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Abstract. Cyber-Physical Systems (CPSs) are complex systems in
which physical processes are tightly interacting with networked com-
puting components. Some pilot researches suggest that Service-Oriented
Architecture (SOA) by promising to guide the development of CPSs, but
most of them neglect continuous physical behaviors for coinciding with
traditional SOA. Consequently, developed CPS services cannot properly
support the tight interaction between physical processes and computing.
In this paper, we propose a novel framework S-PDH, in which a CPS
service is characterized by a three-level of service contracts, namely, the
physical property contract, the dynamic physical behavior contract, and
the hybrid system behavior contract. Based on the framework, we study
CPS service composition. This study introduces a novel SOA solution to
CPS development, and promotes service computing to a new frontier.

Keywords: Service-Oriented Architecture (SOA) · Cyber-Physical Sys-
tem (CPS) · Modeling · Service contract · Service composition

1 Introduction

Cyber-Physical Systems (CPSs) are emerging systems that will reshape the way
our modern society perceives the physical world, lives, moves, and interaction
in it [1]. In CPSs, computers monitor and control the physical processes via
networks in the manner of feedback loops where physical processes affect com-
putations as well [2]. Due to the historical ties to embedded systems, most CPSs
so far are designed as monolithic ones. The situation gravely impedes CPSs
reaching more broad and complex territory. CPSs are seeking more effective
paradigms to leverage their development [1].

Meanwhile, Service-Oriented Computing (SOC) has been proved to be an
elegant paradigm to deal with complex distributed systems [3]. Corresponding
Service-Oriented Architecture (SOA) can guide us to integrate heterogeneous
components and make the system scale upwards easily. Therefore, SOC is a
promising paradigm to bail the CPS out.

In fact, there have been many studies about CPS services. Researchers have
analyzed physical properties [4–6], studied device behaviors [7,8], or probed
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time-spatial features [9,10]. However, most of them neglect continuous physical
behaviors for coinciding with traditional SOA. This compromise expressiveness
or verification capability. In CPS, as we know, improper treatment of physical
behaviors might lead to low efficiency, serious functional errors or even disasters.

To fill the gap, we propose a method to characterize CPS services, and lever-
age their composition, in accordance with the roadmap of SOC research [3].
Physical behaviors in CPS are described by three successive levels, from bot-
tom to top, physical properties, dynamic physical behaviors, to hybrid system
behaviors.

Our technical contributions include:

– a framework S-PDH which provides a comprehensive model to characterize
CPS intrinsic features, and supports CPS services composition;

– the capability of precise control of efficiency and safety in CPSs;
– leveraging the SOC to deal with interacting dynamic systems with both dis-

crete and continuous behaviors.

The paper is organized as follows. Section 2 identifies the necessity of phys-
ical behavior characterization and the compositional construction of CPSs via
a running example. Section 3 sketches the S-PDH framework, and highlights
the rationale underpinning our idea. Section 4 discusses composition facilities in
S-PDH. Section 5 outlines the prototype implementation and a case study. In
Sect. 6 we review related work. Finally, we conclude the study in Sect. 7.

2 Motivating Example

Let us consider a smart crossing scenario. In its simplest setting, there is a one-
way street with a crosswalk (Fig. 1(c)). There are three kinds of participants:
cars, traffic lights, and pedestrians. An intent CPS service, named SmartCross-
walk, tries to meet two goals: efficiency and safety. By efficiency, we mean it
should let cars and pedestrians pass the crossing as many as possible. By safety,
we must be sure that there is no any collision of cars or pedestrians.

In this context, some design issues are:

– How to model participants and their interactions effectively? Can we improve
the system performance with the help of the dynamic physical behavior such
as cars acceleration?

– Can we develop scalable facilities to support large-scale CPS services, e.g. con-
structing complex CPS services like Fig. 1(d), or (e) effectively and efficiently
by composition?

CPS service approaches so far solve the problem 2 partially, but fail to handle
the problem 1. In a word, the CPS services cry for innovations.
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Fig. 1. Constructing complex CPSs progressively. (a) The AutoDriving CPS, (b) The
TrafficLight CPS, (c) Constructing SmartCrosswalk from the AutoDriving and the
TrafficLight, (d) Constructing SmartCrossing from the SmartCrosswalk, and (e) Con-
structing SmartBlock from the SmartCrossing or the SmartCrosswalk

3 The S-PDH Framework

In order to capture rich features in CPSs, we propose the S-PDH framework as
Fig. 2, which characterizes CPS services progressively through physical proper-
ties, to dynamic physical behaviors, until hybrid system behaviors, in accordance
with the service foundation dimension [3].

Fig. 2. S-PDH, a three level framework to characterizing CPS services

3.1 Modeling Physical Properties

Physical properties are captured by property variables that reflect the snapshots
of physical behaviors of a CPS. The variable range, normally in R, represents
physical status, performance, etc. Basically, a physical property is a tuple

αl1 ::= 〈pname, ptype, pvtype, pvcons, pvunit〉,
where:

– pname: string, the physical property name;
– ptype: string, taking from a set of predefined types, e.g. time, dimension,

position, energy, temperature, etc.;
– pvtype: string, the physical property value type, it can be a simple type such as

integer, float, double, boolean, string, etc. or complex type defined by schema
such as ranging in R × R;
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– pvcons: the physical property constants or constraint values corresponding to
pvtype;

– pvunit: the unit of physical property measurement, which is important for
unit matching.

Physical properties are supported by traditional CPS service approaches
[4–10]. But this facility alone cannot support CPS effectively. Taking the CPS
AutoDriving (Fig. 1(a)) as an example, the velocity of a car could be as high
as 150 km/h, but if there is another car ahead, the braking distance will impose
restriction on the real velocity, e.g. at most 70 km/h at certain moment. Hence,
in order to describe physical behaviors precisely, it is required to characterize
richer features in CPS service contracts, following SOA priniples.

3.2 Modeling Dynamic Physical Behaviors

Most physical behaviors can be represented formally by the combination of dif-
ferential and algebraic equations [11]. In our running example, cars running and
acceleration behaviors can be expressed by

ṡ = v, v̇ = a. (1)

where s represents the passage within time t with the velocity v, and a is the
acceleration.

The dynamics of the physical components is an equation of time t. We use
linear differential equations and linear algebraic equations, i.e. ako linear time
invariant (LTI) [11] to describe all dynamic physical behaviors based on modern
control theory. To do so, we have

– Input Variables: the set of variables that describe the inputs of the dynam-
ics, e.g. a in the Eq. (1).

– Controlled Variables: the set of variables that describe the result of the
dynamics, e.g. s, v in the Eq. (1).

– Output Variables: the set of controlled variables that we are pursuing, e.g.
s in the Eq. (1). We may call the rest of controlled variables Intermediate
Variables, e.g. v in the Eq. (1).

Now a physical dynamic system can be modeled as Fig. 3.
Generally, the model of a system is a function in the form [11]

F : X → Y,X = Y = R
R (2)

To conclude, the dynamic physical behavior description is a tuple

αl2 ::= 〈inpvar, intvar, outvar, func〉,
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Fig. 3. A physical dynamic system Fig. 4. The car’s acceleration behavior

where:

– the first three elements represent input variables, internal variables and output
variables, respectively. Note that each element in the tuple is still a tuple in
the form 〈pname, ptype, pvtype, pvcons, pvunit〉, and each variable could be a
function of time t;

– func: the algebraic or differential equations of the variables.

As an example, for the Eq. (1), its model is depicted as Fig. 4.

3.3 Modeling Hybrid System Behaviors

The intertwining of discrete and continuous dynamics is the intrinsic feature of a
CPS [12]. An excellent formal model to support the intertwining is the so-called
hybrid system, in which there are system flows (by differential equations) and
jumps (by difference equations) [13]. We will use hybrid automaton or hybrid
program [14] interchangeably for intuitive or expressive power purposes.

In this way, the hybrid system can be modelled as a hybrid automaton or a
hybrid program. Furthermore, we choose Differential Dynamic Logic (dL) [14]
to characterize the hybrid system behavior.

Example 1. The hybrid behavior of an AutoDriving CPS service for the auto-
driving of multiple cars is depicted by Fig. 5.

Fig. 5. Hybrid automaton (a) and hybrid program (b) for AutoDriving hybrid system



84 L. Ye et al.

Accordingly, we have

Hybrid Programs [14]:

α, β ::= x1 := θ1, · · · , xn := θn|x′
1 := θ1, · · · , x′

n := θn&χ|?χ|α ∪ β|α;β|α∗

where α, β are hybrid programs, θi are dL terms, xi ∈ Σ are state variables, and
χ is a hybrid formula of first-order logic over reals.

Here, the dL terms and hybrid formula are defined as:

dL Terms [14]:
θ ::= x|f(θ1, · · · , θn).

where θ1, · · · , θn are terms, f is a function symbol of arity n, and x ∈ Σ is a
logical variable.

Hybrid Formulas [14]:

φ, ψ ::= p(θ1, · · · , θn)|¬φ|(φ ∧ ψ)|(φ ∨ ψ)|(φ → ψ)|∀xφ|∃xφ|[α]φ|〈α〉φ
where φ, ψ are dL formulas, θi are terms, p is a predicate symbol of arity n,
x ∈ V is a logical variable, and α is a hybrid program.

Note that α ∪β|α;β|α∗ in the hybrid programs definition are composition of
hybrid programs, which will be used in the next section.

Then, the hybrid system behaviors description in S-PDH is the tuple

αl3 ::= 〈HybridPrograms〉.
It is not obligated that every CPS service populates all its three levels of

contracts. We could choose suitable S-PDH levels in application to fit specific
contexts so long as it meets the requirement that the higher level depends on
the lower levels.

4 CPS Service Composition in S-PDH

Along another dimension of SOC research roadmap in [3], we use composition
as the means to develop new coarser grained services for value-added purpose.

CPS Service Composition: A composition of CPS services is a pair 〈C,U〉,
standing for the constitution part and the utility part, respectively, where,

C :== α|C||C, U :== p(C)|v(C)|d(C)|h(C)|s(C).

The constitution part reflects the fact that the composition is closed, i.e. the
composite service is still a CPS service. More specifically,

– α is a triple 〈αl1, αl2, αl3〉, where elements αl1, αl2, and αl3 are defined in the
last section, along the S-PDH framework;

– C||C represents the parallel composition of two CPS services who are mutually
compatible at the same level in S-PDH.
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On the other hand, the utilities about C have following meaning:

– p(C) checks compatibility on physical properties;
– v(C) takes actions on variables. Three operations are: recognizing shared vari-

ables, initializing variables function, and evaluating variables function;
– d(C) takes actions on dynamic physical behaviors. There are two important

operations: initializing dynamic physical behavior function, and evaluating
dynamic physical behavior function.

– h(C) takes actions on hybrid system behaviors. There are two important oper-
ations: recognizing hybrid system behavior states, and evaluating hybrid sys-
tem behavior states.

– s(C) takes the synchronization actions as needed. There are four opera-
tions: synchronizing physical properties, synchronizing variables, synchroniz-
ing dynamic physical behaviors, and synchronizing hybrid system behavior
states.

In composing CPS services, we need to guarantee the compatibility of con-
tracts at all the three levels.

4.1 Compatibility Checking for Physical Properties

At the property level, i.e. αl1,

– for C||C, we analyze the intersection of variable domains to compose two phys-
ical properties without resource contention. We could use p(C) and s(C) to
conquer the nondeterministic;

– p(C) evaluates physical properties, which can be pvtype, pvcons, and pvunit.
– v(C), d(C), and h(C) are not available at this level;
– s(C) takes the synchronization operations on physical properties at this level.

Example 2. For the AutoDriving case in Example 1, the car’s location is
at latitude= 31.163514, longitude= 121.579742. So the following car can check
whether the location conflicts if it is going to get that place.

4.2 Compatibility Checking for Dynamic Physical Behaviors

We use the control theory [11], i.e. transfer functions and block diagram models,
to develop composition analysis rules as Table 1.

Based on these rules, we propose an algorithm (Algorithm1 below) to check
the compatibility at the dynamic physical behavior level without any information
lost. More specifically, the C||C represents the parallel composition of two αl2.

– v(C) takes the steps 1–8 of Algorithm 1.
– d(C) takes the steps 9–17 of Algorithm 1.
– h(C) is not available at this level.
– s(C) takes actions on demand.
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Table 1. Transformation with equivalent diagram

Transformation Original Diagram Equivalent Diagram

1. Cascade Combining

2. Parallel Combining

Algorithm 1. Composition analysis for dynamic physical behaviors analysis
Input: 〈inpvar1, intvar1, outvar1, func1〉, 〈inpvar2, intvar2, outvar2, func2〉
Output: ComposedFunc
1: if (inpvar1 ∪ intvar1 ∪ outvar1)

⋂
(inpvar2 ∪ intvar2 ∪ outvar2) == ∅ then

2: return false
3: else
4: SharedV ar = (inpvar1 ∪ intvar1 ∪ outvar1)

⋂
(inpvar2 ∪ intvar2 ∪ outvar2) {Check for

common variable domain area}
5: if Evaluate(SharedV ar) == ∅ then
6: return false
7: end if
8: end if
9: TranFunc1 = Laplace(func1), TranFunc2 = Laplace(func2)
10: if Typeof(SharedV ar) == [inpvar1, inpvar2]||[intvar1, intvar2]||[outvar1, outvar2] then
11: ComposedTransFunc = TranFunc1 + TranFunc2
12: else if Typeof(SharedV ar) == [inpvar1, intvar2]||[inpvar1, outvar2]||[inpvar1, outvar2]

then
13: ComposedTransFunc = TranFunc1 · TranFunc2
14: end if
15: ComposedFunc = UnLaplace(ComposedTransFunc)
16:
17: return ComposedFunc

Example 3. In Example 1, the AutoDriving car has a brake-distance func-
tion brakedistance = v2

2gµ . However, it is affected by current velocity and road
condition. We now can get a more compact safe distance between two cars by
evaluating their brake-distance, much better than other approaches that merely
use the physical properties, e.g. max brake-distance.

4.3 Compatibility Checking for Hybrid System Behaviors

With the help of dL [14], we can check the compatibility of hybrid system behav-
iors systematically. More specifically, hybrid programs form a regular-expression-
style Kleene algebra with tests. Along this line, C||C represents the parallel com-
position of two αl3, which is supported by α ∪ β, α;β, α∗.

– p(C), v(C), d(C) are checked as above;
– h(C) will conduct the state reachable analysis for hybrid systems, and system

condition verification, etc.
– s(C) is in charge of synchronizing the variables, states in certain conditions.

In our study, we use KeYmaera [15] to verify the hybrid system behaviors.
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5 Prototype Implementation and Evaluation

To validate the feasibility and the effectiveness of the S-PDH framework, we
implement a prototype around the motivating example in Sect. 2.

We use JAX-WS in SOAP style, and extend 〈ComplexType〉 in WSDL 2.0 to
support the three level contracts in S-PDH. We also use Mathematica as a differ-
ential equation solver to meet the requirements of the dL with the KeYmaera [15].

We choose JAX-WS instead of more sophisticate WS-* standards because it
is a lightweight solution to Web Services and is bundled within JDK.

To validate the feasibility of the S-PDH, we conduct a case study against the
motivating scenarios. The atomic CPS services TrafficLight and AutoDriving are
straightforward as depicted in above examples.

What’s really interesting is that we can compose CPS services to a new CPS
service, and let the process progress iteratively. Note the corresponding in S-PDH
between a CPS service and a CPS, this capability implies a new approach for CPS
development. For example, the CPS service SmartCrosswork (Fig. 1(c)) can be
constructed by two autonomous CPS services, say AutoDriving and TrafficLight,
by integrating all the three levels of contracts as Fig. 6.

Based on the SmartCrosswalk service, we can further get SmartCrossing
(Fig. 1(d)) and SmartBlock Service (Fig. 1(e)) by composition such as Fig. 7.

Fig. 6. SmartCrosswalk service Fig. 7. SmartCrossing service

To make our approach more concrete, we apply it on digilent’s ZRobots. By
embedding our prototype into the ZedBoard (running ARM-based Linux), we
get AutoDriving Service. Please refer to [16] for implementation details. The
test shows that by acquiring the motion equations of front car provided by its
AutoDriving service, the following car can evaluate the distance change curve
with fully braking by Mathematica, which demonstrates the precise control of
safety and efficiency with S-PDH by introducing physical behaviors in service
contracts.
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6 Related Work

Over last five years, more and more researchers have pursued SOA-based CPSs.
We review them by categories.

Contract-Based Services Modeling. Contract-based services modeling was
introduced in [17], and developed by [18]. In [19], the author claimed that it
will bring huge advantages of exploiting behavioural information for service dis-
covery and composition, which inspires us to utilize the contract-based services
modeling approach in constructing CPS services.

Physical Resource / Physical Property Focused Model. Typical SOA-
based extensions for CPS take into consideration of the physical resource con-
strains, which differs from traditional software services [20–23]. Physical property
model utilizes the semantic methods [4,5] or context model [6] to examine the
compatibility of different physical properties. They evolve the service constrains
with physical resources and some related physical properties, and utilize QoS to
fulfill the requirement of CPS service.

Our work encloses the physical resources and physical properties into
S-PDH Level 1, and focuses on more comprehensive physical behaviors at higher
abstraction levels, i.e. the Level 2, and the Level 3.

Virtual Device Operating Methods. Some researchers study how to capture
device operating and results [7,8]. They wrap the physical part as virtual devices
and transform the device operating as service event/control process.

Our work embeds the event/process control into the dynamic physical behav-
iors (Level 2 in S-PDH). We go further by introducing hybrid system behaviors,
which leverages CPS services to more complex environments.

Time-Spatial Extension Methods. Time-spatial constraints are vital ingre-
dients in CPSs. So some researchers focus on how to extend the capacity of
time-spatial handling in SOA. For example, [9,10] utilize time-space π-calculus
or real-time control middleware to operate the resource, time and space con-
straints of CPSs.

As we discussed in the motivating example, only time-spatial constraint is
not enough to keep the system’s efficiency and safety. Our work considers the
physical properties as well as behaviors at various levels. So we get a more
powerful methods to handle the efficiency and safety requirements.

Hybrid System Extension Methods. Our former work [24,25] proposed a
CPS service extension method based on hybrid system, which can model the
system physical behavior well. They merely focused on compatibility verifica-
tion instead of the comprehensive framework here. Our recent work [16] focuses
the implementation rather than the framework. They can be considered as the
supplement of this article.
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7 Conclusion and Future Work

We develop a framework S-PDH that provides a comprehensive model to develop
CPS services. First, by casting physical behaviors into service contracts, a ser-
vice consumer is able to anticipate the physical state of the service provider
dynamically based on the physical process pattern, which will contribute a lot
to precise control of conflict goals in CPS. Then, we leverage the contract notion
to implement CPS service composition, which results in a scalable facility to
support large-scale CPS construction.

On the other hand, with the physical behaviors contract extension, SOC is
capable of dealing with the interacting dynamic systems with both discrete and
continuous behaviors. This might leverage SOA technology to a new frontier.

There are still many research issues around the proposed framework, e.g.
service compatibility analysis, model checking, and automatic compositing about
CPS services. We will work on them in the future work.
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