log s)d−1(log n)}.

The following upper bound on the approximate degree of the OR function
was obtained by Kahn et al. [29]. The special case δ = 1/3 was first established
by Nisan and Szegedy [35].

Lemma 2. For every n and δ, the δ-approximate degree of OR on n bits is
O(

√
n log(1/δ)).

It follows from Theorem 1 that there does not exist a (n, ω(
√

n log(1/δ))
secret sharing scheme over the alphabet {0, 1} with reconstruction by OR and
advantage δ.

We now derive two negative consequences for secret sharing schemes with
more complex reconstruction functions and over alphabets of arbitrary size.
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Theorem 17. For every Σ of the form {0, 1}s and all n,m, d, h such that h ≤
n/(3 ln n · exp(6

√
ln(2m) · ln d)) if f :Σn → {0, 1} is an OR of m functions each

of which depends on at most d inputs then there is no (n, n − h) secret sharing
scheme with reconstruction function f and advantage 1/3.

In particular, Theorem17 shows that if reconstruction is done by a DNF of
size m = poly(n) and with terms of size d = no(1) then the secrecy must be at
most n − h = n − n1−o(1).

The proof of the theorem relies on the following combinatorial claim.

Claim 18. For every N , M , n, m, d, and h such that h ln n,M ln N + 1 ≤
n/(3dM (2m)M/N ) and every collection S of m subsets of [n], each of size d,
there exists a collection T of N subsets of [n] such that

1. for every set S ∈ S there is at least one set T ∈ T such that S is a subset of
T , and

2. for every M sets T1, . . . , TM ∈ T , |T1 ∪ · · · ∪ TM | < n − h.

Proof (of Theorem 17). Suppose for contradiction that such a secret sharing
scheme S exists. Let Si ⊆ [n] be the set of variables in the i-th term of f and
S = {S1, . . . , Sn}. For N = logd(2m), M = 2

√
N , and sufficiently large n the

set system T = {T1, . . . , TN} given by Claim 18 exists. Assign to each term t of
f a single set T (t) ∈ T that covers it as guaranteed by Property 1 of the Claim.

Consider the following N -party secret sharing scheme T for OR. To share,
first run the secret sharing for S and evaluate each term t of f using the shares
as inputs. Then assign each party i in T the OR of all the terms t such that
T (t) = Ti. To reconstruct take the OR of all the shares of T . By construction,
this equals f evaluated on the shares of S, so T has the same reconstruction
advantage as S.

By Property 2 of Claim 18, each collection of M parties of T observes fewer
than n − h shares of S, so T is an (N,M) secret sharing scheme. By Lemma 2
T cannot have reconstruction advantage 1/3, so neither can S.

Proof (of Claim 18). We choose the M sets of T at random such that each
element in [n] is included in each set in T independently with probability 1 − q
for q = (1/d)(1/2m)1/N . On the one hand, by a union bound, the probability
that some set S ∈ S fails to be covered by any set of T is at most m(qd)N ,
which is at most 1/2 by our choice of q. On the other hand, by a union bound,
the probability that property 2 is violated is at most

(
N

M

)

·
(

n

n − h

)

·
(
1 − qM

)n−h ≤ exp
(
M ln N + h ln n − (n − h)qM

)

≤ exp
(
M ln N + h ln n − (2n/3)qM

)

≤ 1/e

by the assumed inequality. By a union bound, both desired properties are satis-
fied with probability at least 1 − 1/2 − 1/e > 0.
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Next we obtain a stronger negative result in the case in which the recon-
struction is done by a decision tree.

Theorem 19. Let Σ = {0, 1}s. If f :Σn → {0, 1} has a binary decision tree with
at most S leaves then there is no (n, ω(

√
n log(S/ε)))-bit secret sharing scheme

with reconstruction function f and advantage ε.

In particular, a secret sharing scheme with constant advantage and whose
reconstruction function is a polynomial-size decision tree can only be secure
against coalitions of O(

√
n log n) parties.

Proof. First assume f is an OR of a subset of literals. If a secret sharing scheme
with reconstrcution function f , secrecy parameter ω(

√
n(log 1/δ)), and advan-

tage δ existed, then a scheme with the same parameters would exist for a binary
alphabet as each party’s shares can be replaced by the respective OR of the rel-
evant literals, contradicting Lemma 2. By symmetry the same conclusion holds
for ANDs of subsets of literals.

If f has a decision tree with ≤ S leaves, then we can write f as a sum of
at most S ANDs of literals, one for each path in the decision tree that leads
to a 1-leaf. This sum is over the reals yet it will always take a boolean value
because at most one AND will evaluate to one. If there existed a secret sharing
scheme with reconstruction function f , advantage ε and the desired properties,
by a hybrid argument one of the constituent ANDs would have advantage ε/S
in the same scheme. Setting δ = ε/S yields the desired conclusion.

3 Additional Cryptographic Applications

In this section we present additional applications of our results on bounded
indistinguishability in cryptography. These applications can be viewed as differ-
ent instances of leakage-resilient cryptography.

The broad goal of leakage-resilient cryptography is to maintain the security of
cryptographic primitives even if partial information about their secrets is leaked
to an adversary. The type of information being leaked is typically captured by
a leakage function L:{0, 1}n → {0, 1}t taken from a leakage class L, where the
input for L represents the internal (secret) state of the primitive and its output
represents the partial information available to the adversary. For simplicity we
will start by considering the case of single-bit leakage (i.e., t = 1) and later
extend the results to the more general case.

Our motivating observation is that if two possible distributions of secret
states are k-wise indistinguishable, and moreover k-wise indistinguishability
implies L-indistinguishability, then obtaining leakage-resilience against L reduces
to obtaining resilience against k-local leakage, namely the class of all projec-
tion functions P :{0, 1}n → {0, 1}k. Obtaining provable security against k-local
leakage is typically much easier than obtaining provable security against bigger
leakage classes, and can be achieved via standard techniques for secret sharing
and secure multiparty computation (MPC).
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The above observation may be relevant to any cryptographic scheme that
maintains a sufficient level of local secrecy. We illustrate its usefulness by pre-
senting applications in the contexts of secret sharing, error detecting codes, and
private circuits.

3.1 Leakage-Resilience of Secret Sharing Schemes

The implication 1. =⇒ 2. in Theorem 1 can be reformulated in the following
equivalent way.

Claim 20. Let μ, ν be k-wise indistinguishable distributions over {0, 1}n. Let
L:{0, 1}n → {0, 1} be a leakage function whose ε-approximate degree is at most
k. Then

|Pr[L(μ) = 1] − Pr[L(ν) = 1]| ≤ ε.

Claim 20 implies that every (m, k) bit secret sharing scheme over Σ = {0, 1}	 is
resilient against leakage functions L:{0, 1}m	 → {0, 1} whose approximate degree
is at most k. The same holds for secret sharing schemes with bigger secrets.

Many secret sharing schemes from the literature are in fact k-wise indepen-
dent for a large value of k, in the sense that any k bits in μ and ν are uniformly
distributed. This is the case, for instance, for Shamir’s scheme [41] over fields of
characteristic 2. In such a case one can appeal to stronger results about bounded
independence. For instance, Braverman’s theorem [9] implies resilience to every
AC0 leakage function L even when k is polylogarithmic in n, whereas the approx-
imate degree of some AC0 functions is known to be as big as Ω(n2/3). One could
also apply similar results in the case of biased k-wise independence, namely μ
and ν are k-wise indistinguishable and moreover every k bits are independently
distributed (but may each have a different bias). See, e.g., Lemma 5.2 in [14] for
the case of OR distinguishers.

However, there are cases in which it is undesirable or even impossible to
guarantee a high level of independence. For instance, when considering secret
sharing schemes with special properties, such as ones supporting multiplication,
bounded independence may come at a significant price [13,39]. Alternatively, the
shares of a k-wise independent secret sharing scheme may be subject to local
encoding or to adversarial tampering, after which they are no longer k-wise
independent but are still k-wise indistinguishable.

Finally, we extend Claim 20 to the case of a leakage function L with t output
bits. For convenience, we restate Theorem 4 from the Introduction.

Theorem 21. There exists a universal constant C such that the following holds.
Let μ, ν be k-wise indistinguishable distributions over {0, 1}n. Let L:{0, 1}n →
{0, 1}t be a leakage function such that the 1/3-approximate degree of each of its
t outputs is at most d. Then the statistical distance between L(μ) and L(ν) is
bounded by δ, provided that k ≥ Cdt(t + log 1

δ ).
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Proof. Using an indistinguishability variant of Vazirani’s statistical XOR lemma
(cf. [27, Lemma 1]), it suffices to prove that every L′:{0, 1}n → {0, 1}
obtained by taking the parity of a subset of the outputs of L, we have
|Pr[L′(μ) = 1] − Pr[L′(ν] = 1]| ≤ δ′ where δ′ = δ · 2−t/2. Using Lemma 4, the
1/3-approximate degree of each such L′ is O(dt) and by Lemma 3 its approxi-
mate degree is O(dt log 1

δ′ ). Applying Claim 20, k = Ω(dt(t + log 1
δ )) suffices to

guarantee that the distinguishing advantage of L′ is bounded by δ′ as required.

3.2 Private Circuits

We now describe an application of Claim 20 to private circuits, a computational
model for leakage-resilient cryptography. We consider the simpler stateless vari-
ant of private circuits with encoded inputs and outputs (see, e.g., [28, Sect. 3] and
[25, Sect. 4.1]) and privacy with respect to a general leakage class L. Informally,
such a private circuit is a (possibly randomized) boolean circuit that transforms
a randomly encoded input into a randomly encoded output while providing the
guarantee that the output of any L-leakage on the n circuit wires reveals essen-
tially nothing about the input. More formally:

Definition 4 ((L, ε)-Private Circuit). A private circuit for g:{0, 1}ni →
{0, 1}no is defined by a triple (I, C,O), where

– I:{0, 1}ni → {0, 1}n̂i is a randomized input encoder;
– C is a deterministic or randomized boolean circuit with input ŵ ∈ {0, 1}n̂i ,

output ŷ ∈ {0, 1}n̂o , and n wires;
– O:{0, 1}n̂o → {0, 1}no is a deterministic output decoder.

For a leakage function L:{0, 1}n → {0, 1}t and ε > 0, we say that (I, C,O) is an
(L, ε)-private implementation of g if the following requirements hold.

– Correctness: For any input w ∈ {0, 1}ni we have Pr[O(C(I(w))) = g(w)] = 1],
where the probability is over the randomness of I and (possibly) C.

– Privacy: For any w,w′ ∈ {0, 1}ni , the statistical distance between L(C[I(w)])
and L(C[I(w′)]) is at most ε, where C[x] denotes the (randomized) values of
the n wires of C on input x.

For a class L of leakage functions, we say that (I, C,O) is an (L, ε)-private imple-
mentation of g if it is an (L, ε)-private implementation of g for every L ∈ L, and
that it is a k-private implementation of g if it is an (L, 0)-private implementation
of g for the class L of projection functions that output k bits of the input.

Without any requirements on I and O, the above definition can be satisfied
by having I compute a leakage-resilient secret sharing of the input which is
passed by C directly to the decoder. To rule out such a solution we require the
encoder and the decoder to be universal (i.e., depend only on ni, no and the
circuit size of g and not on g itself). Furthermore, we would like the decoder
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size to be considerably smaller than the circuit size of g. These requirements
effectively force C to perform the bulk of the computation in a leakage-resilient
manner.

While there are asymptotically efficient constructions of k-private circuits
obtained via MPC techniques [17,25,28], much less is known about defending
against larger leakage classes. We use the connection between approximate degree
and bounded indistinguishability to bootstrap from k-private circuits to (L, ε)-
private circuits for larger classes L. More accurately, we show that in many
cases k-privacy automatically implies (L, ε)-privacy for a large L and negligible ε.
A similar result for a special type of leakage called “noisy leakage” was obtained
in [22]. The parameters of the leakage-resilient circuits we obtain via bounded
indistinguishability are quite limited, since our approach requires the privacy
threshold k to be rather close to the circuit size. An interesting research direction
is to obtain better parameters by exploiting additional structural properties of
the distributions induced by private circuit constructions.

Combining MPC-based constructions of k-private circuits with known
bounds on approximate degree, we obtain the following corollary (see [8] for
proof):

Corollary 22. Any NC-function g:{0, 1}ni → {0, 1}no of circuit size s admits
an (L, 2−σ)-private implementation (I, C,O), where |I| = Õ(s), |C| = Õ(s), and
|O| = Õ(no + k), for the following choices of L, σ, and k:

1. L is the class of decision trees of size S, k = σ
√

s log(S), and σ ≤
√

s/ log(S).
2. L is the class of read-once DNF (or CNF) formulas, k = σs1/2, and σ ≤ s1/2.
3. L is the entire class AC0, k = σsc, and σ ≤ s1−c, assuming that all AC0

functions on n-bit inputs have a 1/3-approximate degree of O(nc) for some
constant c < 1.

Extension to Multi-bit Leakage. The above corollary can be extended to leakage
functions L with t bits of output by relying on Theorem4 instead of Claim 20.
The general form of the corollary can be obtained by replacing each occurrence
of σ with σt2.

The Case of Disjunctive Leakage. Private circuits that resist disjunctive leak-
age, namely an OR of an arbitrary subset of wires or their negations, have
found applications to constant-round secure two-party computation [26]. While
it was shown in [26] that every k-private circuit can be transformed into such
a disjunction-resilient circuit with a constant multiplicative overhead to the cir-
cuit size, this transformation is nontrivial and has a significant concrete cost.
We note that for the purpose of this application it is essential that the encoder
be small, and thus Corollary 22 is not useful even for the case of NC circuits.

Instead, we rely on the following corollary of Claim20 to show that the same
k-private circuits to which the transformation from [26] was applied are in fact
already resilient against disjunctive leakage.
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Claim 23. Let μ, ν be k-wise indistinguishable distributions over Σn for Σ =
{0, 1}	. Let L:{0, 1}	n → {0, 1} be a disjunctive leakage function. Then

|Pr[L(μ) = 1] − Pr[L(ν) = 1]| ≤ 2−Ω(k/
√

n).

Proof. By decomposing L into n disjunctive functions that operate separately
on each 	-bit symbol, L(μ) and L(ν) can be written as OR(μ′) and OR(ν′)
(respectively), where μ′ and ν′ are k-wise indistinguishable distributions over
{0, 1}n. The claim then follows from Claim 20 and the approximate degree of
OR.

The k-private circuits employed in [26] are based on MPC protocols that
resist a constant fraction of corrupted parties. As such, they have the property
that their N wires can be partitioned into n “symbols” in Σ = {0, 1}N/n, such
that the wire distributions on different inputs are k-wise indistinguishable over
Σ for k = Ω(n). Thus, Claim 23 implies that these k-private circuits achieve a
good level of disjunctive resilience without any modification.
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A Parameters for Visual Scheme

We demonstrate some specific parameter choices for our visual secret sharing
scheme. For given k and α, the corresponding entry in the next table gives the
minimum value of n for which an (n, k) bit secret sharing scheme for OR with
distinguishing advantage (i.e., contrast) α exists. To compute these exact para-
meters we formulated the problem as a linear program and used the CVXOPT
linear programming solver to perform the calculation. The images were recov-
ered from instantiations of the scheme with parameter settings k = 8, n = 21
and k = 8, n = 46, respectively.
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B Useful Properties of Approximate Degree

We rely on the following two lemmas on approximate degree. The first lemma
(cf. [19, Claim 3.8]) shows that approximation quality can be traded for degree.

Lemma 3. Let 0 < ε′ < ε ≤ 1/3. Suppose that the ε-approximate degree of f is
k. Then the ε′-approximate degree of f is O(k · log ε

ε′ ).

The second lemma relates the approximate degree of the parity of t functions
to a bound on their approximate degree. It follows by composing the functions
using a “robust” polynomial for parity of degree O(t) [10]. A simpler bound,
obtained by applying Lemma3 and multiplying the t approximations, adds an
additional log t-factor to the degree.

Lemma 4. Let f1, f2, . . . , ft be boolean functions whose 1/3-approximate degree
is at most k. Then the 1/3-approximate degree of f = f1 ⊕f2 ⊕· · ·⊕ft is O(kt).

C Sharing in AC0 with Perfect Secrecy

In this section we describe ways to maintain perfect secrecy while still generating
the shares in AC0. Let p be a distribution over {0, 1}n. We say that a distribution
q over {0, 1}n ∪ {⊥} is ε-near p if Pr[q =⊥] ≤ ε and p equals q|q �=⊥, i.e., q
conditioned on the event q �=⊥. We think of ‘⊥’ as failure and we generally use
the word ‘near’ to indicate sampling with failure.

Theorem 24. For schemes 1. to 4. in Corollary 2 the following holds. Let μ
and ν be the distributions on {0, 1}n of the shares of 0 and 1 respectively. Let
c be an integer. There exists explicit AC0 circuits of size polynomial in n that
sample distributions μ⊥ and ν⊥ such that:

1. (Secrecy) If μ and ν are k-wise indistinguishable then so are μ⊥ and ν⊥.
2. (Reconstruction) μ⊥ and ν⊥ are ε-near μ and ν, respectively, for ε = 2−nc

.

By Item 1. we achieve perfect secrecy, and Item 2. guarantees that recon-
struction works up to a small error.
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Proof (of Theorem 24). For simplicity let us consider the scheme for OR. As
mentioned earlier, in this case μ and ν are symmetric. Let μ′ and ν′ be the cor-
responding distributions on Hamming weights. By inspection of the dual poly-
nomial for OR, see [44], the probability mass functions of μ′ and ν′ is at any
point a multiple of 1/m, where m is an integer with poly(n) bits.

We now describe the near sampler for μ. First, pick a uniform number in
{0, 1}n′

where n′ ≥ m. If the number is bigger than m then output ⊥. Otherwise,
use that to compute a sample i of μ′. This involves computing ‘≤’, which can be
done in AC0. Then the task is to output a uniform string of Hamming weight i.
Because AC0 can nearly sample the uniform distribution of permutations of [n],
cf. [47], this uniform string can indeed be sampled. The same process is applied
to ν.

Conditioned on not failing, the process is sampling μ and ν as desired. What
remains to be seen is that the probability of outputting ⊥ does not depend on
whether we are nearly sampling μ or ν. This holds by inspection. Indeed, in the
first step we fail in either case if we obtain a number that is larger than m. In the
second the failure probability is that of the sampler of a uniform permutation,
which is independent of which distribution we are sampling.

D Exact vs. Almost Bounded Indistinguishability

In this Appendix we show that k-wise indistinguishability is “robust to noise” in
the following sense: Any pair of distributions that are “almost” k-wise indistin-
guishable is close to a pair of truly k-wise indistinguishable distributions. Alon,
Goldreich, and Mansour proved an analogous statement for k-wise independence
(Theorem 2.1 in [5]).

Theorem 25. Let μ and ν be two distributions on {−1, 1}n. Suppose that no
test T :{−1, 1}k → {0, 1} on k bits can distinguish μ and ν with advantage bigger
than ε. Then there exist two distributions μ∗ and ν∗ such that μ∗ has statistical
distance ≤ 2εnk from μ, ν∗ has statistical distance ≤ 2εnk from ν, and μ∗ and
ν∗ are k-wise indistinguishable.

Proof. For a subset I of [n] let χI :{−1, 1}n → {−1, 1} be χI(x) =
∏

i∈I xi. It
suffices to prove the conclusion for the tests χI where |I| ≤ k. This is because
if

∑
x(μ′(x) − ν′(x))T (x) ≥ α, then writing T in Fourier expansion we have

∑
I T̂I

∑
x(μ′(x)−ν′(x))χI(x) ≥ α, and so there exists a test χI giving advantage

at least α/2k.
For a function f :{−1, 1}n → R we write [f, I] for

∑
x f(x)χI(x), and call

it the I coefficient of f . We “adjust” the coefficients of μ and ν by repeating
the following step. Let I ⊆ [n] be a non-empty subset of size at most k. By
hypothesis, |[μ − ν, I]| = α ≤ ε. Without loss of generality let [μ, I] ≤ [ν, I]. Set
μ′:=μ + α(χI + 1)/2n, and ν′:=ν + α/2n. Now we have [μ′ − ν′, I] = 0, while
[μ′−ν′, J ] = [μ−ν, J ] for J �= I. Moreover, note that

∑
x |μ′(x)| =

∑
x |μ(x)|+α,∑

x |μ(x) − μ′(x)| = α, and that the same holds for ν.
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Repeating the adjustment ≤ nk times, we get two non-negative functions μ′

and ν′ such that [μ′ − ν′, I] = 0 for every I of size at most k, and
∑

x |μ(x) −
μ′(x)| ≤ εnk, and the same for ν′, and also

∑
x |μ′(x)| =

∑
x |ν′(x)| = 1 + σ, for

some 0 ≤ σ ≤ εnk.
Finally, let μ∗ = μ/(1 + σ) and ν∗ = ν/(1 + σ). We have [μ∗ − ν∗, I] = 0 for

every I of size at most k. The distance of μ∗ from μ is ≤ (1 + σ)−1(
∑

x |μ(x) −
μ∗(x)| + σ

∑
x μ(x)) ≤ 2εnk, and the same for ν. ��
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